Costruzioni Geometriche

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Costruzioni Geometriche"

Transcript

1 Capitolo Secondo Costruzioni Geometriche 2.1. La costruzione euclidea La letteratura in merito alle costruzioni geometriche è generosa e gli apporti, sia nel tempo che nello spazio, ci vengono da vicino e da lontano. Nelle attività con riga, squadra e compasso sono dati certi oggetti geometrici e a partire da questi se ne vogliono costruire altri, rispettando la geometria del piano. Si tratta quindi di un attività razionale, che necessita di creatività, ma anche di rigore in quanto occorre tenere presenti delle regole del gioco. Euclide scrisse procedimenti di costruzione nel suo celebre libro Elementi. La sua autorità influì sui matematici in modo tale che essi considerarono a lungo come legittimi solo i procedimenti da lui usati, formulando il concetto di costruzione euclidea. Euclide adoperava solo la riga e il compasso. Suppose che non soltanto il segmento ma anche una retta si può disegnare con la riga e che si può tracciare un cerchio di raggio grande a piacere. Indicò precisamente per quali operazioni servirsi della riga e del compasso. La costruzione euclidea permette le seguenti operazioni: a) condurre con la riga la retta passante per due punti, b) misurare la distanza fra due punti con il compasso, c) tracciare una circonferenza dati il centro e il raggio, d) determinare il punto di intersezione di due rette, e) determinare i punti di intersezione di una retta e di una circonferenza, f) determinare i punti di intersezione di due circonferenze. Una costruzione geometrica è un obiettivo che si raggiunge spesso attraverso più strade e che consiste in un procedimento che non è meccanico nel quale alcuni aspetti teorici sono messi in luce in modo brillante.

2 V. Scorsipa 18 Senza la pretesa di sostituire costruzioni più astratte, ragionamenti deduttivi o problemi più analitici, le costruzioni geometriche conservano senz altro una forte valenza formativa. In quel che segue, naturalmente si dànno per acquisite alcune semplici costruzioni e nozioni geometriche di base, quali: 1. saper riportare un segmento congruente ad un segmento dato su una semiretta assegnata; 2. saper riportare un angolo congruente ad uno dato in un altra posizione del piano avendo scelto come vertice e come uno dei suoi lati rispettivamente l origine di un semiretta e la semiretta stessa; 3. saper effettuare graficamente la somma e la differenza di due segmenti e di due angoli; 4. saper costruire l asse di un segmento e la bisettrice di un angolo; 5. saper costruire la perpendicolare e la parallela per un punto ad una retta; 6. conoscere la disuguaglianza triangolare; 7. riconoscere la proprietà metrica comune a tutti punti di una circonferenza e dei punti di una retta parallela ad un altra; 8. conoscere le proprietà affini del parallelogramma; 9. saper dividere un segmento in parti uguali servendosi della costruzione del piccolo teorema di Talete.

3 Costruzioni Geometriche Costruzioni In generale, per ideare e ottenere una corretta sequenza delle attività con riga e compasso di una costruzione conviene suppore di partire dalla medesima come se fosse stata già ottenuta e, poi, in una sorta di processo all indietro, individuare gli elementi o le proprietà che la caratterizzano. Il metodo consiste dunque nel passare dalla figura montata alla figura smontata e in questo senso ricorda l equivalente del top-down nell informatica. È fondamentale, inoltre, il richiamo dei luoghi geometrici, come l asse del segmento, la bisettrice di un angolo,... Un punto geometrico necessario per realizzare una data costruzione può, per esempio, essere individuato dall intersezione di due luoghi geometrici. Concentriamo, ora, l attenzione su alcuni esempi. Esempio 1 Costruire un triangolo ABC conoscendo il lato AB, la mediana CM relativa e un angolo adiacente ad esso, per esempio quello relativo al vertice A. D C A M B fig. 2.1 Le due soluzioni nel triangolo ottusangolo in C. Se l angolo in C del triangolo ABC è rispettivamente ottuso o no si hanno rispettivamente due soluzioni (la seconda in fig.2.1. è individuata dal punto D ) o una soltanto. In particolare, se il triangolo è rettangolo con ipotenusa AB, è noto che la mediana è pari alla metà dell ipotenusa e che il triangolo è inscritto in una semicirconferenza. La costruzione è ottenuta disegnando dapprima il lato AB e individuandone il punto medio M. Il vertice C dovrà appartenere ad una semicirconferenza di centro M e di raggio il segmento che rappresenta la mediana. Dal vertice A si dovrà condurre la semiretta che forma l angolo dato con la base AB, individuando in questo modo il punto o i punti C. Durante il procedimento, dovrebbe colpire la necessità che i dati siano coerenti: non si può realizzare la figura se l angolo è tale che la semiretta non incontra la semicirconferenza. C è una relazione precisa che fissa le condizioni di costruibilità. A ben osservare, il caso limite è rappresentato dalla condizione per la quale la semiretta condotta da A è tangente alla semicirconferenza nel punto C. In quell ipotesi il segmento di tangente AC, il semilato AM e la mediana CM devono rispettare la condizione pitagorica: AM 2 = AC 2 +CM 2. Occorre dunque che l angolo in A sia minore o uguale dell angolo ottenuto nel caso limite appena descritto. Riassumendo i dati devono essere compatibili perché la costruzione sia possibile: costruito il triangolo rettangolo avente come ipotenusa la metà del lato e come cateto la mediana, l angolo della costruzione deve essere minore o uguale dell angolo acuto opposto al cateto-mediana.

