Facoltà di Scienze M.F.N.,dipartimento di Matematica Università di Torino Laboratorio di combinatorica

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Facoltà di Scienze M.F.N.,dipartimento di Matematica Università di Torino Laboratorio di combinatorica"

Transcript

1 Facoltà di Scienze M.F.N.,dipartimento di Matematica Università di Torino Laboratorio di combinatorica Realizzato da Daisy Blanc Anno scolastico 2008/2009

2 BIOGRAFIA DI LEONARDO FIBONACCI Leonardo Fibonacci, figlio di Guglielmo Bonacci, nacque a Pisa intorno al Suo padre era segretario della Repubblica di Pisa e responsabile a partire dal 1192 del commercio pisano presso la colonia di Bugia, in Algeria. Alcuni anni dopo il 1192, Bonacci portò suo figlio con lui a Bugia. A Bugia, Fibonacci imparò la matematica e viaggiò moltissimo con suo padre, riconoscendo gli enormi vantaggi dei sistemi matematici usati nei paesi che visitarono. Il padre appunto, voleva che Leonardo divenisse un mercante e così provvedette alla sua istruzione nelle tecniche del calcolo, specialmente quelle che riguardavano le cifre indo-arabiche, che non erano ancora state introdotte in Europa. In seguito Bonacci si assicurò l aiuto di suo figlio per portare avanti il commercio della repubblica pisana e lo mandò in viaggio in Egitto, Siria, Grecia, Sicilia e Provenza. Leonardo colse l opportunità offertagli dai suoi viaggi all estero per studiare e imparare le tecniche matematiche impiegate in queste regioni. Intorno al 1200, Fibonacci tornò a Pisa dove per i seguenti 25 anni lavorò alle sue personali composizioni matematiche. Qui, egli scrisse un gran numero di testi importanti, che giocarono un ruolo determinante nel risvegliare antiche abilità matematiche. Dei suoi libri, abbiamo ancora copie del Liber abbaci (1202), Practica geometriae (1220), Flos (1225), e Liber quadratorum. In quegli anni il Sacro Romano Imperatore era Federico II. Federico II aiutò Pisa nel suo conflitto con Genova in mare e con Lucca e Firenze per via terra, e trascorse gli anni successivi al 1227 a consolidare il suo potere in Italia. Il controllo dello stato fu introdotto nel commercio e nell'industria manifatturiera, e furono istruiti servi civili all'università di Napoli, che Federico aveva fondato nel 1224 proprio per questo proposito, per sorvegliare questo monopolio. Federico si rese conto del lavoro di Fibonacci grazie ai dotti della sua corte, che avevano corrisposto con lui sin dal suo ritorno a Pisa, intorno al Tra questi dotti c'erano anche Michael Scotus, che era l'astrologo di corte, Theororus, il filosofo di corte e Dominicus Hispanus, che suggerì a Federico di incontrare Fibonacci, quando la sua corte sostò a Pisa, intorno al Johannes di Palermo, un altro membro della corte di Federico II, presentò, come sfide, un certo numero di problemi al grande matematico Fibonacci. Tre di questi problemi furono risolti da Fibonacci, che ne fornì le soluzioni nel Flos, il quale venne poi inviato a Federico II. Tornando alle opere di Fibonacci possiamo dire che in tutta la sua produzione quella più importante è il "Liber abaci", comparso attorno al 1228: è un lavoro contenente quasi tutte le conoscenze aritmetiche e algebriche ed ha avuto una funzione fondamentale nello sviluppo della matematica dell Europa occidentale. In particolare la numerazione indo-arabica, che prese il posto di quella latina semplificando notevolmente i commerci extraeuropei, fu conosciuta in Europa tramite questo libro (in tale sistema di numerazione, il valore delle cifre dipende dal posto che occupano: pertanto egli fu costretto ad introdurre un nuovo simbolo, corrispondente allo zero "0", per indicare le posizioni vacanti). Certamente, molti dei problemi che Fibonacci considera nel Liber abbaci erano simili a quelli che apparivano nelle fonti arabe. La seconda parte del Liber abbaci contiene un'ampia raccolta dei problemi rivolti ai mercanti. Essi si riferiscono al prezzo dei prodotti, e insegnano come calcolare il profitto negli affari, come convertire il denaro nelle varie monete in uso negli stati mediterranei, e altri problemi ancora di origine cinese. Un problema, nella terza parte del Liber abbaci, portò all'introduzione dei numeri di Fibonacci e della sequenza di Fibonacci, per i quali è ricordato ancora oggi:

3 Un certo uomo mette una coppia di conigli in un posto circondato su tutti i lati da un muro. Quante coppie di conigli possono essere prodotte da quella coppia in un anno, se si suppone che ogni mese ogni coppia genera una nuova coppia, che dal secondo mese in avanti diventa produttiva? Un altro dei libri di Fibonacci è il Practica geometriae, scritto nel 1220 e dedicato a Dominicus Hispanus. Esso contiene un'ampia raccolta di problemi geometrici, distribuiti in otto capitoli, unitamente a teoremi basati su Gli Elementi di Euclide e sulle divisioni sempre di Euclide. Il Liber quadratorum, scritto nel 1225, è la parte del lavoro di Fibonacci più impressionante, sebbene non sia l'opera per cui è maggiormente conosciuto. Il nome del libro significa il libro dei quadrati ed è un libro sulla teoria dei numeri che, tra le altre cose, esamina i metodi per trovare il triplo pitagorico. Fibonacci, per primo, notò che i numeri quadrati potevano essere costruiti come somme di numeri dispari, descrivendo, in linea essenziale, un procedimento induttivo e usando la formula n^2+(2n+1)=(n+1)^2. Fibonacci scrive: Ho pensato all'origine di tutti i numeri quadrati e ho scoperto che essi derivano dal regolare aumento dei numeri dispari. L'1 è un quadrato e da esso è prodotto il primo quadrato, chiamato 1; aggiungendo 3 a questo, si ottiene il secondo quadrato, 4, la cui radice è 2; se a questa somma viene aggiunto un terzo numero dispari, cioè 5, verrà prodotto il terzo quadrato, cioè 9, la cui radice è 3; per cui la sequenza e le serie dei numeri quadrati derivano sempre da addizioni regolari di numeri dispari. Dopo il 1228 non si sa in sostanza niente della vita di Leonardo tranne il decreto della Repubblica di Pisa che gli conferì il titolo di "Discretus et sapiens magister Leonardo Bigollo" a riconoscimento dei grandi progressi che apportò alla matematica. Fibonacci morì qualche tempo dopo il 1240, presumibilmente a Pisa.

4 SUCCESSIONE DI FIBONACCI La successione di Fibonacci è una successione di numeri interi naturali definibile assegnando i valori dei due primi termini, F 0 := 0 ed F 1 := 1, e chiedendo che per ogni successivo sia F n := F n-1 + F n-2 con n>1. Il termine F 0 viene aggiunto nel caso si voglia fare iniziare la successione con 0; storicamente il primo termine della successione è F 1 := 1. L'intento di Fibonacci era quello di trovare una legge che descrivesse la crescita di una popolazione di conigli. Assumendo che: la prima coppia diventi fertile al compimento del primo mese e dia alla luce una nuova coppia al compimento del secondo mese; le nuove coppie nate si comportino in modo analogo; le coppie fertili, dal secondo mese di vita, diano alla luce una coppia di figli al mese; avremo che se partiamo con una singola coppia dopo un mese una coppia di conigli sarà fertile, e dopo due mesi due coppie di cui una sola fertile, nel mese seguente avremo 2+1=3 coppie perché solo la coppia fertile ha partorito, di queste tre ora saranno due le coppie fertili quindi nel mese seguente ci saranno 3+2=5 coppie, in questo modo il numero di coppie di conigli di ogni mese descrive la successione dei numeri di Fibonacci.

