EVENTI FUTURI EQUIPROBABILI Lezione n. 3
|
|
|
- Adamo Martini
- 9 anni fa
- Visualizzazioni
Transcript
1 EVENTI FUTURI EQUIPROBABILI Lezione n. 3 Finalità: Enunciare le definizioni maturate attraverso l esercitazione pratica. Verificare la corrispondenza tra ipotesi formulate e risultati sperimentali. Metodo: Sperimentazione pratica e compilazione delle schede. Materiali didattici: Schede di gruppo, moneta e dado. Lavorare in gruppo sulla probabilità. La sperimentazione è continuata proponendo ai ragazzi il primo lavoro di gruppo attraverso una scheda appositamente preparata. Sono stati formati sette gruppi facendo estrarre ad ogni ragazzo, a turno, un biglietto numerato da una scatola. Con tale scheda dal titolo EVENTI FUTURI EQUIPROBABILI si è introdotto il concetto di equiprobabilità, ossia la possibilità di assegnare, sulla base delle informazioni note, a due o più eventi casuali la stessa probabilità di verificarsi. In questa scheda sono stati proposti due esercizi di carattere ludico-pratico, il primo con le monete e il secondo con i dadi. Per entrambi, prima si è portato in esempio una situazione reale e si è chiesta la valutazione di essa, poi si è proposto l esperimento pratico, rispettivamente, del lancio di una moneta e di un dado con la raccolta dei risultati in opportune tabelle contenenti la descrizione del singolo evento, il conteggio totale dei risultati dei singoli eventi per alunno e la frequenza. Alla fine dell esercizio pratico si è invitato i ragazzi ad esprimere un commento per estrapolare la regola teorica dall attività pratica. I risultati ottenuti con questa scheda hanno dimostrato come la classe abbia inteso il significato di equiprobabilità. Alle giuste risposte sono seguite anche delle giuste motivazioni infatti, nel caso del lancio della moneta, sono stati quasi tutti d accordo nel dire che la probabilità che esca testa o croce è la stessa. Nel caso del dado le idee si sono confuse infatti un gruppo di alunni ha sbagliato a calcolare il valore della probabilità perché non ha tenuto conto 37
2 38 che nel caso del dado il numero dei casi possibili è sei; altri hanno associato alla probabilità del verificarsi dell evento la fortuna del numero, per cui si è ritenuto più fortunato il numero 5 perché è uscito per più volte rispetto agli altri. Si è concluso osservando che, nello svolgimento della scheda, i ragazzi hanno partecipato in modo coinvolgente come auspicato. Infatti l attività pratica ha incuriosito i ragazzi perché con essa hanno potuto toccare con mano i concetti teorici precedentemente affrontati. Per la compilazione della scheda è stato necessario un confronto di idee prima tra i ragazzi dello stesso gruppo, poi, dopo la raccolta dei dati alla lavagna, tra tutti i gruppi. Interessante è stato vedere l organizzazione dei singoli gruppi, che è stata diversa, nonostante i suggerimenti dati dall insegnante. Mentre alcuni hanno presentato qualche difficoltà sia nell organizzazione del gruppo sia nello svolgimento della scheda, altri sono stati rigorosi nell assegnare ad ognuno di loro un compito specifico svolgendolo a turno. In tre gruppi il lavoro di cooperazione non è stato rispettato, infatti un ragazzo ha eseguito l esercizio pratico, il secondo ha segnato il risultato e ha contato il numero di prove fatte mentre il terzo compagno ha aspettato il suo turno senza collaborare. L esercizio pratico e la raccolta dei risultati sono stati eseguiti in modo corretto. I ragazzi hanno presentato qualche indecisione nel rispondere alla domanda: immagina di continuare a lanciare la moneta, cosa pensi che accadrebbe?. Quattro gruppi sono stati d accordo nel rispondere che il risultato dipenderà dal caso e sarà o testa o croce, due gruppi si sono rifatti all esperienza pratica rispondendo rispettivamente: vedendo i risultati siamo riusciti a dedurre che la frequenza d uscita delle croci sarà maggiore di quella delle teste ; pensiamo che le probabilità che la situazione si ripeta siano minime, l ultimo gruppo ha invece manifestato la sua indecisione scrivendo: forse usciranno lo stesso numero di volte sia testa che croce. I ragazzi hanno risposto analogamente nel caso del lancio del dado. Infine la raccolta dei dati alla lavagna (210 prove totali) ha permesso l introduzione e il confronto dei concetti di frequenza assoluta e frequenza relativa. Si è osservato che nell indicare numericamente il valore delle frequenze alcuni ragazzi hanno utilizzato l espressione percentuale e altri quella razionale, comunque rispondendo correttamente.
