Regolamento Comunale del Verde 1

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Regolamento Comunale del Verde 1"

Transcript

1 Regolamento Comunale del Verde 1 ALLEGATO A Metodo per la stima del valore ornamentale delle alberature secondo il metodo Svizzero riadattato dal Comune di Ravenna Il valore ornamentale di una alberatura viene calcolato in base a 5 parametri che tengono conto del prezzo di vendita e specie, della localizzazione, dello stato fitosanitario, delle dimensioni e del deprezzamento. Descrizione dei parametri: (a) (b) (c) (d) Prezzo di vendita al dettaglio Indice relativo alla specie e varietà Questo indice è basato sui prezzi di vendita al dettaglio secondo i prezzi rilevati presso i vivai produttori di piante ornamentali. Il valore da prendere in considerazione è la decima parte del prezzo di vendita unitario di una pianta di circonferenza cm. per le latifoglie o cm. per le conifere (altezza delle conifere 2,5 3,00 m.) (b) = (a) / 10 Questo valore porta all interno del procedimento di stima il significato del costo di acquisto del giovane soggetto; esso è più o meno elevato a secondo del costo della piantina del vivaio. Indice secondo il valore estetico e lo stato fitosanitario 10 = pianta sana, vigorosa, solitaria o esemplare 9 = pianta sana, vigorosa, facente parte di un filare 8 = pianta sana, vigorosa, in gruppo 7 = pianta sana, media vigoria, solitaria o esemplare 6 = pianta sana, media vigoria, facente parte di un filare 5 = pianta sana, media vigoria, in gruppo 3 = pianta poco vigorosa, a fine ciclo vegetativo, in filare 2 = pianta poco vigorosa, a fine ciclo vegetativo o malformata, in gruppo o sola 1 = pianta senza vigore, malata 0,5 = pianta priva di valore Indice secondo la localizzazione 10 = centro città 08 = periferia 06 = parchi esterni 08 = zone rurali 1

2 Regolamento Comunale del Verde 2 (e) Indice secondo le dimensioni Circonf. cm. indice Circonf. cm. indice Circonf. cm. indice , , , , , , (g) Deprezzamento Potatura leggera di rami secchi = 10% Potatura forte di branche principali = 30% Dendrochirurgia su cavità = 50% Potatura forte più dendrochirurgia = 70% FORMULA DI CALCOLO DEL VALORE ORNAMENTALE: V.o. = ( b x c x d x e ) g 2

3 Regolamento Comunale del Verde 3 ALLEGATO B Apparato radicale i )Valore ornamentale Metodo per la stima del danno biologico dell apparato radicale e del tronco s t ) Distanze scavo dal colletto Queste lunghezze sono i cateti del triangolo che si viene a formare tra la pianta e lo scavo di cui un vertice è localizzato al centro del tronco della pianta. S e t non devono mai essere maggiori di 3,00 metri. u ) Settore angolare danneggiato (coseno) considerato che l area di rispetto si estende attorno alla pianta per un raggio costante di 3,00 metri oltre al raggio del fusto, si viene a creare un cerchio sul quale fattori esterni agendo ne danneggiano uno spicchio ovvero il nostro settore circolare. Applicando il teorema di Carnot sul triangolo venutosi a formare si trova il coseno dell angolo opposto allo scavo (vedi figure seguenti). Teorema di Carnot : cosβ = (b 2 +c 2 -a 2 ) / 2bc e sostituendo si ottiene cosβ=[(s+m/2) 2 +(t+m/2) 2 -n 2 ]/2(s+m)*(t+m) p ) Settore angolare danneggiato espresso in gradi q ) Incidenza sull apparato radicale Percentuale di danno ricavata dalla proporzione tra l angolo del settore circolare danneggiato ed il cerchio preso in considerazione (p/360 x 100). r ) Danno biologico Percentuale del valore ornamentale del soggetto ovvero: Valore ornamentale/100 = danno biologico /q 3

4 Regolamento Comunale del Verde 4 Esempi di manomissione circoscritta per la realizzazione di manufatti nel sottosuolo 4