5 I primi 41 numeri di Fibonacci sono: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55 (=F 10 ) 89, 144, 233, 377, 610, 987, 1597, 2584, 4181, 6765 (=F 20 ) 10946, 17711, 28657, 46368, 75025, , , , , (=F 30 ), , , , , , , , , , (=F 40 ) I numeri di Fibonacci godono di una gamma stupefacente di proprietà, si incontrano nei modelli matematici di svariati fenomeni e sono utilizzabili per molti procedimenti computazionali; essi inoltre posseggono varie generalizzazioni interessanti. GENERALIZZAZIONI Una successione di Fibonacci può anche non cominciare necessariamente con 0 e 1 o con due 1. Questa successione è detta successione di Fibonacci generica o generalizzata. Ogni successione generica di Fibonacci rispetta però una singolare caratteristica, la somma dei primi 10 elementi sarà sempre uguale a 11 volte il settimo elemento. La dimostrazione è molto semplice: elenchiamo i primi 10 elementi in questo modo: 1 elemento: m 2 elemento: n 3 elemento: m + n 4 elemento: m + 2n 5 elemento: 2m + 3n 6 elemento: 3m + 5n 7 elemento: 5m + 8n 8 elemento: 8m + 13n 9 elemento: 13m + 21n 10 elemento: 21m + 34n Sommando tutti i dieci elementi, si otterrà 55m + 88n che è proprio uguale a 11 volte il settimo elemento. Ogni successione generalizzata conserva la proprietà che il rapporto tra due numeri consecutivi tende alla sezione aurea. Una particolare successione di Fibonacci generalizzata, quella ottenuta ponendo m=2 e n=1, è detta successione di Lucas, dal matematico francese Édouard Lucas. SUCCESSIONI TRIBONACCI E TETRANACCI La successione di Fibonacci può essere anche generalizzata non richiedendo che ogni numero sia la somma dei due successivi, ma degli ultimi n, dove n è un qualsiasi numero intero. Se n=1 si ottiene una successione degenere i cui termini sono tutti 1, se n=2 si ottiene la successione di Fibonacci,

6 mentre per n=3 e 4 si ottengono rispettivamente le cosiddette successione Tribonacci e Tetranacci. Caratteristica comune di queste successioni è che il rapporto tra due termini consecutivi tende alla radice reale compresa tra 1 e 2 del polinomio Anche la somma dei reciproci degli elementi di questa successione converge (se n>1), come si può vedere facilmente considerando che ogni k-esimo elemento di una successione è maggiore o uguale del corrispondente elemento F(k) della successione di Fibonacci, e quindi il reciproco è minore. PROPRIETÀ La successione di Fibonacci possiede moltissime proprietà di grande interesse. La proprietà principale, e maggiormente utile nelle varie scienze, è quella per cui il rapporto F n+1 / F n al tendere di n all'infinito tende al numero algebrico irrazionale chiamato sezione aurea o numero di Fidia. Quindi: lim F n+1 / F n = Φ per n dove Bisogna anche notare come, proseguendo via via per la sequenza, il rapporto risulti alternativamente maggiore e minore della costante limite. Naturalmente il rapporto tra un numero di Fibonacci e il suo successivo tende al reciproco della sezione aurea. Conviene anche ricordare che: a) b) in accordo con la definizione di sezione aurea come il numero positivo tale che, equazione che, quando vincolata alla condizione, ammette l'unica soluzione. Ragionamenti analoghi possono essere applicati per ottenere altri rapporti irrazionali costanti; per esempio dividendo ogni numero per il secondo successivo si ottiene 0,382 e dividendo ogni numero

7 per il terzo successivo si ottiene 0,236, mentre dividendo ogni numero per il secondo precedente si ottiene 2,618 e dividendo ogni numero per il terzo precedente si ottiene 4,236. Sia le sue proprietà geometriche e matematiche, che la frequente riproposizione della proporzione in svariati contesti naturali, apparentemente slegati tra loro, hanno impressionato nei secoli la mente dell'uomo, che è arrivato a cogliervi col tempo un ideale di bellezza e armonia, spingendosi a ricercarlo e, in alcuni casi, a ricrearlo nell'ambiente antropico quale canone di bellezza; testimonianza ne è forse la storia del nome che in epoche più recenti ha assunto gli appellativi di "aureo" ( sezione aurea ) o "divino" ( divina proporzione ), proprio a dimostrazione del fascino esercitato. Fu nell'ottocento che alla "Divina proporzione" venne dato il nome di "Sezione aurea". Ecco alcuni esempi di applicazione e di riscontro ARCHITETTURA - La piramide egizia di Cheope ha una base di 230 metri ed una altezza di 145: il rapporto base/altezza corrisponde a 1,58 molto vicino a 1,6. - Nei megaliti di Stonehenge, le superfici teoriche dei due cerchi di pietre azzurre e di Sarsen, stanno tra loro nel rapporto di 1,6. - La pianta del Partenone di Atene è un rettangolo con lati di dimensioni tali che la lunghezza sia pari alla radice di 5 volte la larghezza, mentre nell'architrave in facciata il rettangolo aureo è ripetuto più volte. - Anche nella progettazione della Cattedrale di Notre Dame a Parigi e del Palazzo dell'onu a New York sono state utilizzate le proporzioni del rettangolo aureo. PITTURA - Nelle arti del passato, in molte opere di Leonardo da Vinci, Piero della Francesca, Bernardino Luini, Sandro Botticelli, si ricorreva spesso alla sezione aurea (la divina proporzione), considerata quasi la chiave mistica dell'armonia nelle arti e nelle scienze. -Il rettangolo aureo nelle opere di Leonardo L ultima cena

8 e nella Venere di Botticelli La Gioconda

9 -Pittura Contemporanea: "1.618" (1983) Piet Mondrian( ) "sezione aurea" MUSICA Anche nella musica, Beethoven, nelle "33 variazioni sopra un valzer di Dabelli" suddivise la sua composizione in parti corrispondenti ai numeri di Fibonacci, il cui rapporto corrisponde al numero d'oro. ASTRONOMIA In Astronomia si è osservato che tutti i pianeti interni distano dal Sole nelle proporzioni della successione (Mercurio 1, Venere 2, Terra 3, Marte 5); e quelli esterni distano ugualmente da Giove (Saturno 1, Urano 2, Nettuno 3, Plutone 5); anche grazie a questa coincidenza gli astronomi previdero l'esistenza di Nettuno. Negli oggetti quotidiani, possiamo trovare alcuni esempi di sezione aurea:dalle schede telefoniche alle carte di credito e bancomat, dalle carte SIM dei cellulari alle musicassette: sono tutti rettangoli aurei con un rapporto tra base ed altezza pari a 1,618.