3 Scheda n. 3 Eventi futuri equiprobabili Sappiamo che: quando si inizia una partita di calcio, l arbitro chiama 1 i due capitani e, per decidere in quale metà campo ciascuna squadra dovrà giocare, lancia in aria una moneta. Se verrà testa sceglierà la metà campo di gioco uno dei capitani, se verrà croce, la sceglierà l altro. È equa una decisione come questa? I due capitani hanno le stesse probabilità di vincere? Perche? Qual è la probabilità di vincere di ciascun capitano? Su quali informazioni si basa questa previsione? Ho lanciato una moneta quattro volte. Il risultato dei primi tre lanci è stato: testa, testa, testa, Quale pensi sia stato il quarto risultato, testa o croce? Sei certo che la tua risposta sia giusta? Prova con un esperimento. Lancia una moneta 10 volte e raccogli i risultati nella seguente tabella: RISULTATO testa croce CONTEGGIO DEI RISULTATI FREQUENZA 39
4 Dopo aver completato la tabella immagina di continuare a lanciare la moneta, che cosa pensi che accadrebbe? Sei ragazzi decidono di giocare a mosca cieca. Per decidere chi dovrà 2 essere bendato e cercare di toccare gli altri compagni, viene usato un dado. A ciascun ragazzo viene assegnato un numero da 1 a 6. Viene lanciato il dado e la sorte cade sul ragazzo associato al numero 5. È stato un modo di scegliere equo? Qual era la probabilità di essere scelto per ciascun ragazzo? Prova con un esperimento. Lancia un dado 10 volte e raccogli i risultati nella seguente tabella: NUMERO DUL DADO CONTEGGIO DEI RISULTATI FREQUENZA Dopo aver completato la tabella immagina di continuare a lanciare il dado, che cosa pensi che accadrebbe? 40
5 41
6 42
7 43
8 44
9 45
RAPPRESENTAZIONE INSIEMISTICA DEGLI EVENTI Lezione n. 5
RAPPRESENTAZIONE INSIEMISTICA DEGLI EVENTI Lezione n. 5 Finalità: Realizzare grafici che facilitano l organizzazione dei concetti probabilistici utilizzando l insiemistica. Metodo: Compilazione delle schede.
Esercitazione del 31/01/2012 Istituzioni di Calcolo delle Probabilità
Esercitazione del 1/01/2012 Istituzioni di Calcolo delle Probabilità Esercizio 1 Vengono lanciati due dadi regolari a 6 facce. (a) Calcolare la probabilità che la somma dei valori ottenuti sia 9? (b) Calcolare
Test di autovalutazione
Test Test di autovalutazione 0 0 0 0 0 0 0 70 80 90 00 n Il mio punteggio, in centesimi, è n Rispondi a ogni quesito segnando una sola delle alternative. n Confronta le tue risposte con le soluzioni. n
La PROBABILITA è un numero che si associa ad un evento E ed esprime il grado di aspettativa circa il suo verificarsi.