5 Regolamento Comunale del Verde 5 TRONCO Tabella riportante il valore dell indennità (I), calcolata sul valore ornamentale (V.o.) della pianta, in funzione della dimensione della lesione rapportata alla circonferenza del tronco: Lesioni (%) Indennità (%) Fino a Da 10 a Da 20 a Da 25 a Da 30 a Da 35 a Da 40 a Da 45 a I = indennità C = circonferenza ad 1 mt. di altezza D = danno in larghezza H = danno in altezza V.o.= valore ornamentale danno in altezza = D : C = x : 100 e quindi D = C * x / 100 I = V.o.* x% ( inoltre I aumenta di 1/3 ogni 50 cm. di H della lesione ) 5

COMUNE DI NOVARA PROGRAMMAZIONE E SVILUPPO DELLA CITTA SERVIZIO MOBILITA PROGETTAZIONE E MANUTENZIONE VERDE PUBBLICO

COMUNE DI NOVARA PROGRAMMAZIONE E SVILUPPO DELLA CITTA SERVIZIO MOBILITA PROGETTAZIONE E MANUTENZIONE VERDE PUBBLICO COMUNE DI NOVARA PROGRAMMAZIONE E SVILUPPO DELLA CITTA SERVIZIO MOBILITA PROGETTAZIONE E MANUTENZIONE VERDE PUBBLICO Approvato con Deliberazione Consiglio Comunale n 2 26 del 28/11/1991 REGOLAMENTO INTERVENTI

Dettagli

STIMA DEL VALORE ORNAMENTALE DI PIANTE ABBATTUTE e/o DANNEGGIATE

STIMA DEL VALORE ORNAMENTALE DI PIANTE ABBATTUTE e/o DANNEGGIATE STIMA DEL VALORE ORNAMENTALE DI PIANTE ABBATTUTE e/o DANNEGGIATE Il presente allegato fornisce delle linee guida per la stima del Valore Ornamentale (VO) delle piante arboree e/o arbustive soggette ad

Dettagli

CENSIMENTO DEGLI ALBERI MONUMENTALI Legge 14 gennaio 2013, n.10

CENSIMENTO DEGLI ALBERI MONUMENTALI Legge 14 gennaio 2013, n.10 CENSIMENTO DEGLI ALBERI MONUMENTALI Legge 14 gennaio 2013, n.10 SCHEDA DI IDENTIFICAZIONE ALBERO O FORMAZIONE VEGETALE MONUMENTALE N. scheda: 03_E085_VS_20 Data rilievo: 28/04/2015 Albero singolo Filare

Dettagli

Repetitorium trigonometriae - per immagini

Repetitorium trigonometriae - per immagini Repetitorium trigonometriae - per immagini Regole di base Ipotenusa Opposto Adiacente Tenendo a mente la seguente nomenclatura di un triangolo rettangolo si ha: sin = Opposto Ipotenusa cos = Adiacente

Dettagli

CENSIMENTO DEGLI ALBERI MONUMENTALI Legge 14 gennaio 2013, n.10

CENSIMENTO DEGLI ALBERI MONUMENTALI Legge 14 gennaio 2013, n.10 CENSIMENTO DEGLI ALBERI MONUMENTALI Legge 14 gennaio 2013, n.10 SCHEDA DI IDENTIFICAZIONE ALBERO O FORMAZIONE VEGETALE MONUMENTALE N. scheda: 01_E085_VS_20 Data rilievo: 28/04/2015 Albero singolo Filare

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

COMUNE DI MANZIANA PROVINCIA DI ROMA

COMUNE DI MANZIANA PROVINCIA DI ROMA Dott. For. Marcello Roncoloni Via degli Scaloni n. 11, int. 13 00066 Manziana (Rm) Cell. 320 9737248 E mail: [email protected] PEC: [email protected] COMUNE DI MANZIANA PROVINCIA DI ROMA

Dettagli

2. Rappresenta graficamente la regione di piano soluzione del seguente sistema di disequazioni: 4<0

2. Rappresenta graficamente la regione di piano soluzione del seguente sistema di disequazioni: 4<0 Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 2010-2011 Prova di Matematica : T. Pitagora T. Euclide Disequazioni Alunno: Classe: 2 C 14.04.2011 prof. Mimmo Corrado 1. Risolvi le seguenti disequazioni:

Dettagli

La nuova regolamentazione del verde del Comune di Bologna Bologna, 21 dicembre 2010

La nuova regolamentazione del verde del Comune di Bologna Bologna, 21 dicembre 2010 La nuova regolamentazione del verde del Comune di Bologna Bologna, 21 dicembre 2010 Settore Ambiente Illustrazioni Davide Celli Il nuovo regolamento Gli strumenti in vigore fino all aprile 2009 REGOLAMENTO

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia

Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Geometria euclidea dello spazio Presentazione n. 6 Solidi di rotazione Prof. Daniele Ippolito Liceo Scientifico Amedeo di Savoia di Pistoia Solidi di rotazione Un solido di rotazione è generato dalla rotazione

Dettagli

Problema ( ) = 0,!

Problema ( ) = 0,! Domanda. Problema ( = sen! x ( è! Poiché la funzione seno è periodica di periodo π, il periodo di g x! = 4. Studio di f. La funzione è pari, quindi il grafico è simmetrico rispetto all asse y. È sufficiente

Dettagli

Settore Infrastrutture, Interventi Strategici e Mobilità

Settore Infrastrutture, Interventi Strategici e Mobilità ALLEGATO 5 Settore Infrastrutture, Interventi Strategici e Mobilità Oggetto Lavori di manutenzione ordinaria del verde, per la rete stradale della Provincia di Monza e Brianza (anno 2012 2013) CUP B86G12000110003

Dettagli

SOLUZIONI DEI QUESITI PROPOSTI

SOLUZIONI DEI QUESITI PROPOSTI SOLUZIONI DEI QUESITI PROPOSTI Manca di mentalità matematica tanto chi non sa riconoscere rapidamente ciò che è evidente, quanto chi si attarda nei calcoli con una precisione superiore alla necessità QUESITO

Dettagli

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE

LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE LE FUNZIONI GONIOMETRICHE: SENO, COSENO E TANGENTE 1. LE FUNZIONI SENO E COSENO LE FUNZIONI SENO, COSENO E TANGENTE DEFINIZIONE Seno e coseno Consideriamo la circonferenza goniometrica e un angolo orientato

Dettagli

CURVE CELEBRI DELL ANTICHITA

CURVE CELEBRI DELL ANTICHITA CURVE CELEBRI DELL ANTICHITA La matematica è un grandioso e vasto paesaggio aperto a tutti gli uomini a cui il pensare arrechi gioia, ma poco adatto a chi non ami la fatica del pensare Vediamo le proprietà

Dettagli

PROBLEMI DI GEOMETRIA SUL CERCHIO

PROBLEMI DI GEOMETRIA SUL CERCHIO PROBLEMI DI GEOMETRIA SUL CERCHIO 1. In un cerchio che ha l'area di 625? cm², due corde AB e CD sono situate da parti opposte rispetto al centro O e le loro distanze dal centro misurano rispettivamente

Dettagli

Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema

Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema Luglio 1948, primo problema In un cerchio di raggio r è condotta una corda AB la cui distanza dal centro è r/. Inscrivere nel segmento circolare che non contiene il centro, un triangolo ABC in modo che

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO CERCHIO Perimetro (circonferenza) Area La circonferenza è circa 3 volte ( ) la lunghezza del diametro C= d oppure C=2 r A = r 2 Formule inverse d=c: r=c:(2 ) SETTORE CIRCOLARE È

Dettagli

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

Gestione del verde arboreo

Gestione del verde arboreo Appunti d i Gestione del verde arboreo ornamentale 1. Corretta manutenzione delle alberature: principi generali e criteri di potatura 2. Responsabilità legale nella gestione 3. Introduzione alla VTA: perché

Dettagli

VERIFICA DI MATEMATICA - 10 ottobre 2016 classe 3 a D. Nome...Cognome... ARITMETICA/ALGEBRA

VERIFICA DI MATEMATICA - 10 ottobre 2016 classe 3 a D. Nome...Cognome... ARITMETICA/ALGEBRA VERIFICA DI MATEMATICA - 10 ottobre 2016 classe 3 a D Nome...Cognome... 1. Insiemi numerici. ARITMETICA/ALGEBRA a) Al posto dei puntini inserisci il simbolo (appartiene) o (non appartiene): + 36...! 3,9...!