10 CORPO UMANO In natura il rapporto aureo è riscontrabile in molte dimensioni del corpo umano. Se moltiplichiamo per 1,618 la distanza che in una persona adulta e proporzionata, va dai piedi all'ombelico, otteniamo la sua statura. Così la distanza dal gomito alla mano (con le dita tese), moltiplicata per 1,618, dà la lunghezza totale del braccio. La distanza che va dal ginocchio all'anca, moltiplicata per il numero d'oro, dà la lunghezza della gamba, dall'anca al malleolo. Anche nella mano i rapporti tra le falangi delle dita medio e anulare sono aurei, così il volto umano è tutto scomponibile in una griglia i cui rettangoli hanno i lati in rapporto aureo. -Famosa è la rappresentazione di Leonardo dell'uomo di Vitruvio in cui una persona è inscritta in un quadrato e in un cerchio. Nel quadrato, l'altezza dell'uomo (AB) è pari alla distanza (BC) tra le estremità delle mani con le braccia distese. La retta x-y passante per l'ombelico divide i lati AB e CD esattamente in rapporto aureo tra loro. Lo stesso ombelico è anche il centro del cerchio che inscrive la persona umana con le braccia e gambe aperte. La posizione corrispondente all'ombelico è infatti ritenuta il baricentro del corpo umano. -Meno famosa, ma non meno esplicita, è la figura dell'uomo di Rutilio il Vecchio, nel quale la figura umana è inscritta in una stella a cinque punte

11 -Nella figura seguente possiamo individuare numerosi rapporti aurei: A/a= tra l'altezza e larghezza del viso. B/b= posizione della linea degli occhi rispetto al mento ad alla fronte. C/d= posizione della bocca rispetto al mento ed agli occhi. D/d= altezza e larghezza del naso. E/e= lunghezza ed altezza del profilo della bocca. F/f= larghezza degli occhi e la loro distanza. H/h= distanza degli occhi rispetto al centro di simmetria del viso. NATURA Per motivi legati allo sviluppo dei fiori, il numero di petali di molti di essi è un numero di Fibonacci. Per esempio il giglio ha 3 petali, i ranuncoli ne hanno 5, la cicoria 21, la margherita spesso 34 o 55; la testa dei girasoli è costituita da due serie di spirali, una in un senso ed una in un altro. Il numero di spirali di senso diverso differisce per 21 e 34, 34 e 55, 55 e 89, o 89 e 144 semi e lo stesso avviene per le pigne, per le conchiglie, per l'ananas.

12 Sulla testa di un tipico girasole, per esempio, il numero delle spirali rientra molto spesso in questo schema: 89 spirali che si irradiano ripide in senso orario; 55 che si muovono in senso antiorario e 34 che si muovono in senso orario ma meno ripido. Il più grande girasole che si sia mai conosciuto aveva 144, 89 e 55 spirali. -L Achillea ptarmica. La crescita di questa pianta segue questo schema qui disegnato. Ogni ramo impiega un mese prima di potersi biforcare. Al primo mese quindi abbiamo 1 ramo, al secondo ne abbiamo 2, al terzo 3, al quarto 5 e così via.

13 RELAZIONI CON IL MASSIMO COMUN DIVISORE E LA DIVISIBILITÀ Un'importante proprietà dei numeri di Fibonacci riguarda il loro massimo comun divisore. Infatti è soddisfatta l'identità MCD(F n,f m ) = F MCD(n,m) Da questo segue che F(n) è divisibile per F(m) se e solo se n è divisibile per m. Questa proprietà è importante perché ne segue che un numero di Fibonacci F(n) può essere un numero primo solamente se n stesso è un numero primo, con l'unica eccezione di F 4 =3 (l'unico numero di Fibonacci per cui potrebbe essere divisibile è F 2 =1). ALTRE PROPRIETÀ Tra le altre proprietà minori della sequenza di Fibonacci vi sono le seguenti. Dati quattro numeri di Fibonacci consecutivi, il prodotto del primo col quarto è sempre pari al prodotto del secondo col terzo aumentato o diminuito di 1. Se si prende la sequenza dei quadrati dei numeri di Fibonacci, e si costruisce una sequenza sommando a due a due i numeri della prima sequenza, la sequenza risultante è costituita da tutti e soli i numeri di Fibonacci di posto dispari; Data la sequenza dei numeri di Fibonacci di posto dispari, se si costruisce la sequenza ottenuta sottraendo a due a due i numeri adiacenti della prima sequenza, si ottiene la sequenza dei numeri di Fibonacci di posto pari. Ogni numero di Fibonacci corrisponde alla somma dei numeri che lo precedono eccetto l'ultimo, aumentata di 1. L'identità di Cassini, scoperta nel 1680 da Jean-Dominique Cassini, afferma che per ogni intero n, Tale identità è stata generalizzata nel 1879 da Eugène Charles Catalan: Dimostrazione. Per induzione su n. Per n = 1, si ha F2*F0 - F1^2 = -1. Supponiamo che Fn+1*Fn-1 Fn^2 = (-1)^n e proviamo che Fn+2*Fn - Fn+1^2 = (-1)^n+1 (*). Da Fn+1 = Fn + Fn-1, ricaviamo Fn-1 = Fn+1 - Fn e, sostituendo in Fn+1*Fn-1 Fn^2 = (-1)^n, troviamo Fn+1*( Fn+1 - Fn ) Fn^2 = (-1)^n, cioè F n+1^2 - Fn+1*Fn Fn^2 = (-1)^n = F n+1^2 Fn* (Fn+1 + Fn) = Fn+1^2 - Fn *Fn+2, che è la (*) cambiata di segno.

14 BIBLIOGRAFIA Wikipedia Rob Eastaway, Probabilità, numeri e code. La matematica nascosta nella vita. Dedalo, 2003 Peter Higgins, Divertirsi con la matematica. Curiosità e stranezze del mondo dei numeri. Dedalo, 2001 Thomas Koshy, Fibonacci and Lucas Numbers with Applications. Wiley, 2001 Nikolay Vorobyov, I numeri di Fibonacci Dispense combinatorica

Successione di Fibonacci e Sezione Aurea. Maura Roberta Orlando a.s Zingarelli Bari

Successione di Fibonacci e Sezione Aurea. Maura Roberta Orlando a.s Zingarelli Bari Successione di Fibonacci e Sezione Aurea Maura Roberta Orlando a.s. 2017-18 Zingarelli Bari Partenone di Atene Grande Piramide Pentagramma Villa Savoye a Poissy, nei dintorni di Parigi, celebre realizzazione

Dettagli

Un po di Matematica. Il volo dei numeri di Mario Merz, un'installazione luminosa sulla Mole Antonelliana, rappresenta la successione di Fibonacci

Un po di Matematica. Il volo dei numeri di Mario Merz, un'installazione luminosa sulla Mole Antonelliana, rappresenta la successione di Fibonacci Un po di Matematica Il volo dei numeri di Mario Merz, un'installazione luminosa sulla Mole Antonelliana, rappresenta la successione di Fibonacci La successione di Fibonacci è una sequenza di numeri naturali

Dettagli

Il Rinascimento: approfondimenti sul rapporto aureo

Il Rinascimento: approfondimenti sul rapporto aureo Il Rinascimento: approfondimenti sul rapporto aureo Lo studio degli antichi da parte dei nuovi artisti rinascimentali si sviluppa e si approfondisce notevolmente. Essi infatti sono particolarmente affascinati