La maggior parte dei fenomeni, ai quali assistiamo quotidianamente, può manifestarsi in vari modi, ma è quasi sempre impossibile stabilire a priori quale di essi si presenterà ogni volta. La PROBABILITA
Esercizi di Calcolo delle Probabilità
Esercizi di Calcolo delle Probabilità Versione del 1/05/005 Corso di Statistica Anno Accademico 00/05 Antonio Giannitrapani, Simone Paoletti Calcolo delle probabilità Esercizio 1. Un dado viene lanciato
La probabilità composta
La probabilità composta DEFINIZIONE. Un evento E si dice composto se il suo verificarsi è legato al verificarsi contemporaneo (o in successione) degli eventi E 1, E 2 che lo compongono. Consideriamo il
prima urna seconda urna
Un po di fortuna Considera il seguente gioco: ci sono due urne contenenti delle palline perfettamente uguali tra loro, ma colorate diversamente, alcune bianche, altre nere. Nella prima urna ci sono una
Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4. uscirà il numero 9
Lanciando un dado, il tuo compagno esclama: uscirà 1, 2, 3, 4, 5 o 6 oppure: uscirà il numero 4 o ancora: uscirà il numero 9 Possiamo dire che le previsione del tuo compagno sono la prima certa, la seconda
Metodi quantitativi per i mercati finanziari
Metodi quantitativi per i mercati finanziari Esercizi di probabilità Spazi di probabilità Ex. 1 Sia Ω = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. Siano A e B sottoinsiemi di Ω tali che A = {numeri pari},
Il Corso di Fisica per Scienze Biologiche
Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 75-585 278 Ø E-mail: [email protected] Ø Web: http://www.fisica.unipg.it/~attilio.santocchia/
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Laurea Magistrale in Scienze della Nutrizione Umana Corso di Statistica Medica, anno 05-6 P.Baldi Lista di esercizi, 8 gennaio 06. Esercizio Si sa che in una schedina
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE
ESERCIZI SU EVENTI E VARIABILI ALEATORIE DISCRETE Docente titolare: Irene Crimaldi 26 novembre 2009 Es.1 Supponendo che la probabilità di nascita maschile e femminile sia la stessa, calcolare la probabilità
SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA
SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;
Nelle ipotesi del precedente esercizio, in quanti modi potrebbe essere formata la classifica finale di tutti i 20 concorrenti? [2,4.
CALCOLO COMBINATORIO Ad una gara partecipano 20 concorrenti; quanti terne di primi tre classificati si possono formare? (nell'ipotesi che non vi siano degli ex aequo) [6.840] Nelle ipotesi del precedente
Matematica con elementi di statistica ESERCIZI: probabilità
Matematica con elementi di statistica ESERCIZI: probabilità Esercizi sulla Probabilità Esercizio 1. In un corso di laurea uno studente deve scegliere un esame fra 8 di matematica e un esame fra 5 di fisica.
Probabilità I Calcolo delle probabilità
Probabilità I Calcolo delle probabilità Nozioni di eventi. Definizioni di probabilità Calcolo di probabilità notevoli Probabilità condizionate Concetto di probabilità Cos'è una probabilità? Idea di massima:
STATISTICA: esercizi svolti sulle VARIABILI CASUALI
STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri
CENTRO SALESIANO DON BOSCO TREVIGLIO Corso di Informatica
) Un urna contiene 0 palline numerate da a 0. Si calcoli la probabilità che: a) estraendo successivamente palline, rimettendo ogni volta la pallina estratta nell urna, si abbiano due numeri primi; b) estraendo
1 4 Esempio 2. Si determini la distribuzione di probabilità della variabile casuale X = punteggio ottenuto lanciando un dado. Si ha immediatamente:
CAPITOLO TERZO VARIABILI CASUALI. Le variabili casuali e la loro distribuzione di probabilità In molte situazioni, dato uno spazio di probabilità S, si è interessati non tanto agli eventi elementari (o
esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno dei possibili esiti di un esperimento casuale;
Capitolo 15 Suggerimenti agli esercizi a cura di Elena Siletti Esercizio 15.1: Suggerimento Si ricordi che: esperimento casuale: è un esperimento condotto sotto l effetto del caso; evento elementare: ciascuno
UNIVERSITÀ di ROMA TOR VERGATA
UNIVERSITÀ di ROMA TOR VERGATA Corso di Statistica, anno 00- P.Baldi Lista di esercizi. Corso di Laurea in Biotecnologie Esercizio Si sa che in una schedina del totocalcio i tre simboli, X, compaiono con
Test di Matematica di base
Test di Matematica di base Calcolo combinatorio e delle probabilitá Quanti oggetti possiamo differenziare con delle targhe di due simboli di cui il primo é una lettera dell alfabeto italiano e il secondo
GIOCOTENNISTAVOLO CONTROLLO LA PALLINA GIOCHI IN SQUADRA GIOCHIAMO CON LA PALLINA:
GIOCHI IN SQUADRA CONTROLLO LA PALLINA GIOCHIAMO CON LA PALLINA: GIOCOTENNISTAVOLO Lanciare la pallina in alto con la mano destra o sinistra e riprenderla con due mani senza farla cadere a terra. Lo stesso
PROBLEMI DI PROBABILITÀ
PROBLEMI DI PROBABILITÀ 1. Si dispongono a caso su uno scaffale sette libri, dei quali tre trattano di matematica. Qual è la probabilità che i tre libri di matematica si vengano a trovare l uno accanto
Valore atteso, mazzi di carte e Monte Carlo. Anna Torre-Fulvio Bisi
Valore atteso, mazzi di carte e Monte Carlo Anna Torre-Fulvio Bisi Eventi Indipendenti Due eventi A, B sono indipendenti se la probabilità che accadano entrambi è il prodotto della probabilità che accada
È l insieme di tutti i possibili esiti di un esperimento aleatorio; si indica generalmente con il simbolo.