Dettagli

Verifica di Topografia

Verifica di Topografia ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 5^ Geometri 1) Se il seno e il coseno di

Dettagli

SIMULAZIONI TEST INVALSI

SIMULAZIONI TEST INVALSI SIMULAZIONI TEST INVALSI CIRCONFERENZA E CERCHIO La circonferenza in figura ha il diametro di 10 cm e le corde AD e BC uguali al raggio. a. Qual è il perimetro del quadrilatero ABCD? Risposta: cm b. Giustifica

Dettagli

LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze. 2. Completa le seguenti formule, dirette e inverse, riguardanti la circonferenza.

LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze. 2. Completa le seguenti formule, dirette e inverse, riguardanti la circonferenza. LUNGHEZZA DELLA CIRCONFERENZA E AREA DEL CERCHIO Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una... che si

Dettagli

soluzione in 7 step Es n 208

soluzione in 7 step Es n 208 soluzione in 7 soluzione in 7 soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04 5,96 5 cm soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04 5,96 5 cm 3 : 4,8 5 4,8 : HB 4,8 soluzione in 7 AH 5 CA CH 5 6 4,8 5 36 3,04

Dettagli

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,

Dettagli

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.

2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0. CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere

Dettagli

Anno 4 Applicazioni dei teoremi di trigonometria

Anno 4 Applicazioni dei teoremi di trigonometria Anno 4 Applicazioni dei teoremi di trigonometria 1 Introduzione In questa lezione descriveremo le applicazioni dei teoremi di trigonometria. Inizieremo, illustrando alcune formule di trigonometria, utili

Dettagli

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto.

TRIGONOMETRIA. Un angolo si misura in gradi. Un grado è la novantesima parte di un angolo retto. TRIGONOMETRIA DA RICORDARE: Due angoli si dicono supplementari quando la loro somma è pari a 80 Due angoli si dicono complementari quando la loro somma è pari a 90 Due angoli si dicono opposti quando la

Dettagli

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

TEST SULLE COMPETENZE Classe Seconda

TEST SULLE COMPETENZE Classe Seconda TEST SULLE COMPETENZE Classe Seconda 1 Una sola tra le seguenti proposizioni è FALSA Quale? A Se due punti A e B hanno la stessa ascissa, il coefficiente angolare della retta che li contiene non è definito

Dettagli

TRIGONOMETRIA E COORDINATE

TRIGONOMETRIA E COORDINATE Y Y () X O (Y Y ) - α X (X X ) 200 c TRIGONOMETRI E OORDINTE ngoli e sistemi di misura angolare Funzioni trigonometriche Risoluzione dei triangoli rettangoli Risoluzione dei poligoni Risoluzione dei triangoli

Dettagli

Funzioni goniometriche di angoli notevoli

Funzioni goniometriche di angoli notevoli Funzioni goniometriche di angoli notevoli In questa dispensa calcoleremo il valore delle funzioni goniometriche per gli angoli notevoli di 30, 45 e 60. Dopo aver richiamato il concetto di sezione aurea

Dettagli

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli

Dettagli

Verifica di MATEMATICA Nr

Verifica di MATEMATICA Nr Verifica di MATEMATICA Nr. 5 18.12.2015 Fila A 1) L insieme die numeri razionali. a) Calcola il valore delle seguenti espressioni, svolgendo tutti i passaggi, ed esprimerlo mediante frazione ridotta ai

Dettagli

SENO, COSENO E TANGENTE DI UN ANGOLO

SENO, COSENO E TANGENTE DI UN ANGOLO Goniometria e trigonometria Misurare gli angoli nel sistema circolare L unità di misura del sistema circolare è il radiante def. Un radiante è la misura di un angolo alla circonferenza che sottende un

Dettagli

1 La lunghezza della circonferenza

1 La lunghezza della circonferenza 1 La lunghezza della circonferenza Ricordiamo che per misurare una grandezza bisogna scegliere un unità di misura e stabilire quante volte quest ultima è contenuta nella prima. Nel caso della circonferenza

Dettagli

SIMULAZIONI TEST INVALSI

SIMULAZIONI TEST INVALSI SIMULAZIONI TEST INVALSI CIRCONFERENZA E CERCHIO La circonferenza in figura ha il diametro di 10 cm e le corde AD e BC uguali al raggio. a. Qual è il perimetro del quadrilatero ABCD? Risposta: cm b. Giustifica

Dettagli

Conoscenze. c. è un numero irrazionale d. La misura di una circonferenza si calcola moltiplicando la lunghezza del diametro per..