4 V. Scorsipa 20 Esempio 2 Costruire un triangolo rettangolo ABC conoscendo l ipotenusa BC, e la somma dei cateti. C C U A A B V somma cateti ipotenusa fig. 2.2 Costruire un triangolo rettangolo note l ipotenusa e la somma dei cateti. Il problema si può presentare in una forma accattivante, per esempio, immaginando che un fabbro debba piegare un asta di ferro in modo da ottenere un triangolo rettangolo avente una data ipotenusa. L idea della costruzione viene immaginando di aprire il triangolo ABC nel vertice C. L ipotenusa e il cateto AC ruoteranno, l una in senso antiorario e l altro in senso orario, fino a che, diventando adiacenti al cateto AB, restituiranno l intero segmento U V. Il triangolo U AC è evidentemente rettangolo e isoscele sulla base UC e dunque l angolo in U misura 45. Questa scoperta è la chiave di volta per ottenere il procedimento costruttivo, che allora consiste dei seguenti passi: si determina il punto B che divide il segmento UV nell ipotesusa e nella somma dei cateti; si disegna la semicirconferenza di centro B e di raggio BV ; si conduce dal punto U la semiretta che forma un angolo di 45 con il segmento UV fino ad incontrare la semicirconferenza nel punto C; si conduce dal punto C la perpendicolare al segmento UV, il piede della quale è il vertice A. La costruzione non è sempre possibile. L ipotenusa, a, deve essere minore della somma, s, dei cateti, ma deve anche essere maggiore o uguale di s 2. In altri termini, l ipotenusa deve soddisfare le limitazioni s 2 a s. Un caso limite, infatti, è dato dal fatto che la semiretta uscente da U e inclinata di 45 è tangente alla semicirconferenza e per il teorema di Pitagora applicato al triangolo rettangolo isoscele si ha 2a 2 = s 2, da cui a = s 2 La simulazione grafica sulla carta, attraverso molti schizzi, assume con l ipotesi del fabbro la suggestione e l impatto di un triangolo rettangolo reale fatto di ferro. Non è difficile individuare l invariante del problema, che, senza conoscere le misure dei cateti, è il punto focale per la costruzione del triangolo richiesto. Da qui il passo per avanzare nella ricerca è breve: è possibile affrontare e risolvere il seguente problema simile al precedente? Esempio 3 Costruire un triangolo rettangolo ABC conoscendo l ipotenusa BC e la differenza dei cateti. L esperienza condotta con la precedente costruzione può essere solo in parte ripresa. Al solito, s immagini che il triangolo ABC sia stato già realizzato. Soltanto la rappresentazione della differenza sulla figura induce