Dettagli

SEZIONE AUREA. A.S. 2016/2017 Classe 2C Scuole secondarie di primo grado MORUZZI Casalecchio di Reno

SEZIONE AUREA. A.S. 2016/2017 Classe 2C Scuole secondarie di primo grado MORUZZI Casalecchio di Reno SEZIONE AUREA A.S. 2016/2017 Classe 2C Scuole secondarie di primo grado MORUZZI Casalecchio di Reno INDICE.Introduzione.Successione di Fibonacci.La sezione aurea nella natura.la sezione aurea dell uomo.la

Dettagli

Successione di Fibonacci (Fibonacci numbers)

Successione di Fibonacci (Fibonacci numbers) Successione di Fibonacci (Fibonacci numbers) Opera di Mario Merz ( il volo dei numeri ), Mole antonelliana, Torino, 1998. Si dice successione di Fibonacci la successione 0, 1, 1, 2, 3, 5, 8, 13, 21, 34,

Dettagli

NUMERI, SCIENZE E ARTE - LA SUCCESSIONE DI FIBONACCI

NUMERI, SCIENZE E ARTE - LA SUCCESSIONE DI FIBONACCI NUMERI, SCIENZE E ARTE - LA SUCCESSIONE DI FIBONACCI AUTORI= Carlo Malavasi, Sara Sandoni, Elena Natoli, Serena Mignani, Erik Demian, Giacomo Buscemi Scuola Secondaria di I Grado IC2 Zanotti Classe 3 a

Dettagli

I numeri di. Fibonacci

I numeri di. Fibonacci I numeri di Fibonacci Leonardo Pisano detto Il Fibonacci Scheda Storica Leonardo Pisano detto il Fibonacci fu un matematico italiano, nato a Pisa nel 1170 e ivi morto nel 1240 circa. Egli è considerato

Dettagli

La successione di Fibonacci

La successione di Fibonacci La successione di Fibonacci Figura 1 Sulla Mole Antonelliana si accende la successione di Fibonacci ( ideazione dell architetto Mario Merz ) La relazione ricorsiva F n = F n-1 + F n-, n 3, unitamente alle

Dettagli

Leonardo Fibonacci Lo Sviluppo della Serie,somma di Numeri La Spirale logaritmica La Sezione Aurea in Natura Bibliografia

Leonardo Fibonacci Lo Sviluppo della Serie,somma di Numeri La Spirale logaritmica La Sezione Aurea in Natura Bibliografia La Successione di Fibonacci Leonardo Fibonacci Lo Sviluppo della Serie,somma di Numeri La Spirale logaritmica La Sezione Aurea in Natura Bibliografia Leonardo Fibonacci Leonardo Fibonacci, figlio di Guglielmo

Dettagli

F( ) F( ) F( ) F( ) F( ) F( )

F( ) F( ) F( ) F( ) F( ) F( ) I numeri di Fibonacci Consideriamo la successione numerica ao, a, a2, a3,, an, an, an+, con an an an 2 = + [ ] 2 n > 2 Ogni termine di questa successione è la somma dei due termini precedenti. a4 = a3+

Dettagli

Spirale, Fibonacci, numero aureo

Spirale, Fibonacci, numero aureo Spirale, Fibonacci, numero aureo L archetipo geometrico dell evoluzione è la spirale. Tutte le creature viventi nella loro evoluzione seguono questo archetipo. L uomo nel suo percorso spirituale segue

Dettagli

Conigli Trasmissione di segnali Semi di girasole Che cosa cè in comune?

Conigli Trasmissione di segnali Semi di girasole Che cosa cè in comune? Conigli Trasmissione di segnali Semi di girasole Che cosa cè in comune? 4 Marzo 1997 La riproduzione dei conigli La trasmissione di segnali su un canale discreto La disposizione dei semi di girasole Le

Dettagli

ɸ= 1,61803398874989484820458683436..

ɸ= 1,61803398874989484820458683436.. Sezione Aurea o Numero Aureo o Rapporto Aureo E un numero decimale infinito non periodico, indicato con la lettera greca ɸ (si legge fi ), che arrotondato al centesimo è 1,62. ɸ= 1,61803398874989484820458683436..

Dettagli

Il ruolo della bellezza nella matematica LA SEZIONE AUREA

Il ruolo della bellezza nella matematica LA SEZIONE AUREA Il ruolo della bellezza nella matematica LA SEZIONE AUREA φ La Sezione Aurea «Il rapporto Aureo è una dimostrazione meravigliosa del fatto che l uomo creatore e la natura si servono degli stessi strumenti

Dettagli

Un quadretto in più o in meno?

Un quadretto in più o in meno? Classe Prima C Scuola Secondaria di Primo Grado Fermi-Oggioni Villasanta (MB) 1 Istituto Comprensivo Fermi-Oggioni di Villasanta (MB) Scuola Secondaria di 1 Grado Fermi Classe Prima C Math.en.Jeans Docente

Dettagli

Scritto da Maria Rispoli Sabato 08 Gennaio :44 - Ultimo aggiornamento Domenica 13 Marzo :24

Scritto da Maria Rispoli Sabato 08 Gennaio :44 - Ultimo aggiornamento Domenica 13 Marzo :24 I numeri di Fibonacci sono una sequenza matematica, i cui elementi e i cui rapporti si riscontrano in una straordinaria varietà di fenomeni naturali e artistici. Alla sequenza: 1, 1, 2, 3, 5, 8, 13, 21,

Dettagli

Numeri di Fibonacci e Sezione Aurea Francesca Benanti

Numeri di Fibonacci e Sezione Aurea Francesca Benanti Numeri di Fibonacci e Sezione Aurea Francesca Benanti Dipartimento di Matematica ed Informatica Università degli Studi di Palermo, Via Archirafi 34, 90123 Palermo Tel: 09123891105 Email: fbenanti@math.unipa.it

Dettagli

1. (A1) Quali tra le seguenti uguaglianze sono vere? 2. (A1) Una sola delle seguenti affermazioni è vera. Quale?

1. (A1) Quali tra le seguenti uguaglianze sono vere? 2. (A1) Una sola delle seguenti affermazioni è vera. Quale? M ============= (A) Aritmetica ===================== rappresentazione dei numeri algebra dei numeri proprietà delle operazioni. (A) Quali tra le seguenti uguaglianze sono vere? e. 2 + 2 2 2 + = 2 2 + =

Dettagli

La sezione aurea nelle sue molteplici

La sezione aurea nelle sue molteplici La sezione aurea nelle sue molteplici applicazioni Nella geometria piana il rapporto aureo trova molteplici applicazioni. Se prendiamo un segmento AB =, la sua parte aurea AD vale circa 0,68 (Figura ).

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Introduzione alla Programmazione in MATLAB: Parte 3 - Esercizi Prof. Arcangelo Castiglione A.A. 2016/17 Esercizio 1 Scrivere un M-File Script MATLAB che generi il seguente output

Dettagli

Agrobotica.it News: agroboticaitaly. La sezione aurea o proporzione divina. La sezione aurea detta.

