Attività svolta con tutte le classi
|
|
|
- Sabrina Boni
- 9 anni fa
- Visualizzazioni
Transcript
1 Attività svolta con tutte le classi Secondo quanto concordato durante gli incontri pomeridiani con gli insegnanti sperimentatori, la prima parte del progetto sarebbe stata svolta in classe. Erano infatti previste quattro lezioni da due ore ciascuna, per un totale di otto ore, articolate nel seguente modo: Prima lezione (2 ore) : clessidre; Seconda lezione (2 ore) : clessidre e segmenti; Terza lezione (2 ore) : recipienti; Quarta lezione (2 ore) : divisibilità. Per lo svolgimento delle quattro lezioni sono state preparate alcune schede di lavoro da consegnare agli studenti, dopo la loro suddivisione in gruppi cooperativi composti da cinque ragazzi ciascuno. Nei paragrafi che seguono si presentano e si descrivono in dettaglio le schede di ogni lezione, con particolare attenzione alle motivazioni delle scelte effettuate, agli obiettivi da raggiungere e ai metodi risolutivi che gli studenti avrebbero potuto utilizzare, compiendo, quindi, un analisi a priori. 1. PRIMA LEZIONE : CLESSIDRE
2 ! " # $ & ' Con queste prime due schede di lavoro, gli studenti avrebbero dovuto prima risolvere il problema di clessidre e poi cerare di scrivere una formula legata alla sua risoluzione, creando quindi una situazione simile a quella del matematico alle prese con un problema nuovo, valorizzando così i processi di ricerca che portano all elaborazione di un nuovo risultato: tentativi empirici di risoluzione e loro formalizzazione. In particolare, relativamente a questo primo problema, i possibili metodi risolutivi sono: uno più intuitivo: accorgendosi che 6*4 11=13, si fanno partire contemporaneamente la clessidra da 6 minuti, C6, e quella da 11 minuti, C11. Allo scadere di C11, parte il conteggio dei 13 minuti. Quando C6 si esaurisce, la si capovolge; l operazione si ripete per tre volte; uno più rigoroso: poiché 6 e 11 sono primi tra loro, si può scrivere l identità di Bézout e cercare poi due numeri x e y tali che 6x - 11y=13. Questi due numeri indicano quante volte si devono girare le due clessidre. ( )
3 *! " # $ & ' Anche in queste due ultime schede del primo incontro, le richieste e gli obiettivi sono uguali a quelli delle prime due. La situazione problematica proposta è la stessa, ciò che cambiano sono i minuti delle clessidre e l intervallo di tempo da determinare. Come prima, alcuni tra i possibili metodi risolutivi sono: uno più intuitivo che consiste nel far partire contemporaneamente la clessidra da 7 minuti, C7, e quella da 11 minuti, C11, e determinare quanti giri occorre far fare alle due clessidre in modo tale che tra la fine dell una e la fine dell altra passino 9 minuti (11*4-7*5=9); uno più rigoroso: poiché 7 e 11 sono primi tra loro, si può scrivere ancora l identità di Bézout e cercare due numeri x e y tali che 7x - 11y = SECONDA LEZIONE: CLESSIDRE E SEGMENTI ( +,
4 ! " # $ & ' In queste prime due schede del secondo incontro viene proposta la stessa situazione problematica delle clessidre della prima lezione a cui segue la richiesta di formalizzazione. I possibili procedimenti risolutivi sono gli stessi già presentati precedentemente. E bene però notare che con clessidre da 8 e 10 minuti non è possibile determinare un intervallo da 9 minuti, perché la somma, o la differenza, di multipli di numeri pari è ancora un numero pari, quindi mai 9. Dai risultati ottenibili dagli esercizi proposti, si può quindi concludere che, date due clessidre, che misurano rispettivamente a e b minuti, gli intervalli di tempo determinabili sono tutti i multipli del massimo comun divisore di a e b. Quindi, per determinare un intervallo di c minuti, a e b devono essere tali che: d (a, b) = 1 oppure d (a, b) = d tale che d divide c.!'-' '- '-.! "' $ ' / 0 /1'