5 Costruzioni Geometriche 21 C D ipotenusa E A 45Γ B diff. cateti fig. 2.3 Costruire un triangolo rettangolo note l ipotenusa e la differenza dei cateti. alla scoperta di una soluzione grafica vincente, perciò dovremo domandarci più volte: che cosa è la differenza di due segmenti? La domanda non è per niente peregrina. Occorre accettare che la differenza dei cateti è quel segmento che sottratto al cateto maggiore AC porta ad ottenere il minore AB e che, al contrario, aggiunto al cateto minore fa avere il maggiore. La differenza di due segmenti diventa, in questo senso, come un dinamico operatore della mente che trasforma segmenti disuguali in uguali. Il passo successivo consiste nel far leva sul fatto che i segmenti AB e AD sono uguali. La soluzione è quasi a portata di mano, occorre capire che si è in presenza di un triangolo ABD ovviamente isoscele, dunque con gli angoli alla base di 45. La difficoltà nasce dal fatto che gli estremi dei nuovi cateti non sono, all inizio, uniti dalla necessaria ipotenusa. In altre parole, i tre punti A, B e D devono essere organizzati dalla mente nella figura del triangolo, e questo non è per nulla ovvio e immediato. Il parallelogramma CDBE è il mezzo con il quale restituiamo il maltolto al cateto maggiore. Le operazioni necessarie per la costruzione si possono ricavare rivedendo tutto quello che abbiamo osservato quasi a rovescio. Ora il triangolo non c è: dobbiamo utilizzare solo i due segmenti che rappresentano l ipotenusa e la differenza dei cateti. Non sarà difficile organizzare la costruzione secondo i seguenti passi: 1. si tracci una retta r orizzontale su cui si prende il punto B ; 2. si disegni un arco opportuno di centro B e di raggio l ipotenusa data; 3. si tracci da B la semiretta s che forma un angolo di 45 rispetto alla retta r ; 4. si costruisca un segmento BE perpendicolare alla retta r e di lunghezza la differenza data; 5. si conduca dal punto E la retta parallela ad s fino ad intersecare l arco nel punto C ; 6. la perpendicolare da C alla retta r interseca quest ultima nel punto A e il triangolo ABC così ottenuto è quello richiesto dalla costruzione. Per risolvere le tre costruzioni seguenti bisogna avere una definizione precisa di circonferenza inscritta in una semicirconferenza. Una tale circonferenza deve essere tangente sia alla semicirconferenza sia al suo diametro. Occorre richiamare, fra le altre nozioni, la notevole proprietà per la quale una retta tangente ad una circonferenza è perpendicolare al raggio avente il punto di contatto come uno degli estremi. Le tre

6 V. Scorsipa 22 costruzioni sono possibili a patto che il raggio della circonferenza sia minore del raggio della semicirconferenza. Esempio 4 Inscrivere una circonferenza in una semicirconferenza conoscendo il punto, C, di tangenza della stessa sulla semicirconferenza. M C A O T B V fig. 2.4 La semicirconferenza di centro O e la circonferenza devono essere tangenti nel punto assegnato C, perciò in C hanno la stessa tangente. Il centro M della circonfernza da costruire deve essere un punto che appartiene al raggio OC. Il punto M del resto deve essere equidistante dalla tangente in C e dal diametro AB e come tale deve appartenere alla bisettrice dell angolo formato dalle rette anzidette. Riassumendo la costruzione si effettua secondo i seguenti passi. Si traccia la tangente alla semicirconferenza passante per il punto C che, come è noto, è perpendicolare al raggio OC. Si prolunga il diametro AB della circonferenza fino a intersecare la tangente nel punto V. La bisettrice dell angolo OV C interseca il raggio OC nel punto M, centro della circonferenza. Esempio 5 Inscrivere una circonferenza di raggio assegnato in una semicirconferenza. M O A O' T B fig. 2.5 Siano r e R rispettivamente i raggi della circonferenza e della semicirconferenza. Il centro M della circonferenza appartiene a due luoghi geometrici: alla semicirconferenza di raggio R r concentrica alla data semicirconferenza e alla retta parallela al diametro AB distante r da esso, nel semipiano cui appartiene la semicirconferenza.

7 Costruzioni Geometriche 23 In dettaglio allora: si costruisce una circonferenza di raggio r tangente al diametro della semicirconferenza AB ; si traccia la parallela al diametro AB che passa per il centro della circonferenza; si disegna la semicirconferenza di raggio R r e centro O con gli estremi sul segmento AB e contenuta nella semicirconferenza di raggio R; il punto M di intersezione con la parallela ad AB è il centro della circonferenza cercata. Esempio 6 Inscrivere una circonferenza in una semicirconferenza conoscendone il punto di tangenza sul diametro. E H M C A fig. 2.6 O T B V Si conducano le rette perpendicolari al diametro AB passanti per i punti O e T. Il centro, M, della circonferenza appartiene alla perpendicolare passante per T. Da E, intersezione della semicirconferenza con la perpendicolare passante per O, si traccia una semiretta parallela ad AB fino ad intersecare in H la perpendicolare in T. Puntando il compasso in H si riporta la lunghezza del segmento EH sulla semicirconferenza, trovando il punto C. L angolo HĈO è retto, perché i triangoli HEO e HCO sono congruenti per il terzo criterio di congrunenza. Dunque la retta HC è tangente alla semicirconferenza nel punto C. Ora, la perpendicolare a HC passante per C è il raggio OC e interseca TH nel punto M, che è il centro della circonferenza cercata.