Agrobotica.it News: agroboticaitaly. La sezione aurea o proporzione divina. La sezione aurea detta. .it News: agroboticaitaly La sezione aurea o proporzione divina La sezione aurea detta anche rapporto aureo, numero aureo, costante di Fidia o proporzione divina, è il rapporto fra due lunghezze disuguali,

Dettagli

Spirali. Novembre Spirali Novembre / 19

Spirali. Novembre Spirali Novembre / 19 Spirali Novembre 2013 Spirali Novembre 2013 1 / 19 ;-) Spirali Novembre 2013 2 / 19 La spirale è uno dei simboli più antichi e più estesi che si conoscono. Modena Spirali Novembre 2013 3 / 19 La spirale

Dettagli

MATEMATICA E BELLEZZA. Fibonacci e il numero aureo. Mostra al Castel del Monte

MATEMATICA E BELLEZZA. Fibonacci e il numero aureo. Mostra al Castel del Monte MATEMATICA E BELLEZZA. Fibonacci e il numero aureo Mostra al Castel del Monte Leonardo "Pisano" Fibonacci Fibonacci (Leonardo), detto Leonardo Pisano, matematico italiano (Pisa 1175 circa - 1240 circa).

Dettagli

Progressioni numeriche Successione di Fibonacci e sezione aurea

Progressioni numeriche Successione di Fibonacci e sezione aurea Progressioni numeriche Successione di Fibonacci e sezione aurea Progetto Matematica e Statistica - Progetto Lauree Scientifiche Loredana Caso 1 Successioni numeriche 2 Una successione numerica è una sequenza

Dettagli

c = qa. Quindi b ± c = pa ± qa = (p ± q)a e pertanto a (b ± c)

c = qa. Quindi b ± c = pa ± qa = (p ± q)a e pertanto a (b ± c) I numeri interi Teorema 1. (divisione in Z) Siano a, b Z, b 0. Allora esistono e sono unici q, r Z tali che (1) a = bq + r () 0 r < b. Si 1 dice che q è il quoziente ed r il resto della divisione di a

Dettagli

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi

Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi Lezione 4 Problemi trattabili e soluzioni sempre più efficienti Gianluca Rossi Trattabile o intrattabile? Consideriamo ora il problema, ben noto a tutti gli studenti a partire dalla scuola media, di calcolare

Dettagli

IL TRIANGOLO DI TARTAGLIA. I prodotti notevoli dei polinomi

IL TRIANGOLO DI TARTAGLIA. I prodotti notevoli dei polinomi IL TRIANGOLO DI TARTAGLIA I prodotti notevoli dei polinomi INDICE Niccolò Fontana: la storia Proprietà Costruzione del triangolo Il Triangolo nella storia FINE bibliografia Il triangolo di Tartaglia è

Dettagli

Liceo Classico Alexis Carrel. La sezione aurea. per la 3 K del Liceo Classico Alexis Carrel

Liceo Classico Alexis Carrel. La sezione aurea. per la 3 K del Liceo Classico Alexis Carrel La sezione aurea per la 3 K del Liceo Classico Alexis Carrel 1 Sezione aurea o rapporto aureo o proporzione divina E un particolare rapporto fra due lunghezze disuguali, delle quali la maggiore è media

Dettagli

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006

Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 Congruenze Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 1 Il resto nella divisione tra interi Consideriamo i numeri naturali 0, 1, 2, 3,... ed effettuiamone la divisione per 3, indicando il resto:

Dettagli

La legge astronomica di Bode e i numeri di Fibonacci

La legge astronomica di Bode e i numeri di Fibonacci La legge astronomica di Bode e i numeri di Fibonacci Francesco Di Noto, Michele Nardelli, Pierfrancesco Roggero Abstract In this paper we show the connection between planet s distance from Sun and Fibonacci

Dettagli

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità

CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità CONGRUENZE I) Definizione: due numeri naturali a e b si dicono congrui modulo un numero naturale p se hanno lo stesso resto nella divisione intera per p. Si scrive a b mod p oppure a b (p) proprietà delle

Dettagli

y + P(x) y + Q(x) y = 0 y(x) = c 1y 1(x) + c 2 y 2(x).

y + P(x) y + Q(x) y = 0 y(x) = c 1y 1(x) + c 2 y 2(x). Proposizione 4. Se y 1(x) e y (x) sono soluzioni linearmente indipendenti di y + P(x) y + Q(x) y = 0 ogni altra soluzione della stessa equazione si scrive nella forma per una scelta opportuna delle costanti

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Università di Torino Facoltà di Scienze M.F.N. Dipartimento di Matematica G. Peano Laboratorio di combinatorica Alessia Pellegrino

Università di Torino Facoltà di Scienze M.F.N. Dipartimento di Matematica G. Peano Laboratorio di combinatorica Alessia Pellegrino Università di Torino Facoltà di Scienze M.F.N. Dipartimento di Matematica G. Peano Laboratorio di combinatorica La successione di Fibonacci Alessia Pellegrino Matricola 700548 INDICE BIOGRAFIA pag. 3 ORIGINE

Dettagli

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova pratica - Categoria Senior

OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova pratica - Categoria Senior OLIMPIADI ITALIANE DI ASTRONOMIA 2015 FINALE NAZIONALE 19 Aprile Prova pratica - Categoria Senior Variabili Cefeidi Le Cefeidi sono stelle variabili ( m ~ 1) di massa M > 5 M ed aventi periodo 1 < P

Dettagli

Una questione interessante di teoria dei numeri è connessa al teorema di Pitagora.

Una questione interessante di teoria dei numeri è connessa al teorema di Pitagora. Una questione interessante di teoria dei numeri è connessa al teorema di Pitagora. Ai greci era noto che un triangolo di lati 3, 4, 5 è rettangolo. Questo suggerisce il problema generale: quali altri triangoli

Dettagli

Una successione viene definita ricorrente quando un numero è una funzione costante del precedente. con

Una successione viene definita ricorrente quando un numero è una funzione costante del precedente. con Una successione viene definita ricorrente quando un numero è una funzione costante del precedente con I coefficienti binomiali posti in un determinato ordine costituiscono il cosiddetto Triangolo di Pascal

Dettagli

ANNO SCOLASTICO 2015/2016

ANNO SCOLASTICO 2015/2016 ANNO SCOLASTICO 2015/2016 SCUOLA SECONDARIA DI PRIMO GRADO U. FOSCOLO RELAZIONE DI MATEMATICA IL TRIANGOLO DI TARTAGLIA ALUNNO: NICOLÒ BAGNASCO CLASSE: 3 B PROFESSORE: DANIELE BALDISSIN CENNI STORICI Tartaglia

Dettagli

Dato un segmento AB ed un suo punto interno S, si dice che S divide AB secondo la sezione aurea se: (AS) 2 = AB SB. M = AS, m = SB, a = AB.

Dato un segmento AB ed un suo punto interno S, si dice che S divide AB secondo la sezione aurea se: (AS) 2 = AB SB. M = AS, m = SB, a = AB. La teoria delle proporzioni, che è alla base di tutta l arte e l architettura greca, ha radici molto profonde che probabilmente risalgono all antica civiltà egizia. Nel mondo greco l ideale di bellezza

Dettagli

I numeri di Fibonacci e la Sezione Aurea

I numeri di Fibonacci e la Sezione Aurea I numeri di Fibonacci e la Sezione Aurea http://web.inge.unige.it/sma/sv/fib16.pdf Ottavio Caligaris 12 Maggio 2016 1 / 64 Fibonacci Leonardo da Pisa detto Fibonacci cioè figlio di Bonaccio 12 Maggio 2016

Dettagli

Definizione 1 Diciamo che ϕ è un applicazione (o funzione o mappa) tra A e B se per ogni a A esiste uno ed un solo b B tale che (a,b) ϕ.