Conoscenze. c. è un numero irrazionale d. La misura di una circonferenza si calcola moltiplicando la lunghezza del diametro per.. Conoscenze 1. Completa. a. Si chiama circonferenza rettificata il segmento lungo quanto la circonferenza b. Il rapporto tra la lunghezza di una circonferenza e il suo diametro è una costante che si indica

Dettagli

SCHEDA PIANTE MONUMENTALI

SCHEDA PIANTE MONUMENTALI Nome scientifico: Famiglia: 1 Nome comune: Nome locale: 2 Comune : 3 Ambiente Urbano Ambiente Extraurbano 4 Località: 5 Indirizzo : 6 Pubblica Proprietà Privata Estremi proprietà Nome 7 Cognome Via/Piazza

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

SCHEDA DI VALUTAZIONE STABILITA ALBERATURE

SCHEDA DI VALUTAZIONE STABILITA ALBERATURE SHEA I VALUTAZIONE STAILITA ALERATURE ata: aprile 2010 odice: 001 Specie: Pinus pinea omune: Ve Località: Lido Via: erigo Posizione: Età anni: 35-40 Ø cm: 36 irc. cm: 112 Altezza m: 6 RAII OLLETTO FUSTO

Dettagli

COMPITI DI MATEMATICA PER LE VACANZE

COMPITI DI MATEMATICA PER LE VACANZE IL PRESENTE FASCICOLO COSTITUISCE ILTUO IMPEGNO ESTIVO NEI CONFRONTI DELLA MATEMATICA E DELLE SCIENZE. ESSO È COMPOSTO DA UNA SERIE DI ESERCIZI DI ARITMETICA E GEOMETRIA CHE DOVRAI SVOLGERE SU DI UN QUADERNO

Dettagli

Un modo semplice per calcolare pi greco π di Nunzio Miarelli [miarelli[at]interfree.it]

Un modo semplice per calcolare pi greco π di Nunzio Miarelli [miarelli[at]interfree.it] Un modo semplice per calcolare pi greco π di Nunzio Miarelli [miarelli[at]interfree.it] Tutti conosciamo l esistenza della costante matematica definita come pi greco ( π ) che stabilisce il rapporto fra

Dettagli

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ).

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ). Il triangolo (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere una superficie piana.

Dettagli

LA GEOMETRIA IN MESOPOTAMIA. Ms 3050 Schoyen collection periodo paleobabilonese

LA GEOMETRIA IN MESOPOTAMIA. Ms 3050 Schoyen collection periodo paleobabilonese LA GEOMETRIA IN MESOPOTAMIA Ms 3050 Schoyen collection periodo paleobabilonese LA GEOMETRIA IN MESOPOTAMIA Tavolette di geometria Varie centinaia Contenuti Misura di aree rettangoli triangoli rettangoli

Dettagli

Il Cerchio - la circonferenza.( Teoria ; Esercizi ) Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni?

Il Cerchio - la circonferenza.( Teoria ; Esercizi ) Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni? 1 Il Cerchio - la circonferenza.( Teoria 63-65 ; Esercizi 129 138 ) 0) Definizione. Determina l insieme di tutti i punti distanti 2 cm dal punto O. Cosa ottieni? Determina l insieme di tutti i punti distanti

Dettagli

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3.

Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che come sappiamo è 3. MODULO 3 LEZIONE 3 parte 2 Trigonometria: La risoluzione dei triangoli. Scopo della trigonometria è la risoluzione di un triangolo a partire da un numero minimo di informazioni sul triangolo steso che

Dettagli

Elementi di Geometria euclidea

Elementi di Geometria euclidea Proporzionalità tra grandezze Date quattro grandezze A, B, C e D, le prime due omogenee tra loro così come le ultime due, queste formano una proporzione se il rapporto delle prime due è uguale al rapporto

Dettagli

LE FUNZIONI GONIOMETRICHE

LE FUNZIONI GONIOMETRICHE LE FUNZIONI GONIOMETRICHE La misura degli angoli Si chiama angolo la porzione di piano racchiusa tra due semirette. Angolo convesso Angolo concavo Le unità di misura degli angoli sono: il grado sessagesimale

Dettagli

Copyright Esselibri S.p.A.