8 V. Scorsipa 24 ESERCIZI E COMPLEMENTI 2.1 Costruire un parallelogrammo avendo come dati i due differenti lati e una delle due altezze. 2.2 Dati il perimetro e due angoli interni di un triangolo, costruire il triangolo. 2.3 Costruire un parallelogrammo avendo come dati i due differenti lati e una diagonale. 2.4 Costruire un parallelogrammo avendo come dati le due diagonali e un angolo da esse definito. 2.5 Costruire un triangolo isoscele conoscendo il perimetro e l angolo al vertice. 2.6 Costruire un triangolo conoscendo un lato e le altezze corrispondenti agli altri due. 2.7 Costruire un triangolo conoscendo un lato, l altezza corrispondente e un altra altezza. 2.8 Costruire un triangolo conoscendo le mediane. 2.9 Costruire un triangolo conoscendo due lati e la mediana corrispondente ad uno dei due lati Costruire un triangolo conoscendo due lati e la mediana corrispondente al terzo lato Costruire un triangolo isoscele noti l altezza e la somma tra la base e un lato obliquo Determinare un punto che veda i tre lati di un triangolo sotto uno stesso angolo Dato un triangolo, determinare un punto che, congiunto con i tre vertici del triangolo, lo scomponga in tre triangoli equivalenti Costruire la perpendicolare ad una retta data passante per un punto P Costruire la parallela ad una retta data passante per un punto P Costruire la bisettrice di un angolo dato.

9 Costruzioni Geometriche Costruire un segmento di misura pari al prodotto di due segmenti dati Costruire un segmento di misura pari alla radice quadrata di un segmento dato Dati una retta e due punti situati fuori da essa, trovare sulla retta un punto ugualmente distante dai due punti dati Costruire un triangolo date le misure dei tre lati Costruire un triangolo di cui si conoscano il perimetro e gli angoli *Costruire un triangolo conoscendo le tre mediane Inscrivere in un cerchio un triangolo simile ad un triangolo dato Costruire un triangolo equivalente ad un quadrilatero dato Costruire un triangolo equivalente ad un poligono dato Costruire un triangolo di data base ed equivalente ad un triangolo dato Costruire un rettangolo di data base ed equivalente ad un triangolo dato.

10 V. Scorsipa Costruire un quadrato equivalente ad un rettangolo dato Costruire un quadrato equivalente alla somma o alla differenza di due quadrati dati Da un punto esterno ad una circonferenza, condurre le due tangenti Costruire la circonferenza passante per tre punti dati non allineati Costruire la circonferenza tangente a tre rette date non tute e tre parallele fra loro Costruire una circonferenza passante per due punti dati e tangente ad una retta data Costruire un quadrato inscritto in un cerchio Costruire un triangolo equilatero inscritto in un cerchio Costruire un esagono regolare inscritto in un cerchio Costruire un pentagono regolare inscritto in un cerchio 2.38 Dato il lato, costruire l esagono regolare Dato il lato, costruire l ottagono regolare Dato il lato, costruire il pentagono regolare.

Costruzioni inerenti i triangoli

Costruzioni inerenti i triangoli Costruzioni inerenti i triangoli D ora in poi indicheremo con a, b e c i tre lati del triangolo di vertici A, B e C, in modo che a sia opposto al vertice A, b al vertice B e c al vertice C Costruzione

Dettagli

Costruzioni geometriche. (Teoria pag , esercizi )

Costruzioni geometriche. (Teoria pag , esercizi ) Costruzioni geometriche. (Teoria pag. 81-96, esercizi 141-153 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda: due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

IL TRIANGOLO. Teorema di Pitagora. Il triangolo è un poligono avente tre lati.