A Ripasso Terminologia DOMADE Spazio campionario Evento Evento certo Evento elementare Evento impossibile Evento unione Evento intersezione Eventi incompatibili Evento contrario RISPOSTE È l insieme di
Ψ PSICOMETRIA. Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE
Ψ PSICOMETRIA Corso di laurea triennale (classe 34) STATISTICA INFERENZIALE STATISTICA INFERENZIALE CAMPIONE caratteristiche conosciute POPOLAZIONE caratteristiche sconosciute STATISTICA INFERENZIALE STIMA
Relazione di fisica ESPERIMENTO N 1
ISTITUTO SUPERIORE "B. RUSSELL" DI ROMA Relazione di fisica ESPERIMENTO N 1 1.TITOLO Misurazione indiretta della massa di un cilindretto metallico mediante i metodi della tara di J.C. Borda e della doppia
Esercitazione 7 del corso di Statistica (parte 1)
Esercitazione 7 del corso di Statistica (parte 1) Dott.ssa Paola Costantini 5 Marzo 011 Esercizio 1 Sullo spazio campionario: = 1,,,, 5,, 7,,, considerando l esperimento casuale estrazione di un numero,
Legge di sopravvivenza nel lancio dei dadi
Un esempio di costruzione di un modello probabilistico: la legge di sopravvivenza nel lancio dei La ricerca dell'accordo con i dati sperimentali: l'approccio visivo e l'uso del Chi-quadro (χ2 ) Legge di
UNITA DI APPRENDIMENTO GIOCANDO CON LE SILLABE
Scuola dell Infanzia di Albiano Anno scolastico 2010/2011 Direzione Didattica di Azeglio (TO) UNITA DI APPRENDIMENTO GIOCANDO CON LE SILLABE Verifica dell apprendimento del concetto di sillaba iniziale
Storia della Probabilità
Storia della Probabilità Il calcolo delle probabilità nasce nel Seicento (1654) per risolvere alcuni problemi sui giochi d azzardo (dadi) posti da un giocatore, il cavaliere de Méré, al matematico e filosofo
ATTIVITA DI GEOMETRIA CLASSE 4^ SCUOLA PRIMARIA DI ARGENTERA CANAVESE, IC GUIDO GOZZANO RIVAROLO CAN.SE
ATTIVITA DI GEOMETRIA CLASSE 4^ SCUOLA PRIMARIA DI ARGENTERA CANAVESE, IC GUIDO GOZZANO RIVAROLO CAN.SE DOCENTE: ZUCCA CRISTIANA INTRODUZIONE L insegnante è partita dall argomento previsto dal programma
IL CALCOLO DELLE PROBABILITA
IL CALCOLO DELLE PROBABILITA INTRODUZIONE Già 3000 anni fa gli Egizi praticavano un antenato del gioco dei dadi, che si svolgeva lanciando una pietra. Il gioco dei dadi era diffuso anche nell antica Roma,
Maria Reggiani - Pavia. Non multum oportet consilio credere, quia suam habet fortuna rationem Petronio, Satyricon LXXXIII
Maria Reggiani - Pavia Non multum oportet consilio credere, quia suam habet fortuna rationem Petronio, Satyricon LXXXIII Paderno del Grappa, 24 agosto 2014 Indice dell intervento: - Indicazioni nazionali
STATISTICA A K (63 ore) Marco Riani
STATISTICA A K (63 ore) Marco Riani [email protected] http://www.riani.it Esempio totocalcio Gioco la schedina mettendo a caso i segni 1 X 2 Qual è la prob. di fare 14? Esempio Gioco la schedina mettendo
Calcolo della probabilità
Calcolo della probabilità GLI EVENTI Un evento è un fatto che può accadere o non accadere. Se esso avviene con certezza si dice evento certo, mentre se non può mai accadere si dice evento impossibile.