5 *! " # $&' Il terzo compito di questa seconda lezione propone un problema formulato in un contesto diverso, ma alla cui risoluzione sottende la stessa formalizzazione dei problemi di clessidre. La formula risolutiva del problema è infatti ancora l identità di Bézout ax-by=c. Considerando le osservazioni precedenti, è chiaro che il segmento più piccolo misurabile è il massimo comun divisore delle lunghezza delle due righe, cioè 3, mentre i segmenti misurabili sono tutti e soli i multipli di questo, cioè tutti e soli i multipli di TERZA LEZIONE: RECIPIENTI 2 ) " + $ #3 4 / $ 5! '' 4 / &
6 ! " # $ & ' Anche questi primi due compiti della terza lezione si svolgono come i precedenti, ciò che cambia ancora una volta è il contesto del problema. Rispetto ai problemi di clessidre e di segmenti, il modello dell acqua è meno facile da gestire, perciò è stato aggiunto il suggerimento tra parentesi di utilizzare sia i recipienti che la bacinella. I possibili metodi risolutivi anche in questo caso sono gli stessi dei problemi precedenti. Nell identità di Bézout ax - by = c che i ragazzi dovrebbero impostare, a e b rappresentano le capacità massime dei due recipienti, c la quantità di acqua da versare nella bacinella. I numeri x e y da determinare sono invece il numero di volte che i recipienti vanno riempiti e svuotati. 2. " + $ 0 /$5 $- 0 $5 / -6
7 *! " # $ & ' Considerato quanto detto per i problemi di clessidre e di segmenti, la più piccola quantità di acqua che può essere versata nella bacinella è il massimo comun divisore delle capacità delle due clessidre, cioè 3, mentre le possibili quantità di acqua versabili nella bacinella sono tutti e soli i multipli di questo, cioè di 3. Quindi, non essendo 8 un multiplo di 3, i ragazzi dovrebbero osservare che il problema non è risolubile. 4. QUARTA LEZIONE: DIVISIBILITA 0 ) - - Questo primo compito della quarta lezione rappresenta un problema il cui metodo di risoluzione è analogo ai precedenti. Tuttavia, mentre i problemi proposti nelle prime tre lezioni erano formulati nell ambito di contesti concreti e particolari (clessidre, recipienti, segmenti), quest ultimo è un problema strettamente numerico. Ciò che ci si aspettava era che i ragazzi avrebbero trovato maggiori difficoltà nell affrontare quest ultima tipologia di esercizi.
8 Uno dei possibili metodi risolutivi che gli studenti avrebbero potuto utilizzare è quello di sfruttare la relazione che lega dividendo, divisore, quoziente e resto. Si può infatti osservare che: 7k = 12q + 3 q = 5 7k = 63 n = 1 q = 12 7k = 147 n = 2 q = 19 7k = 231 n = 3 q = 26 7k = 315 n = 4 q = 5 +7*(n 1) = 7n 2 7k = 12*(7n 2) + 3 = 84n 21 k = 12n )
9 Il secondo compito, che comprende due domande, è impossibile perché 6k = 12q + 2 => 6(k 2q) = 2 6k = 12q + 7 => 6(k 2q) = 7 In entrambi i casi il membro di sinistra è un multiplo di 6, mentre 2 e 7 non lo sono, quindi non esistono multipli di 6 che divisi per 12 danno resto 2 e 7. Tra l altro, gli unici resti possibili sono solo 0 e 6.! " # $&' * 7 ' ""' # & Mentre il terzo compito, già presentato al termine di ogni problema da risolvere, vuole far sì che i ragazzi sviluppino la capacità di formalizzare mediante la scrittura di una formula il procedimento seguito nella risoluzione di un esercizio, aiutandoli così a riflettere circa le strategie risolutive utilizzate, l ultimo compito rappresenta un quesito conclusivo e riassuntivo dell intera attività svolta al mattino. I problemi proposti, infatti, benché presentati in contesti e
10 situazioni differenti, sono tutti accomunati dal fatto che la loro risoluzione richiede l uso dell identità di Bézout ax - by = c. Quest ultima domanda, quindi, vuole verificare se gli studenti hanno individuato il legame tra gli esercizi, facendo inoltre loro comprendere come problemi apparentemente molto diversi tra loro richiedano invece gli stessi procedimenti risolutivi.
Piccolo teorema di Fermat
Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod p). Piccolo teorema di Fermat Proposizione Siano x, y Z, p N, p primo. Allora (x + y) p x p + y p (mod
Due numeri naturali non nulli a, b tali che MCD(a,b) = 1 si dicono coprimi o relativamente primi.