Definizione 1 Diciamo che ϕ è un applicazione (o funzione o mappa) tra A e B se per ogni a A esiste uno ed un solo b B tale che (a,b) ϕ. 0.1 Applicazioni Siano A e B due insiemi non vuoti e sia ϕ una relazione binaria tra A e B. Definizione 1 Diciamo che ϕ è un applicazione (o funzione o mappa) tra A e B se per ogni a A esiste uno ed un

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

1. (A1) Quali tra le seguenti uguaglianze sono vere? = vera. 2. (A1) Una sola delle seguenti affermazioni è vera. Quale?

1. (A1) Quali tra le seguenti uguaglianze sono vere? = vera. 2. (A1) Una sola delle seguenti affermazioni è vera. Quale? M Commenti generali I test sono divisi in cinque gruppi (A) Aritmetica (A2) Aritmetica 2 (C) Calcolo (O) Ordinamenti (D) Divisioni Osservazione (/2/20): Sono stati sperimentati sugli studenti aggiungendo

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

( 5) 2 = = = +1

( 5) 2 = = = +1 1 IDENTITA ED EQUAZIONI Consideriamo la seguente uguaglianza: ( 2x + 3) 2 = 4x 2 +12x + 9 Diamo alcuni valori arbitrari all incognita x e vediamo se l uguaglianza risulta vera. Per x = 1 si avrà: ( 2 1+

Dettagli

SCUOLA SECONDARIA DI PRIMO GRADO DI GRAMOLAZZO - LU

SCUOLA SECONDARIA DI PRIMO GRADO DI GRAMOLAZZO - LU SCUOLA SECONDARIA DI PRIMO GRADO DI GRAMOLAZZO - LU Premessa 1. Medioevo e matematica 2. Chi era Fibonacci? 3. Dal problema dei conigli alla successione di Fibonacci 4. Dalla successione alla sezione aurea

Dettagli

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato. LICEO B. RUSSELL A.S. 2010/2011 DALLA TEORIA DEI NUMERI ALLE CONGRUENZE Tutti i numeri qui considerati sono interi. Se si tratta in particolare di numeri Naturali (quindi non negativi) verrà specificato.

Dettagli

LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della

LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della regola che spiega la progressione di una certa sequenza

Dettagli

Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali. Matematica e Fisica

Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali. Matematica e Fisica Università del Salento Facoltà di Scienze Matematiche Fisiche e Naturali Test d INGRESSO Matematica e Fisica 2017-2018 A 1. In un parallelogramma due lati consecutivi sono lunghi a e b e l angolo tra essi

Dettagli

IGiochidiArchimede--Soluzionibiennio

IGiochidiArchimede--Soluzionibiennio PROGETTO OLIMPIADI DI MATEMATICA U.M.I. UNIONE MATEMATICA ITALIANA MINISTERO DELLA PUBBLICA ISTRUZIONE SCUOLA NORMALE SUPERIORE IGiochidiArchimede--Soluzionibiennio novembre 011 Griglia delle risposte

Dettagli

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) =

( ) ( ) 2 + 3( a + b) = ( ) + b( x 1) = ( ) ( ) b( x + y) = ( ) x 2 ( a + b) y 2 + ( a + b) = ( ) + ( a b) = ( ) a( 4x + 7) = ( ) + 3a( 2 5y) = 1 Scomposizione in fattori di un polinomio Scomporre in fattori un polinomio significa trasformare il polinomio, che è una somma algebrica di monomi, nel prodotto di fattori con il grado più basso possibile.

Dettagli

Prima Edizione Giochi di Achille - Olimpiadi di Matematica Soluzioni Categoria M1 (Alunni di prima Media) 18 maggio 2006

Prima Edizione Giochi di Achille - Olimpiadi di Matematica Soluzioni Categoria M1 (Alunni di prima Media) 18 maggio 2006 Il Responsabile coordinatore dei giochi: Prof. Agostino Zappacosta Chieti tel. 0871 843 (cell.: 340 47 47 9) e-mail:agostino_zappacosta@libero.it Prima Edizione Giochi di Achille - Olimpiadi di Matematica

Dettagli

SULLA RAPPRESENTAZIONE DECIMALE DEI NUMERI

SULLA RAPPRESENTAZIONE DECIMALE DEI NUMERI SULLA RAPPRESENTAZIONE DECIMALE DEI NUMERI D Apuzzo PREMESSA: l origine delle cifre 1, 2, 3, 4, 6, 7, 8, 9, 0 I numeri naturali sono stati i primi numeri maneggiati dagli uomini e sono stati utilizzati

Dettagli

( 5) 2 = = = +1

( 5) 2 = = = +1 1 IDENTITA ED EQUAZIONI Consideriamo la seguente uguaglianza: ( 2x + 3) 2 = 4x 2 +12x + 9 Diamo alcuni valori arbitrari all incognita x e vediamo se l uguaglianza risulta vera. Per x = 1 si avrà: ( 2 1+

Dettagli

TEOREMA DEL RESTO E REGOLA DI RUFFINI

TEOREMA DEL RESTO E REGOLA DI RUFFINI TEOREMA DEL RESTO E REGOLA DI RUFFINI ALCUNI TEOREMI IMPORTANTI Prendiamo una divisione intera tra numeri: 6 : 3 = 2. Il resto di questa divisione è 0, e questo significa che moltiplicando il quoziente

Dettagli

Numeri di Fibonacci, Autovalori ed Autovettori.

Numeri di Fibonacci, Autovalori ed Autovettori. Numeri di Fibonacci, Autovalori ed Autovettori. I numeri sulla Mole Antonelliana. Ecco i numeri sulla Mole:,,, 3,, 8, 3,, 34,, 89, 44, 33, 377, 6, 987, dove ogni nuovo numero rappresenta la somma dei due

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI Risolvi le seguenti disequazioni LE DISEQUAZIONI LINEARI x + ( x 5) < 7 x + 4 ( x + ) [ ( x ) < x( x 5) ( x )( x + ) + 4x [ impossibile ] ( 5x 1)( x ) + ( x 1) > ( x) 6x + ( x ) ( 1 x) ( x )( x ) + + 5

Dettagli

Parte II. Incontro del 20 dicembre 2011

Parte II. Incontro del 20 dicembre 2011 Parte II Incontro del 20 dicembre 2011 12 I quadrati modulo 4 Cerchiamo di determinare i possibili resti nella divisione per 4 del quadrato x 2 di un numero intero x. Se x = 2h è un numero pari allora

Dettagli

Insiemi numerici. Teoria in sintesi NUMERI NATURALI

Insiemi numerici. Teoria in sintesi NUMERI NATURALI Insiemi numerici Teoria in sintesi NUMERI NATURALI Una delle prime attività matematiche che viene esercitata è il contare gli elementi di un dato insieme. I numeri con cui si conta 0,,,. sono i numeri