Catene di Markov - Foglio 1
Catene di Markov - Foglio 1 1. Una pedina si muove su un circuito circolare a 4 vertici, numerati da 1 a 4. La pedina si trova inizialmente nel vertice 1. Ad ogni passo un giocatore lancia un dado equilibrato:
p k q n k = p n (k) = n 12 = 1 = 12 1 12 11 10 9 1 0,1208. q = 1 2 e si ha: p 12 (8) = 12 8 4
CAPITOLO QUARTO DISTRIBUZIONE BINOMIALE (O DI BERNOULLI) Molti degli esempi che abbiamo presentato nei capitoli precedenti possono essere pensati come casi particolari di uno schema generale di prove ripetute,
Lezione 12. Statistica. Alfonso Iodice D Enza Università degli studi di Cassino. Lezione 12. A. Iodice.
discrete uniforme Bernoulli Poisson Statistica Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () Statistica 1 / 56 Outline discrete uniforme Bernoulli Poisson 1 2 discrete 3
ESERCIZI SUL CALCOLO COMBINATORIO
ESERCIZI SUL CALCOLO COMBINATORIO A) SVILUPPARE E CALCOLARE LE SEGUENTI ESPRESSIONI : numero esercizio risoluzione 1) D 3, ) P 4 3) P 6 3 4) 3,3 P 6 5) D ' 3, 6) C 4, 7) C n, n 8) D + D' C 4, 3, 3 3, 9)
ISTITUTO COMPRENSIVO DI BARBERINO DI MUGELLO Scuola Secondaria di primo grado classi prime Insegnante: Enrico Masi. Solidi, liquidi e gas
ISTITUTO COMPRENSIVO DI BARBERINO DI MUGELLO Scuola Secondaria di primo grado classi prime Insegnante: Enrico Masi Solidi, liquidi e gas 1 PREFAZIONE Alcune note sul metodo usato Non si deve dare definizioni
STATISTICA ESERCITAZIONE 9
STATISTICA ESERCITAZIONE 9 Dott. Giuseppe Pandolfo 19 Gennaio 2015 REGOLE DI CONTEGGIO Sequenze ordinate Sequenze non ordinate Estrazioni con ripetizione Estrazioni senza ripetizione Estrazioni con ripetizione
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07
PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando
Dadi, carte, diagrammi e frazioni.