MASSIMO COMUNE DIVISORE E ALGORITMO DI EUCLIDE L algoritmo di Euclide permette di calcolare il massimo comun divisore tra due numeri, anche se questi sono molto grandi, senza aver bisogno di fattorizzarli
= < < < < < Matematica 1
NUMERI NATURALI N I numeri naturali sono: 0,1,2,3,4,5,6,7,8,9,10,11,12,13,... L insieme dei numeri naturali è indicato con la lettera. Si ha cioè: N= 0,1,2,3,4,5,6,7,.... L insieme dei naturali privato
Esempio B2.1: dire il grado del monomio seguente rispetto ad ogni lettera e il suo grado complessivo:
B. Polinomi B.1 Cos è un polinomio Un POLINOMIO è la somma di due o più monomi. Se ha due termini, come a+b è detto binomio Se ha tre termini, come a-3b+cx è detto trinomio, eccetera GRADO DI UN POLINOMIO
Richiami di aritmetica (1)
Richiami di aritmetica (1) Operazioni fondamentali e loro proprietà Elevamento a potenza e proprietà potenze Espressioni aritmetiche Scomposizione: M.C.D. e m.c.m Materia: Matematica Autore: Mario De Leo
1 L estrazione di radice
1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice quadrata consiste nel chiedersi qual è quel numero x che elevato
ISTITUTO COMPRENSIVO STATALE «DON BOSCO» Scuola Secondaria di 1 grado «E. Fermi» Manduria (TA)
ISTITUTO COMPRENSIVO STATALE «DON BOSCO» Scuola Secondaria di 1 grado «E. Fermi» Manduria (TA) PROGRAMMA OPERATIVO NAZIONALE (PON) «COMPETENZE PER LO SVILUPPO» Annualità 2013 Obiettivo C «Migliorare i
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO
MATEMATICA EQUAZIONI FRATTE, DI SECONDO GRADO O SUPERIORE GSCATULLO Equazioni fratte, di secondo grado o superiore Le equazioni di secondo grado Un equazione è di secondo grado se si può scrivere nella
OPERAZIONI IN Q = + = = = =
OPERAZIONI IN Q A proposito delle operazioni tra numeri razionali, affinché il passaggio da N a vero e proprio ampliamento è necessario che avvengano tre cose: Q risulti un ) le proprietà di ciascuna operazione
B5. Equazioni di primo grado
B5. Equazioni di primo grado Risolvere una equazione significa trovare il valore da mettere al posto dell incognita (di solito si utilizza la lettera x) in modo che l uguaglianza risulti verificata. Ciò
1 Fattorizzazione di polinomi
1 Fattorizzazione di polinomi Polinomio: un polinomio di grado n nella variabile x, è dato da p(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0 con a n 0, a 0 è detto termine noto, a k è detto coefficiente
LEZIONE 15. (15.1.2) p(x) = a 0 x n + a 1 x n a n 1 x + a n = a h x n h.
LEZIONE 15 15.1. Polinomi a coefficienti complessi e loro e loro radici. In questo paragrafo descriveremo alcune proprietà dei polinomi a coefficienti complessi e delle loro radici. Già nel precedente
Errori di misura Teoria
Errori di misura Teoria a misura operazione di misura di una grandezza fisica, anche se eseguita con uno strumento precisissimo e con tecniche e procedimenti accurati, è sempre affetta da errori. Gli errori
Gli ESERCIZIARI di LOGICA-MATEMATICA.it Volume III Ragionamento Numerico Deduttivo
Il Prof di LOGICA-MATEMATICA.it Pagina 2 di 70 Gli ESERCIZIARI di LOGICA-MATEMATICA.it Prima Edizione Finito di scrivere nel mese di Luglio 2014 Autore: Il Prof di LOGICA-MATEMATICA.it Sito web: LOGICA-MATEMATICA.it
ISTITUTO COMPRENSIVO DI PAGNACCO SCUOLA ELEMENTARE DE AMICIS PROGETTO SET. Scheda di lavoro. Problemi procedurali NONSOLOPESO
ISTITUTO COMPRENSIVO DI PAGNACCO SCUOLA ELEMENTARE DE AMICIS PROGETTO SET Scheda di lavoro Problemi procedurali NONSOLOPESO 1. Obiettivi formativi Sviluppo della capacità di analisi e deduzione Ragionare
Sistemi di numerazione
