Probabilità e numeri casuali Teoria e programmazione Pascal e C++
|
|
|
- Nicolina Costantino
- 9 anni fa
- Visualizzazioni
Transcript
1 Probabilità e numeri casuali Teoria e programmazione Pascal e C++ 1
2 Definizioni Evento 2
3 Direzione entrate speciali Del ministero delle finanze 3
4 4
5 5
6 6
7 Definizioni: La probabilità di un evento È un numero reale compreso fra zero ed uno Esempi: Quale è la probabilità che un dado lanciato da una mano NON cada verso il basso? (risp. Zero) Quale è la probabilità che Quale è la probabilità che lanciando un dado il risultato sia 6? (risp. 1/6) Che sia pari? (1/2) A tombola, quale è la probabilità che il primo estratto sia il numero 90? (risp. 1/90) E quella che il secondo estratto sia 10? 7
8 Evento: Nella Teoria della probabilità, un evento è un insieme di risultati (un sottoinsieme dello spazio campionario) al quale viene assegnata una probabilità. Probabilità di un evento: il rapporto tra casi favorevoli e casi possibili Quindi è sempre minore o uguale ad UNO 8
9 Eventi equiprobabili (distribuzione continua uniforme) Eventi che hanno la stessa probabilità di verificarsi Esempi Risultato 1,2, 3, 4,,5 o 6 nel lancio di un dado (non truccato) (prob. 1/6 ciascuno) Risultato 0.36 nella roulette (prob. 1/37 ciascuno) Primo numero (da 1 a 90) estratto nella tombola o lotto (prob. 1/90 ciascuno) 9
10 Evento certo ed evento impossibile Evento certo: esempio ottenere un numero compreso fra 1 e 6 dal lancio di un dado Evento impossibile: es: ottenere 1 come somma del lancio di DUE dadi 10
11 Probabilità composta E la probabilità che due o più eventi si verifichino insieme Esempio: prob. Che domani piova e io venga interrogato in Storia Esempio 2: La probabilità composta è il prodotto fra le probabilità dei due o più eventi 11
12 Probabilità composta Esempio: quale è la probabilità che in due lanci consecutivi di un dado si abbiano due 6? Probabilità di un 6 al primo lancio = 1/6 Probabilità di un 6 al secondo lancio = 1/6 Probabilità composta 6 poi ancora 6 = 1/6 *1/6 =1/36 12
13 Eventi non equiprobabili Pioggia o sereno domani Bocciatura o promozione all esame Curva di distribuzione della probabilità per Voti alunni Numero assenze annue Lancio due o tre dadi 13
14 Gaussiane 14
15 La probabilità di un evento (II) Ora facciamo degli esempi un po più difficili: Lancio DUE dadi: quanti e quali sono i possibili risultati? (attenzione!!) Quale è la probabilità che venga UNO? Quale è la probabilità che venga 12? Quale è la probabilità che venga 8? Ricorda che la somma delle probabilità di tutti gli eventi (risultati) possibili deve fare UNO. 15
16 Gaussiana del lancio di due dadi 16
17 La probabilità di un evento (III) Quale è, secondo te, la probabilità che oggi piova? E quella che NON piova?. 17
18 La probabilità Normalmente la probabilità si può misurare, prendendo il numero di volte in cui un evento si verifica diviso il numero di prove effettuate. Nel caso di lancio di un dado o estrazione di un numero da un urna si possono considerare equiprobabili gli eventi. 18
19 Numeri (pseudo) casuali I linguaggi di programmazione normalmente contengono funzioni in grado di generare numeri pseudo-casuali In Pascal si utilizzano le funzioni randomize e random(n) In c++ srand (time(null)); numero = rand() % ; La prima serve ad inizializzare il seme per la generazione dei numeri pseudo casuali. La seconda genera un numero casuale. 19
20 E ora Cerca nell help di BPW le informazioni sulla funzione randomize e sulla procedura rand 20
21 {esempio di codice per la funzione Random e la procedura Randomize} uses wincrt; begin Randomize; repeat { scrive numeri a caso } Writeln (Random(1000)); until KeyPressed; end. 21
22 Copia il programma e Modificalo in modo da farlo diventare un generatore di lancio di un dado. Poi Fai delle statistiche sul lancio dadi e Trasforma il lanciatore di dadi in una Roulette Russa 22
23 program dadi; uses wincrt; Statistiche sul lancio dadi var a:array[1..6] of integer; i,n,num:integer; begin randomize; clrscr; writeln ('quanti lanci vuoi fare? '); readln (n); for i:=1 to n do begin end. DADI num:=random(5)+1; a[num]:=a[num]+1; writeln ('lancio numero: ',i,' risultato lancio: ',num); end; writeln ('fine esperimento: statistiche: '); for i:=1 to 6 do writeln (a[i], ' '); 23
24 Utilizza il programma statistiche Per verificare che il numero di risultati di ogni tipo sia simile (all aumentare del numero di esperimenti) 24