Dadi, carte, diagrammi e frazioni..i primi passi nella probabilità Relatore: Prof.ssa Ana Millán Gasca Laura Sol Minicorso Insegnare la matematica ai bambini a partire dall esperienza Roma, Università
La simulazione con DERIVE Marcello Pedone LE SIMULAZIONI DEL LANCIO DI DADI CON DERIVE
LE SIMULAZIONI DEL LANCIO DI DADI CON DERIVE Premessa Abbiamo già visto la simulazione del lancio di dadi con excel Vedi: http:///statistica/prob_simu/index.htm Ci proponiamo di ottenere risultati analoghi
Risultati esperienza sul lancio di dadi Ho ottenuto ad esempio:
Dado B (6): 2 2 6 6 6 1 1 3 6 4 6 6 3 1 1 4 1 6 3 6 6 4 6 3 2 4 3 2 6 3 5 5 6 4 3 3 2 1 2 1 6 3 2 4 4 3 6 6 3 2 1 6 6 4 6 1 3 6 6 1 6 2 4 5 3 3 6 2 1 6 6 3 1 2 6 3 1 3 4 6 1 6 4 1 6 4 6 6 6 5 5 2 4 1 2
Il problema delle parti
Introduzione al pensiero probabilistico IIS Archimede Il calcolo delle probabilità è una delle discipline matematiche più recenti e gli storici della matematica ne fanno risalire la nascita nella corrispondenza
Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità
Esperimentazioni di Fisica 1 Elementi di Calcolo delle Probabilità Università Roma Tre - Dipartimento di Matematica e Fisica 3 novembre 2016 Introduzione La probabilità nel linguaggio comune I E probabile
Gruppo di lavoro per i B.E.S. D.D. 3 Circolo Sanremo. Autore:Marino Isabella P roposta di lavoro per le attività nei laboratori di recupero
Competenza/e da sviluppare Saper cogliere/usare i suoni della lingua: abilità fonologiche /metafonologiche Saper comprendere le consegne Saper ascoltare Saper organizzare il proprio lavoro Saper analizzare
L indagine campionaria Lezione 3
Anno accademico 2007/08 L indagine campionaria Lezione 3 Docente: prof. Maurizio Pisati Variabile casuale Una variabile casuale è una quantità discreta o continua il cui valore è determinato dal risultato
F.1 EVENTI E PROBABILITA
F.1 EVENTI E PROBABILITA Breve storia del Calcolo delle probabilità Le origini del (moderno) Calcolo delle probabilità si fanno tradizionalmente risalire alla corrispondenza tra Pascal e Fermat su un problema
Statistica. Esercitazione 10. Alfonso Iodice D Enza [email protected]. Università degli studi di Cassino. Statistica. A. Iodice. V.C.
uniforme Bernoulli binomiale di Esercitazione 10 Alfonso Iodice D Enza [email protected] Università degli studi di Cassino () 1 / 55 Outline uniforme Bernoulli binomiale di 1 uniforme 2 Bernoulli 3 4
ESPERIMENTO DEL LANCIO DEI DADI
ANNO SCOLASTICO 214/215 SCUOLA SECONDARIA DI PRIMO GRADO UGO FOSCOLO SCHEDA SPERIMENTALE DI MATEMATICA ESPERIMENTO DEL LANCIO DEI DADI ALUNNA: MARTINA PETRARULO CLASSE: III B PROFESSORE: DANIELE BALDISSIN
ELABORAZIONI STATISTICHE Conoscenze (tutti)
Scegli il completamento corretto. ELABORAZIONI STATISTICHE Conoscenze (tutti) 1. Una variabile statistica è di tipo qualitativo se: a. fa riferimento ad una qualità b. viene espressa mediante un dato numerico
Definizione frequentistica di probabilita :
Esperimenti aleatori un esperimento e l osservazione del verificarsi di qualche accadimento ( A ) che, a partire da determinate condizioni iniziali, porti ad un particolare stato delle cose finali se si
FREQUENZA TEORICA E FREQUENZA PERCENTUALE Lezione n. 13
FREQUENZA TEORICA E FREQUENZA PERCENTUALE Lezione n. 13 Finalità: Enunciare le definizioni maturate attraverso l esercitazione pratica. Sistematizzare concetti e definizioni Metodo: Sperimentazione pratica
Calcolo delle probabilità
Calcolo delle probabilità Approccio classico e frequentista alla probabilità Prof.ssa Laura Pagnozzi Prof. Ivano Coccorullo Teoria delle probabilità L inizio della teoria delle probabilità, chiamata all
Esercizi di Probabilità
Esercizi di Probabilità Annalisa Cerquetti - Sandra Fortini Vai all indice Istituto di Metodi Quantitativi, Viale Isonzo, 25, 2033 Milano, Italy. E-mail: [email protected],[email protected]