Sistemi di numerazione Sistema di numerazione decimale Sapete già che il problema fondamentale della numerazione consiste nel rappresentare con un limitato numero di segni particolari, detti cifre, tutti
CONGRUENZE. proprietà delle congruenze: la congruenza è una relazione di equivalenza inoltre: Criteri di divisibilità
CONGRUENZE I) Definizione: due numeri naturali a e b si dicono congrui modulo un numero naturale p se hanno lo stesso resto nella divisione intera per p. Si scrive a b mod p oppure a b (p) proprietà delle
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI
SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI Appunti presi dalle lezioni del prof. Nedo Checcaglini Liceo Scientifico di Castiglion Fiorentino (Classe 4B) January 17, 005 1 SISTEMI LINEARI Se a ik, b i R,
Moltiplicazione. Divisione. Multipli e divisori
Addizione Sottrazione Potenze Moltiplicazione Divisione Multipli e divisori LE QUATTRO OPERAZIONI Una operazione aritmetica è quel procedimento che fa corrispondere ad una coppia ordinata di numeri (termini
Equazioni lineari con due o più incognite
Equazioni lineari con due o più incognite Siano date le uguaglianze: k 0; x + y = 6; 3a + b c = 8. La prima ha un termine incognito rappresentato dal simbolo letterale k; la seconda ha due termini incogniti
Laboratorio di Giochi Matematici
UNIVERSITÀ DEGLI STUDI DI MILANO DIPARTIMENTO DI MATEMATICA ʺF. ENRIQUESʺ Progetto Lauree Scientifiche Laboratorio di Giochi Matematici (responsabile Prof. Stefania De Stefano) Incontro presso il Liceo
B7. Problemi di primo grado
B7. Problemi di primo grado B7.1 Problemi a una incognita Per la risoluzione di problemi è possibile usare le equazioni di primo grado. Il procedimento può essere solo indicativo; è fondamentale fare molta
Anno 1. Divisione fra polinomi
Anno 1 Divisione fra polinomi 1 Introduzione In questa lezione impareremo a eseguire la divisione fra polinomi. In questo modo completiamo il quadro delle 4 operazioni con i polinomi. Al termine di questa
Ragionamento numerico, critico-numerico e numerico-deduttivo
Capitolo 2 Ragionamento numerico, critico-numerico e numerico-deduttivo 1. I test di ragionamento critico-numerico Per rendere più agevole la lettura di una distribuzione di dati, raggrupparne sezioni
CURRICOLO DI MATEMATICA CLASSE PRIMA
CURRICOLO DI MATEMATICA CLASSE PRIMA INDICATORI OBIETTIVI SPECIFICI CONTENUTI NUMERI Eseguire le quattro operazioni con i numeri interi. Elevare a potenza numeri naturali e interi. Comprendere il significato
UDA MATEMATICA. Progettazione per unità di apprendimento. Percorso di istruzione di primo livello primo periodo didattica PROF:...
UDA MATEMATICA Progettazione per unità di apprendimento Percorso di istruzione di primo livello primo periodo didattica PROF:... B1 5MAT 01 Numeri e calcoli (ore in presenza: 18; ore a distanza: 0 ) COMPETENZA/E
SCUOLA SECONDARIA DI PRIMO GRADO PROGETTAZIONE DI UNITA' DI APPRENDIMENTO DI MATEMATICA PER UNA CLASSE PRIMA
SCUOLA SECONDARIA DI PRIMO GRADO PROGETTAZIONE DI UNITA' DI APPRENDIMENTO DI MATEMATICA PER UNA CLASSE PRIMA Tenendo presente le indicazioni del P., le Indicazioni nazionali per i Piani di Studio Personalizzati
IL CURRICOLO VERTICALE DI MATEMATICA
IL CURRICOLO VERTICALE DI MATEMATICA Sinossi delle competenze per ciascun grado scolastico Scuola primaria Scuola secondaria I grado Scuola secondaria II grado Operare con i numeri nel calcolo scritto
MONOMI. Donatella Candelo 13/11/2004 1
Donatella Candelo 1/11/00 1 MONOMI Un monomio è una qualunque espressione algebrica intera data dal prodotto di fattori qualsiasi, numerici o letterali. Praticamente in ogni monomio si può distinguere
Un polinomio è un espressione algebrica data dalla somma di più monomi.