Dettagli

Congruenze. Classi resto

Congruenze. Classi resto Congruenze. Classi resto Congruenze modulo un intero DEFINIZIONE Siano a e b due numeri interi relativi; fissato un intero m si dice che a è congruo a b modulo m se la differenza a b è multipla di m, e

Dettagli

Una successione numerica è una funzione : che associa ad ogni numero naturale un numero reale :. In simboli:

Una successione numerica è una funzione : che associa ad ogni numero naturale un numero reale :. In simboli: Successioni numeriche Successioni Una successione numerica è una funzione : che associa ad ogni numero naturale un numero reale :. In simboli:. = Una successione è un insieme ordinato e infinito di numeri,

Dettagli

Collegio di Merito Bernardo Clesio Università di Trento

Collegio di Merito Bernardo Clesio Università di Trento Collegio di Merito Bernardo Clesio Università di Trento 23 luglio 2012 Prova per i candidati per le facoltà scientifiche Esercizio 1. Descrivere tutti i polinomi p(x) con coefficienti reali tali che per

Dettagli

Risposte ai primi 14 quesiti

Risposte ai primi 14 quesiti U.M.I. - I. T. C. G. Pitagora - Calvosa Castrovillari OLIMPIADI DI MATEMATICA 2011- DISTRETTO DI COSENZA Gara a squadre del 24 Marzo 2011 Istruzioni 1) La prova consiste di 17 problemi divisi in 3 gruppi.

Dettagli

Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini

Liceo Scientifico Statale S. Cannizzaro Palermo Classe III D EQUAZIONI POLINOMIALI Divisione di polinomi, teorema del resto e teorema di Ruffini Divisione di polinomi, teorema del resto e teorema di Ruffini Teorema (della divisione con resto tra due polinomi in una variabile). Dati due polinomi A x e B x, con B x 0, esistono sempre, e sono unici,

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Sia k un numero pari. È possibile scrivere 1 come la somma dei reciproci di k interi dispari? Soluzione: Siano n 1,..., n k interi dispari tali che 1 = 1 n 1 +

Dettagli

Moltiplicazione. Divisione. Multipli e divisori

Moltiplicazione. Divisione. Multipli e divisori Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini

Dettagli

La matematica dove meno te l aspetti

La matematica dove meno te l aspetti La matematica dove meno te l aspetti Realizzato da Elena Morano, II B Liceo scientifico P. Mazzone Roccella Jonica, a.s. 2015-2016 LA SEZIONE AUREA Assegnato il segmento AB, dicesi parte aurea di AB il

Dettagli

Parte III. Incontro del 26 gennaio 2012

Parte III. Incontro del 26 gennaio 2012 Parte III Incontro del 6 gennaio 01 17 Alcuni esercizi Esercizio (Giochi di Archimede 011). Un canguro e una rana si trovano inizialmente sullo stesso vertice di un poligono regolare di 41 lati, e cominciano

Dettagli

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( )( ) ( )( ) SOLUZIONI II ALLENAMENTO REGIONALE TEMATICO VENERDÌ 4 DICEMBRE 08 Quesito Siano due numeri interi primi tra loro tali che quanto vale? Sviluppando l espressione si ottiene quindi e e la soluzione è Quesito

Dettagli

Anno accademico

Anno accademico Anno accademico 1998 1999 1. Dato un quadrato Q di lato unitario siano P 1, P 2, P 3, P 4, P 5 dei punti interni a Q. Sia d i j la distanza fra P i e P j. (a) Si dimostri che almeno una delle distanze

Dettagli

Compito di MD 13 febbraio 2014

Compito di MD 13 febbraio 2014 Compito di MD 13 febbraio 2014 IMPORTANTE: Non si possono consultare libri e appunti. Non si possono usare calcolatrici, computer o altri dispositivi elettronici. Non si può scrivere con il lapis. Motivare

Dettagli

d) l/2. Risposta esatta (indicare in parentesi la lettera corrispondente all alternativa esatta): (d)

d) l/2. Risposta esatta (indicare in parentesi la lettera corrispondente all alternativa esatta): (d) Su ciascuna delle facce di un cubo di lato l si appoggia una piramide retta avente come base la faccia del cubo Che altezza deve avere la piramide affinché la somma dei volumi del cubo e delle piramidi

Dettagli

LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della

LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della LE SEQUENZE Questi esercizi sono i più comuni e i più frequenti. Sono prove che si basano su un semplice principio costituito dalla ricerca della regola che spiega la progressione di una certa sequenza

Dettagli

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000

Quesiti della seconda prova scritta per Matematica. MCD(x, y) = 10 xy = 30000 Quesiti della seconda prova scritta per Matematica Problema 1. (i) Dire quante e quali sono le coppie ordinate (x, y) di numeri naturali che sono soluzioni del sistema { MCD(x, y) = 10 xy = 30000 Qui MCD(x,

Dettagli

Algebra. Problemi dimostrativi (lavoro singolo) f(x + f(y)) = f(x) y. Problemi dimostrativi (lavoro di gruppo) a i a j 1 i + j

Algebra. Problemi dimostrativi (lavoro singolo) f(x + f(y)) = f(x) y. Problemi dimostrativi (lavoro di gruppo) a i a j 1 i + j Algebra 1. Consideriamo il polinomio p(x) = x 6 + x 5 + x 4 + x 3 + x 2 + x + 1. Determinare quale resto si ottiene dividendo p(x 7 ) per p(x). 2. Siano x e y numeri reali tali che x 2 + y 2 1, e siano

Dettagli

Categoria Student Per studenti del quarto e quinto anno della scuola media superiore. I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno

Categoria Student Per studenti del quarto e quinto anno della scuola media superiore. I quesiti dal N.1 al N. 10 valgono 3 punti ciascuno Categoria Student Per studenti del quarto e quinto anno della scuola media superiore I quesiti dal N. al N. 0 valgono 3 punti ciascuno. Risposta B) Per soddisfare le condizioni sulle righe, la coppia di

Dettagli

Scritto da Maria Rispoli Domenica 09 Gennaio :07 - Ultimo aggiornamento Martedì 01 Marzo :11

Scritto da Maria Rispoli Domenica 09 Gennaio :07 - Ultimo aggiornamento Martedì 01 Marzo :11 Sin dai tempi di Pitagora, sono state esplorate le interessanti proprietà di un certo numero di sassolini messi in forme geometriche, cercando di ricavarne leggi universali. Ad esempio il numero 10, la

Dettagli

04 - Numeri Complessi

04 - Numeri Complessi Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 04 - Numeri Complessi Anno Accademico 2013/2014 M. Tumminello, V. Lacagnina e

Dettagli

La misura delle grandezze

La misura delle grandezze GEOMETRIA EUCLIDEA La misura delle grandezze Una classe di grandezze geometriche è un insieme di enti geometrici in cui è possibile: - il confronto tra due qualsiasi elementi dell insieme; - l addizione,

Dettagli

Scritto da Maria Rispoli Domenica 09 Gennaio :07 - Ultimo aggiornamento Martedì 01 Marzo :11

Scritto da Maria Rispoli Domenica 09 Gennaio :07 - Ultimo aggiornamento Martedì 01 Marzo :11 Sin dai tempi di Pitagora, sono state esplorate le interessanti proprietà di un certo numero di sassolini messi in forme geometriche, cercando di ricavarne leggi universali. Ad esempio il numero 10, la

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Trovare il più piccolo multiplo di 15 formato dalle sole cifre 0 e 8 (in base 10). Il numero cercato dev'essere divisibile per 3 e per 5 quindi l'ultima cifra deve

Dettagli

Si dice che q è il quoziente e r è il resto della divisione di a per b. Inotre, si ha: c = qa. Quindi b ± c = pa ± qa = (p ± q)a e pertanto a (b ± c).