25 program dadi1; uses wincrt; var a:array[1..6] of integer; begin randomize; clrscr; writeln ('quanti lanci vuoi fare? '); readln (n); for i:=1 to n do begin num:=random(6)+1; a[num]:=a[num]+1; end. DADI1 i,n,num: integer; DADI1 (*writeln ('lancio numero: ',i,' risultato lancio: ',num); *) end; writeln ('fine esperimento: statistiche: '); for i:=1 to 6 do writeln ('occorrenze del numero : ',i,' ',a[i], ' '); 25
26 program dadi2; uses wincrt; var a:array[1..6] of longint; i,n,num:longint; begin randomize; clrscr; writeln ('quanti lanci vuoi fare? '); readln (n); for i:=1 to n do begin num:=random(6)+1; a[num]:=a[num]+1; end. DADI2 DADI2 (*writeln ('lancio numero: ',i,' risultato lancio: ',num); *) end; writeln ('fine esperimento: statistiche: '); for i:=1 to 6 do writeln ('occorrenze del numero : ',i,' ',a[i], ' '); 26
27 27
28 Tavolo Roulette (europea) 28
29 Puntate e vincite (esempi) 29
30 Come scrivere un simulatore di Roulette? Genera numeri compresi fra 0 e 36 Pari, Dispari, Rossi, Neri Manque e Passe E lo ZERO (in USA anche il doppio zero) Parti con una somma iniziale (1000 Euro) Giochi su Rosso o Nero eccetera. Se vinci.. 30
31 31
Test di autovalutazione
Test Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n Confronta le tue risposte con le soluzioni. n
prima urna seconda urna
Un po di fortuna Considera il seguente gioco: ci sono due urne contenenti delle palline perfettamente uguali tra loro, ma colorate diversamente, alcune bianche, altre nere. Nella prima urna ci sono una
Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE
Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA
Probabilità esempi. Aiutiamoci con una rappresentazione grafica:
Probabilità esempi Paolo e Francesca giocano a dadi. Paolo scommette che, lanciando due dadi, si otterrà come somma 8 oppure 9. Francesca scommette che si otterrà come somma un numero minore o uguale a
Esercizi di Calcolo delle Probabilità
Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato
Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1
Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni
STATISTICA A K (63 ore) Marco Riani
STATISTICA A K (63 ore) Marco Riani [email protected] http://www.riani.it Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? Esempio Gioco la schedina mettendo
Calcolo della probabilità
Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.
La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi.
La maggior parte dei fenomeni, ai quali assistiamo quotidianamente, può manifestarsi in vari modi, ma è quasi sempre impossibile stabilire a priori quale di essi si presenterà ogni volta. La PROBABILITA
La probabilità matematica
1 La probabilità matematica In generale parliamo di eventi probabili o improbabili quando non siamo sicuri se si verificheranno. DEFINIZIONE. Un evento (E) si dice casuale, o aleatorio, quando il suo verificarsi
La simulazione con DERIVE Marcello Pedone LE SIMULAZIONI DEL LANCIO DI DADI CON DERIVE
LE SIMULAZIONI DEL LANCIO DI DADI CON DERIVE Premessa Abbiamo già visto la simulazione del lancio di dadi con excel Vedi: http:///statistica/prob_simu/index.htm Ci proponiamo di ottenere risultati analoghi
Introduzione alla probabilità. Renato Mainetti
Introduzione alla probabilità Renato Mainetti Esperimenti sulla probabilità: Vedremo come utilizzare semplici funzioni di matlab per avvicinarci al mondo della probabilità, iniziando così ad introdurre
NOZIONI DI CALCOLO DELLE PROBABILITÀ
NOZIONI DI CALCOLO DELLE PROBABILITÀ ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le ripetizioni, o occasioni
Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere:
PROBABILITÀ E STATISTICA Per capire qual è l altezza media degli italiani è stato intervistato un campione di 1523 cittadini. La media campionaria dell altezza risulta essere: x = 172, 3 cm Possiamo affermare
IL CALCOLO DELLA PROBABILITÀ
IL LOLO LL PROILITÀ 1 Una scatola contiene quattro dischetti rossi numerati da 1 a 4, sei dischetti verdi numerati da 1 a e cinque dischetti bianchi numerati da 1 a 5. Si estrae un dischetto. Scrivi gli
Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9
Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4 o ancora: uscirà il numero 9 Possiamo dire che le previsione del tuo compagno sono la prima certa, la seconda
È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.