1 I polinomi 1.1 Terminologia sui polinomi Un polinomio è un espressione algebrica data dalla somma di più monomi. I termini di un polinomio sono i monomi che compaiono come addendi nel polinomio. Il termine
algebra: insiemi numerici N e Q +, proprietà operazioni e calcolo linguaggio degli insiemi
Liceo B. Russell VIA IV NOVEMBRE 35, 3803 CLES Indirizzo: Scienze umane CLASSE Programmazione Didattica a. s. 00/0 UB Disciplina: Matematica Prof. Ore effettuate 08 + 6 recupero Carlo Bellio PROGRAMMA
Quando possiamo dire che un numero a è sottomultiplo del numero b? Al posto dei puntini inserisci è divisibile per oppure è divisore di
ESERCIZI Quando possiamo dire che un numero a è divisibile per un numero b? Quando possiamo dire che un numero a è sottomultiplo del numero b? Quando un numero si dice primo? Al posto dei puntini inserisci
Appunti su Indipendenza Lineare di Vettori
Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo
CORSO ZERO DI MATEMATICA
UNIVERSITÀ DEGLI STUDI DI PALERMO FACOLTÀ DI ARCHITETTURA CORSO ZERO DI MATEMATICA RADICALI Dr. Erasmo Modica [email protected] LE RADICI Abbiamo visto che l insieme dei numeri reali è costituito da tutti
Richiami di aritmetica
Richiami di aritmetica I numeri naturali L insieme dei numeri naturali, che si indica con N, comprende tutti i numeri interi maggiori di zero. Operazioni fondamentali OPERAZIONE SIMBOLO RISULTATO TERMINI
Sistemi e problemi, Pag. 1\10 Prof. I. Savoia - Giugno 2011 SISTEMI E PROBLEMI
Sistemi e problemi, Pag. 1\10 Prof. I. Savoia - Giugno 2011 SISTEMI E PROBLEMI Affrontare un problema richiede spesso l'uso di alcuni strumenti algebrici: fra essi vi sono i sistemi di equazioni. Infatti,
Insiemistica. Capitolo 1. Prerequisiti. Obiettivi. Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi
Capitolo 1 Insiemistica Prerequisiti Gli insiemi numerici di base Divisibilità e fattorizzazione nei numeri interi Obiettivi Sapere utilizzare opportunamente le diverse rappresentazioni insiemistiche Sapere
Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N.
MULTIPLI E DIVISORI Si dice multiplo di un numero a diverso da zero, ogni numero naturale che si ottiene moltiplicando a per ciascun elemento di N. Poiché N = 0,1,2,3...7...95,..104.. Zero è multiplo di
II Esonero di Matematica Discreta - a.a. 06/07. Versione B
II Esonero di Matematica Discreta - a.a. 06/07 1. Nell anello dei numeri interi Z: Versione B a. Determinare la scrittura posizionale in base 9 del numero che in base 10 si scrive) 5293 e la scrittura
DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA
DECLINAZIONE COMPETENZE SCUOLA SECONDARIA DI PRIMO GRADO: MATEMATICA COMPETENZE CONOSCENZE ABILITA Operare in situazioni reali e/o disciplinari con tecniche e procedure di calcolo I numeri naturali e il
Lezione 4. Problemi trattabili e soluzioni sempre più efficienti. Gianluca Rossi
Lezione 4 Problemi trattabili e soluzioni sempre più efficienti Gianluca Rossi Trattabile o intrattabile? Consideriamo ora il problema, ben noto a tutti gli studenti a partire dalla scuola media, di calcolare
Scomposizione in fattori
Corso di Laurea: Biologia Tutor: Marta Floris, Max Artizzu PRECORSI DI MATEMATICA 1 Introduzione Scomposizione in fattori La scomposizione in fattori dei polinomi assume un importanza speciale quando si
LE EQUAZIONI DI SECONDO GRADO
LE EQUAZIONI DI SECONDO GRADO Definizione: un equazione è di secondo grado se, dopo aver applicato i principi di equivalenza, si può scrivere nella forma, detta normale: ax + bx + c 0!!!!!con!a 0 Le lettere
26) Risposta esatta: A. 27) Risposta esatta: E. 28) Risposta esatta: C. 29) Risposta esatta: D. 30) Risposta esatta: D
26) Risposta esatta: A. Procedi per step: la metà di 4 2; l inverso della metà di 4 (ovvero l inverso di 2) 1/2; l opposto dell inverso della metà di 4 (ovvero l opposto di 1/2) 1/2; il doppio dell opposto
Parte Seconda. Prova di selezione culturale
Parte Seconda Prova di selezione culturale TEORIA DEGLI INSIEMI MATEMATICA ARITMETICA Insieme = gruppo di elementi di cui si può stabilire inequivocabilmente almeno una caratteristica in comune. Esempi:
Il Syllabus per il test d ingresso. PISA 10 dicembre 2008
Il Syllabus per il test d ingresso PISA 10 dicembre 2008 Sommario incontro del 10 dicembre Presentazione del Syllabus Lavoro individuale di commento Lavoro a gruppi di produzione quesiti È importante che
4 0 = 4 2 = 4 4 = 4 6 = 0.
Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono
B6. Sistemi di primo grado
B6. Sistemi di primo grado Nelle equazioni l obiettivo è determinare il valore dell incognita che verifica l equazione. Tale valore, se c è, è detto soluzione. In un sistema di equazioni l obiettivo è
Richiami di aritmetica(2)
Richiami di aritmetica() Frazioni definizioni, operazioni, espressioni Numeri decimali Rapporti e proporzioni Percentuali Materia Matematica Autore Mario De Leo Le frazioni La frazione è un operatore che
ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI
ANALISI MATEMATICA PER IL CdL IN INFORMATICA ESERCIZI SULLE DISEQUAZIONI Risolvere le seguenti disequazioni: ( 1 ) x < x + 1 1) 4x + 4 x ) x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) 0; ) x 1 x + 1 x
GLI APPROFONDIMENTI 1. LE TORRI DI HANOI
GLI APPROFONDIMENTI Secondo quanto concordato, la seconda parte del progetto avrebbe previsto lo svolgimento di quattro approfondimenti pomeridiani da circa tre ore ciascuno, rivolti agli studenti maggiormente
Piano annuale di lavoro anno scolastico classe quinta Corsi Giunti Scuola Annarita Monaco PROGETTAZIONE DIDATTICA.
PROGETTAZIONE DIDATTICA Competenze Alla fine della classe quinta L alunno/a: Opera tra numeri naturali e decimali: per iscritto, mentalmente, con strumenti di calcolo Risolve problemi, usando il ragionamento
NONSOLOFORMULE. Confezioni Vasetti yogurt
in una tabella, dove nella colonna di sinistra scriviamo il numero di confezioni e nella colonna di destra il numero di vasetti corrispondenti. 2 12 3 18...... Abbiamo così rappresentato in modo schematico
Argomenti della lezione. Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni
Argomenti della lezione Criteri di divisibilità fattorizzazione m.c.m. e M.C.D. frazioni ed espressioni Quale cifra deve assumere la lettera c affinché i numeri 821c e 82c1 siano divisibili per 2? Un numero
CLASSE 5B - Addizioni
Classe: 5B Ragazzi testati : 20 1. DESCRIZIONE DELLE PROVE Ai bambini sono state proposte una serie di prove relative all area matematica e agli aspetti emotivi ad essa collegati. Tali prove sono, le prove
Il Sistema di numerazione decimale
Il Sistema di numerazione decimale Il NUMERO è un oggetto astratto, rappresentato da un simbolo (o cifra) ed è usato per contare e misurare. I numeri usati per contare, 0,1,2,3,4,5,. sono detti NUMERI
SCUOLA PRIMARIA MATEMATICA (Classe 1ª)
SCUOLA PRIMARIA MATEMATICA (Classe 1ª) Operare con i numeri nel calcolo scritto e mentale Leggere e scrivere numeri naturali in cifre e lettere. Contare in senso progressivo e regressivo. Raggruppare,
ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011
ALGEBRA I: SOLUZIONI QUINTA ESERCITAZIONE 9 maggio 2011 Esercizio 1. Usando l algoritmo euclideo delle divisioni successive, calcolare massimo comune divisore e identità di Bézout per le seguenti coppie
SCHEMI DI MATEMATICA
SCHEMI DI MATEMATICA SCHEMA 1: somme algebriche tra numeri ( ci sono sia somme che sottrazioni) Obiettivo dello schema1: saper risolvere espressioni come : -3-6 Metodo: se il segno dei due numeri è uguale
A1. Calcolo in Q. A1.1 Tabelline e potenze. A1.2 Scomposizione in fattori di numeri interi MCD e mcm
A. Calcolo in Q Questo capitolo tratta argomenti che solitamente sono già stati svolti alle scuole medie ed elementari. Tali argomenti sono necessari per affrontare il programma delle scuole superiori.