IL TRIANGOLO. Teorema di Pitagora. Il triangolo è un poligono avente tre lati. IL TRIANGOLO Il triangolo è un poligono avente tre lati. FORMULE AREA: Il triangolo è equivalente a metà parallelogramma. A = (b x h) : da cui: b= A : h e h= A : b TRIANGOLO RETTANGOLO (a, b cateti; c

Dettagli

Geometria euclidea. Alessio del Vigna

Geometria euclidea. Alessio del Vigna Geometria euclidea Alessio del Vigna La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione sono il punto,

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 4 5 6 7 8 9 10 11 12 13 14 In un triangolo rettangolo l altezza relativa all ipotenusa è lunga 16 cm e la proiezione sull ipotenusa di un cateto è lunga 4 cm. Calcola l area del triangolo. [544 cm

Dettagli

GEOMETRIA. Congruenza, angoli e segmenti

GEOMETRIA. Congruenza, angoli e segmenti GEOMETRIA Per affermare che un triangolo è isoscele o rettangolo oppure che un quadrilatero è un parallelogramma o un rettangolo o un rombo o un quadrato o un trapezio o un trapezio isoscele, c è sempre

Dettagli

Applicazioni dei teoremi di Pitagora ed Euclide

Applicazioni dei teoremi di Pitagora ed Euclide Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo rettangolo: Teorema di Pitagora: 1 + c i c = 1 Teorema di Euclide: c p i 1 = 1 c =

Dettagli

Problemi sui teoremi di Euclide e Pitagora

Problemi sui teoremi di Euclide e Pitagora Appunti di Matematica GEOMETRIA EUCLIDEA Problemi sui teoremi di Euclide e Pitagora Utilizzando le misure di segmenti e superfici si possono riscrivere i teoremi di Pitagora ed Euclide per il triangolo

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa.

Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa. Costruzioni Costruzioni di rette, segmenti ed angoli Costruzione 1 Condurre la perpendicolare ad un retta data, passante per un punto della retta stessa. Costruzione. Consideriamo la retta r ed un punto

Dettagli

Problemi di geometria

Problemi di geometria 1 2 3 applicazioni al triangolo rettangolo Calcola il perimetro e l area di un triangolo rettangolo sapendo che l ipotenusa e l altezza ad essa relativa sono lunghe rispettivamente 3 cm e 16,8 cm. [8 cm;

Dettagli

Problemi di geometria

Problemi di geometria 1 2 6 7 9 Calcola la misura dell ipotenusa di un triangolo rettangolo i cui cateti misurano 11,2 cm e 1 cm. [1,7 cm] In un triangolo rettangolo l ipotenusa misura cm, un cateto è dell ipotenusa. Calcola

Dettagli

Principali Definizioni e Teoremi di Geometria

Principali Definizioni e Teoremi di Geometria Principali Definizioni e Teoremi di Geometria Segmento (definizione) Si dice segmento di estremi A e B l insieme costituito dai punti A e B e da tutti i punti della retta AB compresi tra A e B. Angolo

Dettagli

Gli enti geometrici fondamentali

Gli enti geometrici fondamentali capitolo 1 Gli enti geometrici fondamentali 1. Introduzione 1 2. La geometria euclidea come sistema ipotetico-deduttivo 2 Teoremi e dimostrazioni, 3 3. Postulati di appartenenza 4 4. Postulati di ordinamento

Dettagli

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro.

LA CIRCONFERENZA DEFINIZIONI. Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. LA CIRCONFERENZA DEFINIZIONI Una circonferenza è l insieme dei punti del piano che hanno distanza assegnata da un punto, detto centro. Un cerchio è una figura piana formata dai punti di una circonferenza

Dettagli

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.

Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1. Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero

Dettagli

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo

In un triangolo altezza mediana bisettrice asse Proprietà di angoli e lati di un triangolo In un triangolo si dice altezza relativa a un lato il segmento di perpendicolare al lato condotta dal vertice opposto. Si dice mediana relativa a un lato il segmento che unisce il punto medio del lato

Dettagli

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni

Le caratteristiche dei poligoni. La relazione tra i lati e gli angoli di un poligono. Definizioni Le caratteristiche dei poligoni 1. Si dice poligono la parte del piano delimitata da una spezzata chiusa. 2. Il perimetro di un poligono è la somma delle misure del suoi lati, si indica cm 2p. 3. Un poligono

Dettagli

Problemi di geometria

Problemi di geometria criteri di similitudine sui triangoli 1 Dimostra che le altezze di un triangolo sono inversamente proporzionali ai relativi lati. 2 Dimostra che due triangoli rettangoli sono simili se hanno ordinatamente

Dettagli

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 3

PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 3 PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 0/0 CLASSI DISEQUAZIONI Risolvi le seguenti disequazioni numeriche intere. ) ) 9 ) ) 9 ( ) ) ) non esiste R non esiste R Risolvi le seguenti disequazioni

Dettagli

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ).