A Ripasso Terminologia DOMADE Spazio campionario Evento Evento certo Evento elementare Evento impossibile Evento unione Evento intersezione Eventi incompatibili Evento contrario RISPOSTE È l insieme di
PROBABILITÀ. P ( E ) = f n
PROBABILITÀ GLI EVENTI E LA PROBABILITÀ EVENTI CERTI, IMPOSSIBILI E ALEATORI Ci sono avvenimenti che accadono con certezza, mentre altri sicuramente non possono mai verificarsi. Per esempio, se una scatola
Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U 1. 2. 3. U 4. 5. 6
EVENTI ALEATORI E LORO RAPPRESENTAZIONE Lo spazio degli eventi del lancio di un dado regolare a sei facce è l insieme U... U.. La definizione classica di probabilità dice che, se gli eventi che si considerano
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità
ESPERIMENTO DEL LANCIO DEI DADI
ANNO SCOLASTICO 214/215 SCUOLA SECONDARIA DI PRIMO GRADO UGO FOSCOLO SCHEDA SPERIMENTALE DI MATEMATICA ESPERIMENTO DEL LANCIO DEI DADI ALUNNA: MARTINA PETRARULO CLASSE: III B PROFESSORE: DANIELE BALDISSIN
Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità
Esercitazione del 1/01/2012 Istituzioni di Calcolo delle Probabilità Esercizio 1 Vengono lanciati due dadi regolari a 6 facce. (a) Calcolare la probabilità che la somma dei valori ottenuti sia 9? (b) Calcolare
Lezione 3 Calcolo delle probabilità
Lezione 3 Calcolo delle probabilità Definizione di probabilità La probabilità è lo studio degli esperimenti casuali e non deterministici Se lanciamo un dado sappiamo che cadrà ma non è certo che esca il
STATISTICA ESERCITAZIONE 9
STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione
Il Calcolo delle Probabilità
Il Calcolo delle Probabilità Introduzione storica I primi studi che portarono successivamente a concetti legati alla probabilità possono essere trovati a metà del XVI secolo in Liber de ludo aleæ di Girolamo
Matematica con elementi di statistica ESERCIZI: probabilità
Matematica con elementi di statistica ESERCIZI: probabilità Esercizi sulla Probabilità Esercizio 1. In un corso di laurea uno studente deve scegliere un esame fra 8 di matematica e un esame fra 5 di fisica.
CONOSCENZE 1. il significato di evento casuale. 2. il significato di eventi impossibili, complementari;
ARITMETICA ELEMENTIDICALCOLO DELLE PROBABILITAÁ PREREQUISITI l l l conoscere e costruire tabelle a doppia entrata conoscere il significato di frequenza statistica calcolare rapporti e percentuali CONOSCENZE.