PROGRAMMA A.S. 2014/2015
MATERIA CLASSI DOCENTE LIBRI DI TESTO PROGRAMMA A.S. 2014/2015 MATEMATICA 1A tecnico Prof. VIGNOTTI Margherita Maria Dodero Baroncini Manfredi - Fragni Lineamenti. MATH VERDE, algebra 1 Ghisetti e Corvi
Le quattro operazioni fondamentali
Le quattro operazioni fondamentali ADDIZIONE Def: Si dice ADDIZIONE l operazione con la quale si calcola la somma; i numeri da addizionare si dicono ADDENDI e il risultato si dice SOMMA o TOTALE. Proprietà:
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 1ALL MATERIA: MATEMATICA
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2015/2016 CLASSE 1ALL MATERIA: MATEMATICA Modulo n. 1: metodo di studio Collocazione temporale: tutto l anno Strategie didattiche: Per abituare gli allievi
La divisione di numeri naturali: esercizi svolti
La divisione di numeri naturali: esercizi svolti Come abbiamo fatto per la sottrazione, ci chiediamo adesso se, effettuata una operazione di moltiplicazione, sia possibile definire (trovare) una operazione
Il teorema di Rouché-Capelli
Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un
Congruenze. Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006
Congruenze Alberto Abbondandolo Forte dei Marmi, 17 Novembre 2006 1 Il resto nella divisione tra interi Consideriamo i numeri naturali 0, 1, 2, 3,... ed effettuiamone la divisione per 3, indicando il resto:
DEFINIZIONE. L unità frazionaria 1n (con n 0) rappresenta una sola delle n parti uguali in cui è stato diviso l intero.
L unità frazionaria DEFINIZIONE. L unità frazionaria n con n 0 rappresenta una sola delle n parti uguali in cui è stato diviso l intero. Sono unità frazionarie: ognuna di esse indica che l intero è stato
1 La funzione logaritmica
Liceo Scientico Paritario Ven. A. Luzzago di Brescia - A.S. 2011/2012 Equazioni e disequazioni logaritmiche - Simone Alghisi 1 La funzione logaritmica Si è dimostrato che l'equazione esponenziale in forma
Istruzioni. Ecco gli argomenti che ti chiediamo di ripassare:
Matematica La matematica rappresenta una delle materie di base dei vari indirizzi del nostro Istituto e, anche se non sarà approfondita come in un liceo scientifico, prevede comunque lo studio di tutte
La divisione esatta fra a e b è l operazione che dati i numeri a e b (con a multiplo di b) permette di trovare un terzo numero c tale che c b = a.
Significato Significato della divisione esatta La divisione esatta fra a e b è l operazione che dati i numeri a e b (con a multiplo di b) permette di trovare un terzo numero c tale che c b = a. Descrivendo
Gli insiemi numerici. Operazioni e loro proprietà
Gli insiemi numerici N= 0, 1,, 3 Insieme dei numeri naturali Z=, 1, 0, 1,, 3 Insieme dei numeri interi relativi Q= m/n mεz, nεz con n 0 Insieme dei numeri razionali Operazioni e loro proprietà ADDIZIONE
INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi.
INSIEME N L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. N = {0;1;2;3... Su tale insieme sono definite le 4 operazioni di base: l'addizione (o somma), la sottrazione, la moltiplicazione
Equazioni, funzioni e algoritmi: il metodo delle secanti
Equazioni, funzioni e algoritmi: il metodo delle secanti Christian Ferrari 1 Introduzione La risoluzione di equazioni in R ci ha mostrato che solo per le equazioni polinomiali di primo e secondo grado,
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 1ALS MATERIA: MATEMATICA
PIANO DI LAVORO DEL DOCENTE prof. DIMONOPOLI A.S. 2013/2014 CLASSE 1ALS MATERIA: MATEMATICA Modulo n. 1: metodo di studio Collocazione temporale: settembre Strategie didattiche: Per abituare gli allievi
CURRICOLO di MATEMATICA classe terza
CURRICOLO di MATEMATICA classe terza 1 TERZA NUCLEO DISCIPLINARE: A - NUMERI OBIETTIVO GENERALE: A1 - Operare con i numeri oralmente e per scritto LA QUANTITA NUMERICA 1. Costruire la serie numerica raggiungendo
Primo modulo: Aritmetica
Primo modulo: Aritmetica Obiettivi 1. ordinamento e confronto di numeri;. riconoscere la rappresentazione di un numero in base diversa dalla base 10; 3. conoscere differenza tra numeri razionali e irrazionali;
Università del Piemonte Orientale
Compito di Algebra del 13 Gennaio 2009 1) Trovare l ordine di [11] 112 in Z 112. Si dica poi per quali valori di k si ha [11] k 112 [34] 112 = [31] 112. Soluzione. L ordine di [11] 112 è 12. k 12 8. 2)
Calcolo letterale. è impossibile (*) x y. per x = -25; impossibile per y= Impossibile. 15 y
Calcolo letterale Calcolo letterale e operazioni - L uso delle lettere al posto dei numeri si utilizza per scrivere proprietà e regole dandone una valenza più generale rispetto ad un restrittivo esempio
Liceo Artistico Statale A. Caravillani Dipartimento di Matematica. Docente Patrizia Domenicone. Programmazione classi prime Sezione A
Liceo Artistico Statale A. Caravillani Dipartimento di Matematica Docente Patrizia Domenicone Programmazione classi prime Sezione A Tobia Ravà, Anime di luna, 2004 Programmazione di Matematica Classi Prime
ESERCIZI SVOLTI SUL CALCOLO INTEGRALE
ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia
La tabella dell addizione Completa la tabella e poi rispondi alle domande.