La somma degli angoli interni di un triangolo è uguale a un angolo piatto (180 ). Il triangolo (UbiLearning) - 1 Triangoli Un triangolo è un poligono formato da tre lati. Rappresenta la più semplice figura piana formata dal minimo numero di lati utili a chiudere una superficie piana.

Dettagli

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti.

Dato un triangolo ABC, è il segmento che partendo dal vertice opposto al lato, incontra il lato stesso formando due angoli retti. Anno 2014 1 Sommario Altezze, mediane, bisettrici dei triangoli... 2 Altezze relativa a un vertice... 2 Mediane relative a un lato... 2 Bisettrici relativi a un lato... 2 Rette perpendicolari... 3 Teorema

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI 1. La circonferenza e il cerchio ESERCIZI 1 A Disegna un triangolo ABC di altezza CH relativa ad AB. Fissa un segmento ED minore di CH. Determina il

Dettagli

Costruzioni geometriche. ( Teoria pag , esercizi 141 )

Costruzioni geometriche. ( Teoria pag , esercizi 141 ) Costruzioni geometriche. ( Teoria pag. 81-96, esercizi 141 ) 1) Costruzione con squadra e riga. a) Rette parallele. Ricorda ; due rette sono parallele quando.... oppure quando hanno la stessa. Matematicamente

Dettagli

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh

Corso di Matematica - Geometria. Geometria - 0. Ing. L. Balogh Geometria - 0 Triangoli qualunque somma degli angoli interni, calcolo del perimetro e dell area Oggetti Vertici Lati Angoli Altezza Raggio Simbolo A, B, C a, b, c,, h S, r Perimetro = + + Somma angoli

Dettagli

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P

GEOMETRIA EUCLIDEA. segno lasciato dalla punta di una matita appena appoggiata sul foglio. P GEOMETRIA EUCLIDEA 1) GLI ENTI FONDAMENTALI: PUNTO, RETTA E PIANO Il punto, la retta e il piano sono gli ELEMENTI ( o ENTI ) GEOMETRICI FONDAMENTALI della geometria euclidea; come enti fondamentali non

Dettagli

I quadrilateri Punti notevoli di un triangolo

I quadrilateri Punti notevoli di un triangolo I quadrilateri Capitolo Quadrilateri 1 erifica per la classe prima COGME............................... ME............................. Quesiti 1.a ero o falso? 1. La somma degli angoli interni di un ottagono

Dettagli

Poligoni e triangoli

Poligoni e triangoli Poligoni e triangoli Def: I poligoni sono figure geometriche formate da una spezzata chiusa semplice e dalla parte di piano che essa delimita.. I punti A, B, C, D, E sono i vertici del poligono. I segmenti

Dettagli

Poligoni inscritti e circoscritti ad una circonferenza

Poligoni inscritti e circoscritti ad una circonferenza Poligoni inscritti e circoscritti ad una circonferenza Def: 1. Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della La circonferenza si dice circoscritta al poligono.

Dettagli

Teoremi di geometria piana

Teoremi di geometria piana la congruenza teoremi sugli angoli γ teorema sugli angoli complementari Se due angoli sono complementari di uno stesso angolo α β In generale: Se due angoli sono complementari di due angoli congruenti

Dettagli

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre

Geometria euclidea. Alessio del Vigna. Lunedì 15 settembre Geometria euclidea Alessio del Vigna Lunedì 15 settembre La geometria euclidea è una teoria fondata su quattro enti primitivi e sulle relazioni che tra essi intercorrono. I quattro enti primitivi in questione

Dettagli

Problemi di geometria

Problemi di geometria 1 3 4 5 6 7 8 9 Un triangolo rettangolo ha un angolo acuto di 30, il cateto minore misura 6 m. Calcola il perimetro e l area del triangolo. [8,39 m; 31,18 m ] Un triangolo rettangolo ha un angolo acuto

Dettagli

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE

LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini

Dettagli

Equivalenza delle figure piane

Equivalenza delle figure piane Capitolo Equivalenza Poligoni equivalenti - erifica per la classe seconda Teoremi di Pitagora ed Euclide COGNOME............................... NOME............................. Classe....................................