Probabilità I Calcolo delle probabilità
Probabilità I Calcolo delle probabilità Nozioni di eventi. Definizioni di probabilità Calcolo di probabilità notevoli Probabilità condizionate Concetto di probabilità Cos'è una probabilità? Idea di massima:
IL CALCOLO DELLE PROBABILITA
IL CALCOLO DELLE PROBABILITA INTRODUZIONE Già 3000 anni fa gli Egizi praticavano un antenato del gioco dei dadi, che si svolgeva lanciando una pietra. Il gioco dei dadi era diffuso anche nell antica Roma,
ELABORAZIONI STATISTICHE Conoscenze (tutti)
Scegli il completamento corretto. ELABORAZIONI STATISTICHE Conoscenze (tutti) 1. Una variabile statistica è di tipo qualitativo se: a. fa riferimento ad una qualità b. viene espressa mediante un dato numerico
Laboratorio di Calcolo I. Applicazioni : Metodo Monte Carlo
Laboratorio di Calcolo I Applicazioni : Metodo Monte Carlo 1 Monte Carlo Il metodo di Monte Carlo è un metodo per la risoluzione numerica di problemi matematici che utilizza numeri casuali. Si applica
Statistica 1 A.A. 2015/2016
Corso di Laurea in Economia e Finanza Statistica 1 A.A. 2015/2016 (8 CFU, corrispondenti a 48 ore di lezione frontale e 24 ore di esercitazione) Prof. Luigi Augugliaro 1 / 51 Introduzione Il Calcolo delle
CALCOLO DELLE PROBABILITA
CALCOLO DELLE PROBABILITA Italo Nofroni Statistica medica - Facoltà di Medicina Sapienza - Roma Nella ricerca scientifica, così come nella vita, trionfa l incertezza Chi guiderà il prossimo governo? Quanto
Metodi quantitativi per i mercati finanziari
Metodi quantitativi per i mercati finanziari Esercizi di probabilità Spazi di probabilità Ex. 1 Sia Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Siano A e B sottoinsiemi di Ω tali che A = {numeri pari},
Esercitazione 7 del corso di Statistica (parte 1)
Esercitazione 7 del corso di Statistica (parte 1) Dott.ssa Paola Costantini 5 Marzo 011 Esercizio 1 Sullo spazio campionario: = 1,,,, 5,, 7,,, considerando l esperimento casuale estrazione di un numero,
F.1 EVENTI E PROBABILITA
F.1 EVENTI E PROBABILITA Breve storia del Calcolo delle probabilità Le origini del (moderno) Calcolo delle probabilità si fanno tradizionalmente risalire alla corrispondenza tra Pascal e Fermat su un problema
Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva
Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.
Risultati esperienza sul lancio di dadi Ho ottenuto ad esempio:
Dado B (6): 2 2 6 6 6 1 1 3 6 4 6 6 3 1 1 4 1 6 3 6 6 4 6 3 2 4 3 2 6 3 5 5 6 4 3 3 2 1 2 1 6 3 2 4 4 3 6 6 3 2 1 6 6 4 6 1 3 6 6 1 6 2 4 5 3 3 6 2 1 6 6 3 1 2 6 3 1 3 4 6 1 6 4 1 6 4 6 6 6 5 5 2 4 1 2
La probabilità composta
La probabilità composta DEFINIZIONE. Un evento E si dice composto se il suo verificarsi è legato al verificarsi contemporaneo (o in successione) degli eventi E 1, E 2 che lo compongono. Consideriamo il
FENOMENI CASUALI. fenomeni casuali
PROBABILITÀ 94 FENOMENI CASUALI La probabilità si occupa di fenomeni casuali fenomeni di cui, a priori, non si sa quale esito si verificherà. Esempio Lancio di una moneta Testa o Croce? 95 DEFINIZIONI
NUMERI CASUALI E SIMULAZIONE
NUMERI CASUALI E SIMULAZIONE NUMERI CASUALI Usati in: statistica programmi di simulazione... Strumenti: - tabelle di numeri casuali - generatori hardware - generatori software DESCRIZIONE DEL PROBLEMA
Il caso, probabilmente: la partita a dadi di Riccardo Mini
Elementi di Probabilità presenti nell opera teatrale Il caso, probabilmente: la partita a dadi di Riccardo Mini con Fausto Bernardinello, Maria Eugenia D Equino, Annig Raimondi con la collaborazione dei
INFORMATICA DI BASE Linguaggio C Prof. Andrea Borghesan
INFORMATICA DI BASE Linguaggio C Prof. Andrea Borghesan venus.unive.it/borg [email protected] Ricevimento lunedì, prima o dopo lezione 1 Le funzioni in C Le funzioni vengono utilizzate per 3 motivi: Riusabilità
esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;
Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno
ESERCIZI DI PROBABILITA
ESERCIZI DI PROBABILITA Quest'opera è stata rilasciata sotto la licenza Creative Commons Attribuzione-Non commerciale-condividi allo stesso modo 2.5 Italia. Per leggere una copia della licenza visita il
Esercizi svolti di statistica. Gianpaolo Gabutti
Esercizi svolti di statistica Gianpaolo Gabutti ([email protected]) 1 Introduzione Questo breve documento contiene lo svolgimento di alcuni esercizi di statistica da me svolti durante la preparazione
ESERCIZI SULLA PROBABILITA