Un elenco di esercizi per il corso Matematica docente: Alberto Dolcetti
Un elenco di esercizi per il corso Matematica docente: Alberto Dolcetti Ricevo molti messaggi di posta elettronica che suggeriscono varie soluzioni per gli esercizi proposti. Questo non mi dispiace perchè
Corso di preparazione ai Giochi di Archimede Calcolo combinatorio & Probabilità
Corso di preparazione ai Giochi di Archimede Calcolo combinatorio & Probabilità ) Quante quaterne (x, x2, x3, x4) di numeri interi non negativi soddisfano l equazione x+x2+x3+x4=7? a) 25 b) 289 c) 40 d)
LICEO SCIENTIFICO STATALE "G.B.QUADRI" VICENZA DOCUMENTO DEL CONSIGLIO DI CLASSE (Regolamento, art.5; O. M. 38 art.6) Anno scolastico
LICEO SCIENTIFICO STATALE "G.B.QUADRI" VICENZA DOCUMENTO DEL CONSIGLIO DI CLASSE (Regolamento, art.5; O. M. 38 art.6) Anno scolastico 2015-2016 RELAZIONE FINALE DEL DOCENTE All. A Classe: 5 DSA Indirizzo:
ESERCIZI DI CALCOLO COMBINATORIO
ESERCIZI DI CALCOLO COMBINATORIO (G.T.Bagni) Sintesi delle nozioni teoriche da utilizzare a) Dati n elementi e k n, si dicono disposizioni semplici di n elementi di classe k tutti i raggruppamenti ottenuti
LA PROBABILITAÁ ALGEBRA IL CALCOLO DELLE PROBABILITAÁ. richiami della teoria
ALGEBRA IL CALCOLO DELLE PROBABILITAÁ richiami della teoria n un evento E si dice casuale o aleatorio, quando il suo verificarsi dipende unicamente dal caso; n un evento si dice certo quando eá possibile
IL CALCOLO DELLA PROBABILITÀ
IL LOLO LL PROILITÀ 1 Una scatola contiene quattro dischetti rossi numerati da 1 a 4, sei dischetti verdi numerati da 1 a e cinque dischetti bianchi numerati da 1 a 5. Si estrae un dischetto. Scrivi gli
Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano
Esercitazione n. 3 - Corso di STATISTICA - Università della Basilicata - a.a. 2011/12 Prof. Roberta Siciliano Esercizio 1 Una moneta viene lanciata 6 volte. Calcolare a) La probabilità che escano esattamente
Introduzione alla probabilità. Renato Mainetti
Introduzione alla probabilità Renato Mainetti Esperimenti sulla probabilità: Vedremo come utilizzare semplici funzioni di matlab per avvicinarci al mondo della probabilità, iniziando così ad introdurre
Esercitazione: La kappa di Cohen
Esercitazioni Stat Med per Metodologia Clinica Esercitazione: La kappa di Cohen Maria Pia Sormani [email protected] Obiettivi 1. Come si calcola la kappa 2. Significato della concordanza casuale
Proposta didattica per la classe terza - quarta della scuola primaria. I. C. Visconti
Proposta didattica per la classe terza - quarta della scuola primaria I. C. Visconti FASI DELL ESPERIENZA Cosa pensano i bambini di metà, un terzo e un quarto Raccolta delle loro idee e visualizzazione
Probabilità e numeri casuali Teoria e programmazione Pascal e C++
Probabilità e numeri casuali Teoria e programmazione Pascal e C++ 1 Definizioni Evento 2 Direzione entrate speciali Del ministero delle finanze 3 4 5 6 Definizioni: La probabilità di un evento È un numero
Insegnante di Laboratorio Questionario di valutazione sulla didattica
Insegnante di Laboratorio Questionario di valutazione sulla didattica Ciao! Questo questionario è stato formulato per far arrivare la tua voce, i tuoi consigli e le tue considerazioni al tuo professore,
NOZIONI DI CALCOLO DELLE PROBABILITÀ ALCUNE DEFINIZIONI
NOZIONI DI CALCOLO DELLE PROBABILITÀ ALCUNE DEFINIZIONI ESPERIMENTO CASUALE: un esperimento si dice casuale quando gli esiti (manifestazioni o eventi) non possono essere previsti con certezza. PROVA: le
Attività svolta con tutte le classi
Attività svolta con tutte le classi Secondo quanto concordato durante gli incontri pomeridiani con gli insegnanti sperimentatori, la prima parte del progetto sarebbe stata svolta in classe. Erano infatti
Probabilità e Statistica Esercitazioni. a.a. 2009/2010. C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica.