Copyright Esselibri S.p.A. .2. Risoluzione di triangoli qualsiasi In questo paragrafo estenderemo le funzioni goniometriche anche ad angoli retti ed ottusi, per potere risolvere triangoli qualsiasi. er fare ciò ovviamente vogliamo

Dettagli

Esame di maturità scientifica, corso di ordinamento a. s

Esame di maturità scientifica, corso di ordinamento a. s Problema 1 Esame di maturità scientifica, corso di ordinamento a. s. -4 Sia f la funzione definita da: f()=- Punto 1 Disegnate il grafico G di f()=-. La funzione f()=- è una funzione polinomiale (una cubica).

Dettagli

Programma ministeriale (Matematica)

Programma ministeriale (Matematica) SIMULAZIONE DELLA PROVA DI AMMISSIONE AI CORSI DI LAUREA E DI LAUREA MAGISTRALE A CICLO UNICO DIRETTAMENTE FINALIZZATI ALLA FORMAZIONE DI ARCHITETTO Anno Accademico 2015/2016 Test di Fisica e Matematica

Dettagli

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE

SESSIONE ORDINARIA 2007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE SESSIONE ORDINARIA 007 CORSO DI ORDINAMENTO SCUOLE ITALIANE ALL ESTERO - AMERICHE PROBLEMA Si consideri la funzione f definita da f ( x) x, il cui grafico è la parabola.. Si trovi il luogo geometrico dei

Dettagli

FORMULARIO DEI TRIANGOLI

FORMULARIO DEI TRIANGOLI RISOLUZIONE TRIANGOLI GENERICI Pagina 1 di 15 FORMULARIO DEI TRIANGOLI Teorema di Pitagora OP= 1 PP = sen OP = cos QQ = tan = Definizione seno Definizione coseno Definizione tangente TT = cotan = Consideriano

Dettagli

C8. Teoremi di Euclide e di Pitagora - Esercizi

C8. Teoremi di Euclide e di Pitagora - Esercizi C8. Teoremi di Euclide e di Pitagora - Esercizi EQUIVALENZA DI FIGURE GEOMETRICHE E CALCOLO DI AREE 1) Dimostra che ogni mediana divide un triangolo in due triangoli equivalenti. 2) Dato un parallelogramma

Dettagli

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1

Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60

Dettagli

Risoluzione dei triangoli rettangoli

Risoluzione dei triangoli rettangoli Risoluzione dei triangoli rettangoli In questa dispensa esamineremo il problema della risoluzione dei triangoli rettangoli. Riprendendo la definizione di seno e coseno, mostreremo come questi si possano

Dettagli

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010

Soluzioni dei quesiti della maturità scientifica A.S. 2009/2010 Soluzioni dei quesiti della maturità scientifica AS 009/010 Nicola Gigli Sun-Ra Mosconi giugno 010 Quesito 1 Un generico polinomio di grado n si può scrivere nella forma p(x) a 0 + a 1 x + + a n x n dove

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa.

Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Poligoni Un poligono è la parte di piano delimitata da una linea spezzata, semplice e chiusa. Lato Vertice Angolo interno Angolo esterno I lati del poligono sono segmenti che costituiscono la linea spezzata.