PROBABILITA CLASSICA ESERCIZI SULLA PROBABILITA 1) Si estrae una carta da un mazzo di 40 carte ; calcolare la probabilità che la carta sia: a. una figura; b. una carta di danari; c. un asso. 2) Un urna
Valore atteso, mazzi di carte e Monte Carlo. Anna Torre-Fulvio Bisi
Valore atteso, mazzi di carte e Monte Carlo Anna Torre-Fulvio Bisi Eventi Indipendenti Due eventi A, B sono indipendenti se la probabilità che accadano entrambi è il prodotto della probabilità che accada
Teorema del limite centrale TCL
Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni
CALCOLO delle PROBABILITA
Eventi certi : è certo che si verifichino es. il prossimo mese sarà luglio, domani sorgerà il sole Eventi probabili: non è certo che si verifichino es. domani pioverà? Quanti giorni di ricovero avrà quel
STATISTICA: esercizi svolti sulle VARIABILI CASUALI
STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri
Test di Matematica di base
Test di Matematica di base Calcolo combinatorio e delle probabilitá Quanti oggetti possiamo differenziare con delle targhe di due simboli di cui il primo é una lettera dell alfabeto italiano e il secondo
LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria
ALGEBRA IL CALCOLO DELLE PROBABILITAÁ richiami della teoria n un evento E si dice casuale o aleatorio, quando il suo verificarsi dipende unicamente dal caso; n un evento si dice certo quando eá possibile
Olimpiadi di Statistica Classe V - Fase Eliminatoria
Olimpiadi di Statistica 2016 - Classe V - Fase Eliminatoria Domanda 1 Alla fine del torneo di calcetto organizzato dalla scuola, è stata analizzata la classifica dei marcatori dalla quale risulta la seguente
Definizione frequentistica di probabilita :
Esperimenti aleatori un esperimento e l osservazione del verificarsi di qualche accadimento ( A ) che, a partire da determinate condizioni iniziali, porti ad un particolare stato delle cose finali se si
Lezione 1. La Statistica Inferenziale
Lezione 1 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione
Il Corso di Fisica per Scienze Biologiche
Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: [email protected] Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/
Variabili aleatorie. Variabili aleatorie e variabili statistiche
Variabili aleatorie Variabili aleatorie e variabili statistiche Nelle prime lezioni, abbiamo visto il concetto di variabile statistica : Un oggetto o evento del mondo reale veniva associato a una certa
Teoria della probabilità
Introduzione alla teoria della probabilità Teoria della probabilità Primi sviluppi nel XVII secolo (Pascal( Pascal, Fermat, Bernoulli); Nasce nell ambito dei giochi d azzardo; d La prima formalizzazione
Probabilità: valutazione della possibilità che accada (o sia accaduto) r = 1 (c è un asso di cuori nel mazzo)
Probabilità: valutazione della possibilità che accada (o sia accaduto) un evento. Probabilità di un evento P = r/n dove r = frequenza dell evento N = Numero di possibili eventi Esempio: Evento = estrazione
( ) ( ) Ω={1,2,3,4,5,6} B B A Siano A e B due eventi di Ω: si definisce evento condizionato B A. Consideriamo il lancio di un dado:
Eventi condizionati Quando si ha motivo di credere che il verificarsi di uno o più eventi sia subordinato al verificarsi di altri eventi, si è soliti distinguere tra eventi dipendenti(o condizionati )
Ulteriori applicazioni del test del Chi-quadrato (χ 2 )
Ulteriori applicazioni del test del Chi-quadrato (χ 2 ) Finora abbiamo confrontato con il χ 2 le numerosità osservate in diverse categorie in un campione con le numerosità previste da un certo modello
SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA
SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;
RAPPRESENTARE CON UN COMPUTER FENOMENI CASUALI E UTILIZZARLI
Fare scienza con il computer RAPPRESENTARE CON UN COMPUTER FENOMENI CASUALI E UTILIZZARLI Maria Peressi ([email protected]) Giorgio Pastore ([email protected]) 24 gennaio 211 - esempio semplice di fenomeno
EVENTI FUTURI EQUIPROBABILI Lezione n. 3
EVENTI FUTURI EQUIPROBABILI Lezione n. 3 Finalità: Enunciare le definizioni maturate attraverso l esercitazione pratica. Verificare la corrispondenza tra ipotesi formulate e risultati sperimentali. Metodo:
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 05-6 P.Baldi Lista di esercizi, 8 gennaio 06. Esercizio Si sa che in una schedina
p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4
CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,
Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.
discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3
Laboratorio di Programmazione: Linguaggio C Lezione 9 del 27 novembre 2013
Laboratorio di Programmazione: Linguaggio C Lezione 9 del 27 novembre 2013 Damiano Macedonio Giochi d Azzardo Note Iniziali Per generare un numero casuale basta includere la libreria stdlib.h e utilizzare
PROBLEMI DI PROBABILITÀ
PROBLEMI DI PROBABILITÀ 1. Si dispongono a caso su uno scaffale sette libri, dei quali tre trattano di matematica. Qual è la probabilità che i tre libri di matematica si vengano a trovare l uno accanto
- Teoria della probabilità
- Teoria della probabilità ELEMENTI DI TEORIA DELLA PROBABILITA La TEORIA DELLA PROBABILITA ci permette di studiare e descrivere i fenomeni aleatori. DEFINIZIONE: un fenomeno è aleatorio quando di esso
COMPITO n. 1. c(4s + 6t) se 0 s t 1 f(s, t) = 0 altrimenti
COMPITO n. 1 a) Si lancia due volte un dado non truccato. Quant è la probabilità dell evento al primo lancio esce un numero strettamente minore di 3 oppure al secondo lancio esce un numero strettamente
VERIFICA DI MATEMATICA - 10 ottobre 2016 classe 3 a D. Nome...Cognome... ARITMETICA/ALGEBRA
VERIFICA DI MATEMATICA - 10 ottobre 2016 classe 3 a D Nome...Cognome... 1. Insiemi numerici. ARITMETICA/ALGEBRA a) Al posto dei puntini inserisci il simbolo (appartiene) o (non appartiene): + 36...! 3,9...!
APPUNTI SUL LINGUAGGIO DI PROGRAMMAZIONE PASCAL
APPUNTI SUL LINGUAGGIO DI PROGRAMMAZIONE PASCAL In informatica il Pascal è un linguaggio di programmazione creato da Niklaus Wirth ed é un linguaggio di programmazione strutturata. I linguaggi di programmazione
Calcolo delle Probabilità 2013/14 Foglio di esercizi 2
Calcolo delle Probabilità 2013/1 Foglio di esercizi 2 Calcolo combinatorio. Esercizio 1. In un mazzo di 52 carte da Poker ogni carta è identificata da un seme (cuori, quadri, fiori, picche e da un tipo
L indagine campionaria Lezione 3
Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato
CORSO DI PROGRAMMAZIONE
ISTITUTO TECNICO INDUSTRIALE G. M. ANGIOY SASSARI CORSO DI PROGRAMMAZIONE ALTRI TIPI DI DATO INTERESSANTI DISPENSA 01.05 01-05_Tipi_Ulteriori_[ver_15] Questa dispensa è rilasciata sotto la licenza Creative
Prof. Pagani Corrado ALGORITMI ESERCITAZIONI CICLI
Prof. Pagani Corrado ALGORITMI ESERCITAZIONI CICLI DIAGRAMMA A BLOCCHI: SWITCH DIAGRAMMA BLOCCHI: WHILE DIAGRAMMA BLOCCHI: FOR for (inizializzazione contatore, condizione, incremento) { istruzioni ; }
NOZIONI DI CALCOLO DELLE PROBABILITÀ ALCUNE DEFINIZIONI
NOZIONI DI CALCOLO DELLE PROBABILITÀ ALCUNE DEFINIZIONI ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le
Algoritmi in C++ (prima parte)
Algoritmi in C++ (prima parte) Alcuni algoritmi in C++ Far risolvere al calcolatore, in modo approssimato, problemi analitici Diverse tipologie di problemi generazione di sequenze di numeri casuali ricerca
(concetto classico di probabilità)
Probabilità matematica (concetto classico di probabilità) Teoria ed esempi Introduzione Il calcolo delle probabilità è la parte della matematica che si occupa di prevedere, sulla base di regole e leggi
TEORIA DELLA PROBABILITÁ
TEORIA DELLA PROBABILITÁ Cenni storici i rimi arocci alla teoria della robabilità sono della metà del XVII secolo (Pascal, Fermat, Bernoulli) gli ambiti di alicazione sono i giochi d azzardo e roblemi
ESERCIZI SCHEDA N. 1: EVENTI E VARIABILI ALEATORIE
ESERCIZI SCHEDA N. 1: EVENTI E VARIABILI ALEATORIE 1) Dato lo spazio campionario Ω = {(1,1); (1,2); (1,3); (1,4); (1,5); (1,6); (2,1); (2,2); (2,3); ; (6,6)} riferito al lancio di due dadi non truccati,
Probabilità. Ing. Ivano Coccorullo
Ing. Ivano Coccorullo PROBABILITA Teoria della Eventi certi, impossibili e casuali Nella scienza e nella tecnologia è fondamentale il principio secondo il quale ogni volta che si realizza un insieme di