Probabilità e Statistica Esercitazioni a.a. 2009/2010 C.d.L.: Ingegneria Elettronica e delle Telecomunicazioni, Ingegneria Informatica Probabilità Ines Campa Probabilità e Statistica - Esercitazioni -
COMPITO n. 1. c(4s + 6t) se 0 s t 1 f(s, t) = 0 altrimenti
COMPITO n. 1 a) Si lancia due volte un dado non truccato. Quant è la probabilità dell evento al primo lancio esce un numero strettamente minore di 3 oppure al secondo lancio esce un numero strettamente
Lezione 1. La Statistica Inferenziale
Lezione 1 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione
LEZIONE Rubriche di valutazine di prestazioni autentiche
LEZIONE Rubriche di valutazine di prestazioni autentiche Obiettivi Conoscere come si utilizza e si costruice una Rubrica di valutazione Contenuti Elmenti di una Rubrica di valutazione Rubrica per la valutazione,
Progetto Pilota Valutazione della scuola italiana PROVA DI MATEMATICA. Scuola Secondaria Inferiore. Classe Terza. Codici Scuola:... Classe:..
Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana PROVA DI
La probabilità matematica
1 La probabilità matematica In generale parliamo di eventi probabili o improbabili quando non siamo sicuri se si verificheranno. DEFINIZIONE. Un evento (E) si dice casuale, o aleatorio, quando il suo verificarsi
Il protocollo SAM. Giuliano D Eredità G.R.I.M. Gruppo di ricerca Insegnamento delle Matematiche Università di Palermo
Il protocollo SAM Giuliano D Eredità G.R.I.M. Gruppo di ricerca Insegnamento delle Matematiche Università di Palermo Convegno SAM Torino 28 maggio 2011 IL PROTOCOLLO DI INSEGNAMENTO DEGLI SCACCHI NEL PROGETTO
Variabili casuali ad una dimensione Testi degli esercizi. Variabili casuali ad una dimensione a.a. 2012/2013 1
Variabili casuali ad una dimensione Testi degli esercizi 1 Costruzione di variabile casuale discreta Esercizio 1. Sia data un urna contenente 3 biglie rosse, 2 biglie bianche ed una biglia nera. Ad ogni
IL PROGETTO: A SCUOLA FACCIAMO LA DIFFERENZA
IL PROGETTO: A SCUOLA FACCIAMO LA DIFFERENZA Per proporre con successo temi importanti dal punto di vista ambientale e sociale come la raccolta differenziata occorre stimolare il coinvolgimento attivo
Prova scritta di STATISTICA. CDL Biotecnologie. (Programma di Massimo Cristallo - A)
Prova scritta di STATISTICA CDL Biotecnologie (Programma di Massimo Cristallo - A) 1. Un associazione di consumatori, allo scopo di esaminare la qualità di tre diverse marche di batterie per automobili,
Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza
Capitolo 6 Economia dell informazione e scelta in condizioni di incertezza COSA ABBIAMO FATTO FINORA Concetti introduttivi della microeconomia Teoria della scelta razionale del consumatore in condizioni
Noi con Voi. I webinar per gli insegnanti della scuola primaria
Noi con Voi I webinar per gli insegnanti della scuola primaria Per assistenza è possibile contattare lo staff Pearson scrivendo al seguente indirizzo e-mail: [email protected] oppure chiamando
22 CAMPIONATO PROVINCIALE di TENNIS TAVOLO
22 CAMPIONATO PROVINCIALE di TENNIS TAVOLO ATTENZIONE: Tutte le Società ospitanti la manifestazione dovranno mettere a disposizione il defibrillatore con il personale addetto. Riservato alle seguenti categorie:
Cosa dobbiamo già conoscere?
Cosa dobbiamo già conoscere? Come opera la matematica: dagli ai teoremi. Che cosa è una funzione, il suo dominio e il suo codominio. Che cosa significa n j=1 A j dove A j sono insiemi. Che cosa significa
Un gioco per 2-4 direttori di zoo a partire dai 13 anni. COMPONENTI 10 dadi speciali ognuno con 6 simboli Coccodrillo
COMPONENTI 10 dadi speciali ognuno con 6 simboli Coccodrillo Un gioco per 2-4 direttori di zoo a partire dai 13 anni. Struzzo Scimmia Elefante Leone Moneta 1 tabellone stampato su entrambi i lati che mostra