Si dice che q è il quoziente e r è il resto della divisione di a per b. Inotre, si ha: c = qa. Quindi b ± c = pa ± qa = (p ± q)a e pertanto a (b ± c). I numeri interi Teorema 1 (divisione in Z) Siano a, b Z, b 0 Allora esistono e sono unici q, r Z tali che (1) a = bq + r () 0 r < b Si dice che q è il quoziente e r è il resto della divisione di a per

Dettagli

LAUREA IN SCIENZE NATURALI MATEMATICA CON ELEMENTI DI STATISTICA

LAUREA IN SCIENZE NATURALI MATEMATICA CON ELEMENTI DI STATISTICA LAUREA IN SCIENZE NATURALI MATEMATICA CON ELEMENTI DI STATISTICA I parte: 5 crediti, 40 ore di lezione frontale II parte: 4 crediti, 32 ore di lezione frontale Docente: Marianna Saba Dipartimento di Matematica

Dettagli

APPUNTI PER IL CORSO DI MATEMATICA APPLICATA. 1. Lezione 1 Richiamo brevemente alcune notazioni della teoria degli insiemi.

APPUNTI PER IL CORSO DI MATEMATICA APPLICATA. 1. Lezione 1 Richiamo brevemente alcune notazioni della teoria degli insiemi. APPUNTI PER IL CORSO DI MATEMATICA APPLICATA ERNESTO DE VITO - UNIVERSITÀ DI GENOVA, ITALY 1. Lezione 1 Richiamo brevemente alcune notazioni della teoria degli insiemi. insieme vuoto N insieme dei numeri

Dettagli

Anno 2. Circonferenza e retta: definizioni e proprietà

Anno 2. Circonferenza e retta: definizioni e proprietà Anno 2 Circonferenza e retta: definizioni e proprietà 1 Introduzione I Sumeri furono tra i primi popoli ad occuparsi di matematica, e in particolare di problemi relativi alla. La è una figura geometrica

Dettagli

Ripasso di matematica. Enrico Degiuli Classe terza

Ripasso di matematica. Enrico Degiuli Classe terza Ripasso di matematica Enrico Degiuli Classe terza Somma con i numeri relativi 1 3 =? 7 + 10 =? 8 + 3 =? 13 15 =? Regola: immaginare di partire dal primo numero e di spostarsi lungo la retta orientata in

Dettagli

Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag )

Il calcolo letterale algebrico. (NLM teoria pag ; esercizi pag ) Il calcolo letterale algebrico. (NLM teoria pag. 7 86; esercizi pag. 11 5) Il calcolo letterale, o algebrico, è quella parte della matematica che generalizza il calcolo numerico utilizzando delle lettere

Dettagli

1 Quanti 17 per Lavinia! Lavinia ottiene la somma 17 esattamente 8 volte.

1 Quanti 17 per Lavinia! Lavinia ottiene la somma 17 esattamente 8 volte. 1 Quanti 17 per Lavinia! 5843779853861278142872476575 Lavinia ottiene la somma 17 esattamente 8 volte. 2 Una suddivisione intelligente 5 4 4 4 5 1 2 4 5 5 2 3 1 5 3 3 La suddivisione è riportata in figura.

Dettagli

1 Quale di questi diagrammi di Eulero-Venn rappresenta la relazione fra gli insiemi Z, R Q e S = { 2, 0, 3.5}?

1 Quale di questi diagrammi di Eulero-Venn rappresenta la relazione fra gli insiemi Z, R Q e S = { 2, 0, 3.5}? Simulazione prova di recupero Ogni risposta esatta vale un punto, ogni risposta errata comporta una penalizzazione di 0,5 punti. La prova è superata con un punteggio di almeno 7,5 punti. 1 Quale di questi

Dettagli

OLTRE LA BOTANICA. Numero 4 La sezione aurea in astronomia. = Cerchio Altazimutale di Ramsden, Osservatorio Astronomico "G.S.

OLTRE LA BOTANICA. Numero 4 La sezione aurea in astronomia. = Cerchio Altazimutale di Ramsden, Osservatorio Astronomico G.S. LA SEZIONE AUREA DAGLI ATOMI ALLE STELLE Numero 4 La sezione aurea in astronomia = Cerchio Altazimutale di Ramsden, Osservatorio Astronomico "G.S.Vaiana", Palermo = Rubrica curata da Francesco Di Noto

Dettagli

Liceo G.B. Vico Corsico a.s

Liceo G.B. Vico Corsico a.s Liceo G.B. Vico Corsico a.s. 2018-19 Programma svolto durante l anno scolastico Classe: 2^B Materia: Matematica Insegnante: Tommaseo Paola Testo utilizzato: Matematica multimediale.blu con TUTOR vol. 1

Dettagli

Esercizi svolti di aritmetica

Esercizi svolti di aritmetica 1 Liceo Carducci Volterra - Classi 1A, 1B Scientifico - Francesco Daddi - 15 gennaio 29 Esercizi svolti di aritmetica Esercizio 1. Dimostrare che il quadrato di un numero intero che finisce per 25 finisce

Dettagli

2 - Le successioni per ricorrenza

2 - Le successioni per ricorrenza - Le successioni per ricorrenza Le successioni per ricorrenza sono un po come le serie numeriche delle successioni di numeri reali abbastanza particolari. A differenza delle successioni standard, come

Dettagli

Appunti ed esercizi sulle coniche

Appunti ed esercizi sulle coniche 1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O

Dettagli

9.4 Esercizi. Sezione 9.4. Esercizi 253

9.4 Esercizi. Sezione 9.4. Esercizi 253 Sezione 9.. Esercizi 5 9. Esercizi 9..1 Esercizi dei singoli paragrafi 9.1 - Espressioni letterali e valori numerici 9.1. Esprimi con una formula l area della superficie della zona colorata della figura

Dettagli

U.D. N 04 I polinomi

U.D. N 04 I polinomi Unità Didattica N 0 I polinomi U.D. N 0 I polinomi 0) Monomi 0) Somma algebrica di monomi simili 0) Prodotto di due i più monomi 0) Quoziente di due monomi 05) Potenza di un monomio 06) Massimo comune

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

Lezione 3 - Teoria dei Numeri

Lezione 3 - Teoria dei Numeri Lezione 3 - Teoria dei Numeri Problema 1 Determinare il più piccolo numero primo p che divide Q(n) = n 2 + n + 23 per qualche n intero. Soluzione: Osserviamo che Q(1) = 25, quindi p può essere 2, 3 oppure

Dettagli

intersezione di due oggetti semicirconferenza - per due punti circonferenza - per tre punti retta - per due punti

intersezione di due oggetti semicirconferenza - per due punti circonferenza - per tre punti retta - per due punti IN CLASSE IL CERCHIO E Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra degli

Dettagli