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli

Dettagli

Problemi sui teoremi di Euclide

Problemi sui teoremi di Euclide Capitolo 1 Problemi sui teoremi di Euclide 1.1 Problemi svolti 1. Calcolare il perimetro e l area di un triangolo rettangolo sapendo che la misura di un cateto, supera di 4 cm. quella della sua proiezione

Dettagli

Problemi di geometria

Problemi di geometria 1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola

Dettagli

Come risolvere i quesiti dell INVALSI - secondo

Come risolvere i quesiti dell INVALSI - secondo Come risolvere i quesiti dell INVALSI - secondo Soluzione: Si tratta del prodotto di due potenze con la stessa base. La base rimane la stessa e si sommano gli esponenti: La risposta corretta è la A. Soluzione:

Dettagli

Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI

Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI Un triangolo è un insieme di punti del piano costituito da una poligonale chiusa di tre lati e dai suoi punti interni CLASSIFICAZIONE RISPETTO AI LATI: equilatero, isoscele, scaleno CLASSIFICAZIONE RISPETTO

Dettagli

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema

Verifica di Matematica sommativa durata della prova : 2 ore. Punt. attr. Problema Liceo Scientifico Statale M. Curie Classe D aprile Verifica di Matematica sommativa durata della prova : ore Nome Cognome Voto N.B. Il punteggio massimo viene attribuito in base alla correttezza e alla

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

ESERCIZI PER IL RECUPERO DEL DEBITO FINALE. Esercizio n.1

ESERCIZI PER IL RECUPERO DEL DEBITO FINALE. Esercizio n.1 Esercizio n.1 Un appezzamento di terreno quadrilatero ABCD è stato rilevato andando a misurare: AB = 345,65 m AD = 308,68 m CD = 195,44 m a = 95,3852 gon g = 115,5600 gon Rappresentare in scala opportuna

Dettagli

Rappresentazione e risoluzione grafica e analitica dei quadrilateri divisi in triangoli rettangoli

Rappresentazione e risoluzione grafica e analitica dei quadrilateri divisi in triangoli rettangoli Rappresentazione e risoluzione grafica e analitica dei quadrilateri divisi in triangoli rettangoli È necessario sapere e saper operare con: Le proporzioni Primo principio di equivalenza Rappresentazione

Dettagli

Test di autovalutazione

Test di autovalutazione Test di autovalutazione 0 10 0 30 40 50 60 70 80 90 100 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle 5 alternative. n Confronta le tue risposte con le soluzioni.

Dettagli

Verifica di Topografia

Verifica di Topografia ISTITUTO TECNICO STATALE COMMERCIALE E PER GEOMETRI " In Memoria dei Morti per la Patria " * CHIAVARI * ANNO SCOLASTICO 2010-2011 Verifica di Topografia classe 3^ Geometri 1) In un appezzamento a forma

Dettagli

Alunno/a. Esercitazione in preparazione alla PROVA d ESAME. Buon Lavoro Prof.ssa Elena Spera

Alunno/a. Esercitazione in preparazione alla PROVA d ESAME. Buon Lavoro Prof.ssa Elena Spera Esercitazione in preparazione alla PROVA d ESAME Alunno/a Classe III.. 2008 Buon Lavoro Prof.ssa Elena Spera 1. Quale percentuale della figura è colorata? A. 80 % B. 50 % A. 45 % D. 40 % Osservando bene

Dettagli

COMUNE DI ODERZO. D 36 h. 11 h Imp IS Socialità filare Verticalità verticale

COMUNE DI ODERZO. D 36 h. 11 h Imp IS Socialità filare Verticalità verticale Pianta n 2 Via C. Battisti Classe B Specie Quercus ilex D 36 h. 11 h Imp IS Socialità filare Verticalità verticale Pianta naturaliforme con anomala rugosità lungo il fusto, presenza in chioma di rami secchi

Dettagli

LE DISEQUAZIONI LINEARI

LE DISEQUAZIONI LINEARI Risolvi le seguenti disequazioni LE DISEQUAZIONI LINEARI x + ( x 5) < 7 x + 4 ( x + ) [ ( x ) < x( x 5) ( x )( x + ) + 4x [ impossibile ] ( 5x 1)( x ) + ( x 1) > ( x) 6x + ( x ) ( 1 x) ( x )( x ) + + 5

Dettagli

Corso di preparazione ai Giochi di Archimede Geometria e Logica

Corso di preparazione ai Giochi di Archimede Geometria e Logica Corso di preparazione ai Giochi di Archimede Geometria e Logica 1) Claudia ha disegnato sul quaderno l iniziale del suo nome, una C. Il disegno è stato fatto tagliando esattamente a metà una corona circolare

Dettagli

I.I.S. "Morea-Vivarelli" -- Fabriano CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONE GRAFICA