La tabella dell addizione Completa la tabella e poi rispondi alle domande. CCCCCCCCCCCC + 0 4 5 6 7 8 9 0 0 4 5 6 7 8 9 0 A ogni coppia ordinata di numeri naturali corrisponde sempre un numero naturale?
1 Disquazioni di primo grado
1 Disquazioni di primo grado 1 1 Disquazioni di primo grado Si assumono assodate le regole per la risoluzione delle equazioni lineari Ricordando che una disuguaglianza è una scrittura tra due espressioni
Buone Vacanze! Compiti per le vacanze. Classe II A
Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei
Polinomi. Corso di accompagnamento in matematica. Lezione 1
Polinomi Corso di accompagnamento in matematica Lezione 1 Sommario 1 Insiemi numerici 2 Definizione di polinomio 3 Operazioni tra polinomi 4 Fattorizzazione Corso di accompagnamento Polinomi Lezione 1
24 Capitolo 1. Numeri naturali
24 Capitolo 1. Numeri naturali 1.12 Esercizi 1.12.1 Esercizi dei singoli paragrafi 1.4 - Operazioni con i numeri naturali 1.1. Rispondi alle seguenti domande: a ) Esiste il numero naturale che aggiunto
ISTITUTO COMPRENSIVO DI BARBERINO DI MUGELLO Scuola Secondaria di primo grado classi prime Insegnante: Enrico Masi. Solidi, liquidi e gas
ISTITUTO COMPRENSIVO DI BARBERINO DI MUGELLO Scuola Secondaria di primo grado classi prime Insegnante: Enrico Masi Solidi, liquidi e gas 1 PREFAZIONE Alcune note sul metodo usato Non si deve dare definizioni
MATEMATICA: competenza 1 e 4 - TERZO BIENNIO. classe V scuola primaria e classe I scuola secondaria. COMPETENZE ABILITÀ CONOSCENZE Il numero
MATEMATICA: competenza 1 e 4 - TERZO BIENNIO classe V scuola primaria e classe I scuola secondaria COMPETENZE ABILITÀ CONOSCENZE Il numero Utilizzare con sicurezza le tecniche e le procedure del calcolo
Introduzione all algebra
Introduzione all algebra E. Modica http://dida.orizzontescuola.it Didattica OrizzonteScuola Espressioni letterali come modelli nei problemi Espressioni come modello di calcolo Esempio di decodifica Premessa
OBIETTIVI MINIMI DI MATEMATICA
OBIETTIVI MINIMI DI MATEMATICA TERZA NUCLEI TEMATICI OBIETTIVI SPECIFICI COMPETENZE VERIFICHE IL NUMERO Conoscere la struttura del numero intero fino a 999. - Contare oggetti in senso progressivo e regressivo.
Equazioni goniometriche risolvibili per confronto di argomenti
Equazioni goniometriche risolvibili per confronto di argomenti In questa dispensa si esaminano le equazioni goniometriche costituite dall uguaglianza di due funzioni goniometriche, nei cui argomenti compare
Prontuario degli argomenti di Algebra
Prontuario degli argomenti di Algebra NUMERI RELATIVI Un numero relativo è un numero preceduto da un segno + o - indicante la posizione rispetto ad un punto di riferimento a cui si associa il valore 0.
Operazioni in N Le quattro operazioni Definizioni e Proprietà
Operazioni in N Le quattro operazioni Definizioni e Proprietà Prof.Enrico Castello Concetto di Operazione NUMERO NUMERO OPERAZIONE RISULTATO PROCEDIMENTO CHE PERMETTE DI ASSOCIARE A DUE NUMERI, DATI IN