I.I.S. Morea-Vivarelli -- Fabriano CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONE GRAFICA I.I.S. "Morea-Vivarelli" -- Fabriano CORSO DI TECNOLOGIE E TECNICHE DI RAPPRESENTAZIONE GRAFICA Classe II a Agrario Modulo A UNITÀ 1 ANGOLI E FUNZIONI GONIOMETRICHE AMODULO PROVE Questionario Vero/Falso

Dettagli

Circonferenze e cerchi

Circonferenze e cerchi Alunno/a... Geometria Classe... Sez.... Data... Circonferenze e cerchi 1 Definisci la circonferenza: 2 Definisci il settore circolare: 3 Definisci la figura che nel disegno è colorata in grigio: 4 Osserva

Dettagli

COMUNE DI GALLIERA VENETA CONDIZIONI ESECUTIVE LAVORI DI POTATURA DELLE PIANTE VIALE MONTE GRAPPA

COMUNE DI GALLIERA VENETA CONDIZIONI ESECUTIVE LAVORI DI POTATURA DELLE PIANTE VIALE MONTE GRAPPA COMUNE DI GALLIERA VENETA PROVINCIA DI PADOVA FOGLIO CONDIZIONI ESECUTIVE LAVORI DI POTATURA DELLE PIANTE DI TIGLIO VIALE MONTE GRAPPA 1 Art. 1 - Principi generali La finalità dell'intervento è di ridimensionare

Dettagli

Interventi di manutenzione delle alberature cittadine

Interventi di manutenzione delle alberature cittadine Interventi di manutenzione delle alberature cittadine Conferenza stampa Lunedì 28 dicembre 2015 Settore Verde, Tutela rischio idrogeologico e Parchi Il verde cittadino Elemento di primaria importanza per

Dettagli

COMPUTO METRICO PROGETTO ESECUTIVO. Comune di GENONI. Provincia di ORISTANO IL TECNICO OGGETTO:

COMPUTO METRICO PROGETTO ESECUTIVO. Comune di GENONI. Provincia di ORISTANO IL TECNICO OGGETTO: Comune di GENONI Provincia di ORISTANO Regolamento (CE) N 1698/2005 Programma di sviluppo Rurale (P.S.R.) della Sardegna 2007-2013 - Asse 1 Misura 122 - Migliore valorizzazione economica delle foreste

Dettagli

COMUNE DI ODERZO COMUNE DI ODERZO. D 55 h. 14 h Imp IS Socialità filare Verticalità verticale

COMUNE DI ODERZO COMUNE DI ODERZO. D 55 h. 14 h Imp IS Socialità filare Verticalità verticale Pianta n 1 Via Altinate Classe A Specie Cupressus sempervirens D 51 h. 12 h Imp IS Socialità filare Verticalità verticale Pianta naturaliforme che cresce su aiuola stretta, con base del fusto nuda e chioma

Dettagli

Geometria figure piane Raccolta di esercizi

Geometria figure piane Raccolta di esercizi Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha

Dettagli

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto

Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto La parabola Esercizi Esercizio 368.395 Una circonferenza e una parabola sono disegnate nel piano cartesiano. La circonferenza ha centro nel punto 0 ;5 e raggio, e la parabola ha il suo vertice in 0 ;0.

Dettagli

Terza Media Istituto Elvetico Lugano prof. Mazzetti Roberto

Terza Media Istituto Elvetico Lugano prof. Mazzetti Roberto Terza Media Istituto Elvetico Lugano 2014 2015 prof. Mazzetti Roberto Carissimi, eccovi gli argomenti trattati in quest inizio d anno scolastico, fino alle vacanze autunnali. Ti servono qual ripasso!!!se

Dettagli

Rapporto apotema lato nel poligono regolare determinato per mezzo della tangente e calcolo dell area di Luciano Porta

Rapporto apotema lato nel poligono regolare determinato per mezzo della tangente e calcolo dell area di Luciano Porta Rapporto apotema lato nel poligono regolare determinato per mezzo della tangente e calcolo dell area di Luciano Porta La determinazione dell area del poligono regolare (ad eccezione di quella del triangolo

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;

Dettagli