Dettagli

IL TEOREMA DI PITAGORA

IL TEOREMA DI PITAGORA IN CLASSE IL TEOREMA DI PITAGORA Preparazione Per questi esercizi con GeoGebra dovrai utilizzare i seguenti pulsanti. Leggi sempre le procedure di esecuzione nella zona in alto a destra, accanto alla barra

Dettagli

Problemi di geometria

Problemi di geometria 1 2 5 6 7 8 9 10 11 12 1 1 In un triangolo rettangolo l ipotenusa misura 60 cm e la proiezione del cateto maggiore sull ipotenusa misura 55,29 cm. Calcola la misura dei due cateti. [57,6 cm; 16,8 cm] In

Dettagli

Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio

Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio Misure riguardanti triangoli, parallelogrammi, poligoni regolari e cerchio ELEMENTI DI GEOMETRI PIN. MISURE RIGURDNTI TRINGOLI, PRLLELOGRMMI, POLIGONI REGOLRI, CERCHIO La geometria piana si occupa delle

Dettagli

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli.

I TRIANGOLI. Esistono vari tipi di triangoli che vengono classificati in base ai lati e agli angoli. I TRIANGOLI Il triangolo è un poligono formato da tre angoli o vertici e da tre lati. Il triangolo è la forma geometrica con il minor numero di lati perché tre è il numero minimo di lati con cui si può

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI AD UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI AD UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI AD UNA CIRCONFERENZA Un poligono si dice inscritto in una circonferenza se tutti i suoi vertici sono punti della circonferenza. La circonferenza si dice circoscritta al

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti o semirette. Questi punti sono detti punti

Dettagli

COSTRUZIONI GEOMETRICHE ELEMENTARI

COSTRUZIONI GEOMETRICHE ELEMENTARI COSTRUZIONI GEOMETRICHE ELEMENTARI 1 ASSE del segmento AB - Con centro in A e in B traccio 2 archi di circonferenza con raggio R>½AB; - chiamo 1 e 2 i punti di intersezione tra gli archi di circonferenza;

Dettagli

I TRIANGOLI AB < AC + BC

I TRIANGOLI AB < AC + BC I TRIANGOLI Il triangolo è un poligono formato da tre angoli e da tre lati: rappresenta la figura più semplice in assoluto, in quanto 3 è il numero minimo di segmenti necessari per delimitare una superficie

Dettagli

C7. Circonferenza e cerchio - Esercizi

C7. Circonferenza e cerchio - Esercizi C7. Circonferenza e cerchio - Esercizi DEFINIZIONI E COSTRUZIONI 1) Dare la definizione di luogo geometrico. 2) Indicare almeno due luoghi geometrici. 3) Dare la definizione di asse di un segmento come

Dettagli

LA GEOMETRIA EUCLIDEA. Seminario Cidi, Roma 13/05/ prof.ssa Dario Liliana 1

LA GEOMETRIA EUCLIDEA. Seminario Cidi, Roma 13/05/ prof.ssa Dario Liliana 1 LA GEOMETRIA EUCLIDEA Seminario Cidi, Roma 13/05/2013 - prof.ssa Dario Liliana 1 Le difficoltà degli studenti nell apprendere la geometria nel 1 anno della scuola secondaria Gli argomenti della geometria

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa

Dettagli

Poligoni con riga e compasso

Poligoni con riga e compasso Poligoni con riga e compasso Affrontiamo alcuni problemi di costruzione con riga e compasso, che ci aiuteranno a ricordare le principali relazioni tra le circonferenze e le rette, gli angoli inscritti,

Dettagli

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze

Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.

Dettagli

Esercizi sulle rette nello spazio

Esercizi sulle rette nello spazio 1 Esercizi sulle rette nello spazio 1) Sono dati quattro punti non complanari, tre di essi possono essere allineati? 2) Sono dati quattro punti non complanari, quanti piani generano? 3) Quante coppie di

Dettagli

Problemi sui teoremi di Euclide

Problemi sui teoremi di Euclide Capitolo 1 Problemi sui teoremi di Euclide 1.1 Problemi svolti 1. Calcolare il perimetro e l area di un triangolo rettangolo sapendo che la misura di un cateto, supera di 4 cm. quella della sua proiezione

Dettagli

C7. Circonferenza e cerchio

C7. Circonferenza e cerchio 7. irconferenza e cerchio 7.1 Introduzione ai luoghi geometrici Un luogo geometrico è l insieme dei punti del piano che godono di una proprietà detta proprietà caratteristica del luogo geometrico. Esempio

Dettagli

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA

Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA Liceo Scientifico G. Salvemini Corso di preparazione per la gara provinciale delle OLIMPIADI DELLA MATEMATICA INTRO GEOMETRIA TRIANGOLI Criteri di congruenza Due triangoli sono congruenti se hanno congruenti:

Dettagli

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI

LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI LA CIRCONFERENZA, I POLIGONI INSCRITTI E CIRCOSCRITTI TEST 1 In figura sono disegnati l angolo aob e il segmento PQ, perpendicolare al lato Oa e tale che PH sia congruente a HQ. Il luogo geometrico dei

Dettagli

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.

Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,

Dettagli

Test di Matematica di base

Test di Matematica di base Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione

Dettagli

Chi ha avuto la sospensione di giudizio, deve aggiungere:

Chi ha avuto la sospensione di giudizio, deve aggiungere: CLASSE 1A Gli esercizi sono sul quaderno di recupero allegato al libro di testo: Esercizi da 80 a 94 pagina 49 Esercizi da 101 a 105 pagina 52-53 Esercizi da 108 a 118 pagina 52-53 Esercizi da 37 a 61

Dettagli

PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA

PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA PROBLEMI SUI TEOREMI DI EUCLIDE E SUL TEOREMA DI PITAGORA 1. Calcolare la misura x di un cateto di un triangolo rettangolo, sapendo che essa supera di 4 cm. quella della sua proiezione sull'ipotenusa,

Dettagli

Risposte ai quesiti D E H D

Risposte ai quesiti D E H D Perugia, dic. 2009/gen. 2010 Risposte ai quesiti 1. Dati i quadrati CD e C D, come in figura, provare che la perpendicolare uscente da alla retta DD passa per il punto medio del segmento quale che sia

Dettagli

C.P.I.A. CENTRO PROVINCIALE PER

C.P.I.A. CENTRO PROVINCIALE PER C.P.I.A. CENTRO PROVINCIALE PER L ISTRUZIONE DEGLI ADULTI SEDE DI CATANZARO - Via T. Campanella n 9 DISPENSE DI GEOMETRIA PERCORSO DI ISTRUZIONE DI PRIMO LIVELLO PRIMO PERIODO DIDATTICO A.S. 2017/2018

Dettagli

7.7 Esercizi. 236 Capitolo 7. Equiestensione e aree

7.7 Esercizi. 236 Capitolo 7. Equiestensione e aree 236 apitolo 7. quiestensione e aree 7.7 sercizi 7.7.1 sercizi dei singoli paragrafi 7.2 - Poligoni equivalenti 7.1. nunciate e dimostrate il teorema le cui ipotesi e tesi sono indicate di seguito. Ipotesi:,

Dettagli

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5

01. Se il raggio di un cerchio dimezza, la sua area diventa: a) 1/3 b) 1/4 c) 3/2 d) 1/5 GEOMETRIA 01. Se il raggio di un cerchio dimezza, la sua area diventa: 1/ b) 1/4 c) / d) 1/5 0. Quanto misura il lato di un quadrato la cui area è equivalente a quella di un triangolo che ha la base di

Dettagli

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015

CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 CORSO DI PREPARAZIONE AI GIOCHI DI ARCHIMEDE 2015 Lezione del 3 NOVEMBRE 2015 GEOMETRIA CRITERI DI CONGRUENZA FRA TRIANGOLI IL SIMBOLO indica la congruenza PRIMO CRITERIO DI CONGRUENZA: Se due triangoli

Dettagli

COMUNICAZIONE N.4 DEL

COMUNICAZIONE N.4 DEL COMUNICAZIONE N.4 DEL 7.11.2012 1 1 - PRIMO MODULO - COSTRUZIONI GEOMETRICHE (4): ESEMPI 10-12 2 - SECONDO MODULO - APPLICAZIONI DI GEOMETRIA DESCRITTIVA (4): ESEMPI 19-25 PRIMO MODULO - COSTRUZIONI GEOMETRICHE

Dettagli

Dispensa di Disegno Tecnico

Dispensa di Disegno Tecnico Dispensa di Disegno Tecnico Modulo 1 Primo Quadrimestre Scuola Bottega Artigiani di San Polo Onlus Ed. 2016-2017 Docente: Carlo Colombini DISPENSA DI DISEGNO TECNICO 1 È più facile fare bene un lavoro

Dettagli

Verifiche anno scolastico 2009/2010 Classi 3 C 3 H

Verifiche anno scolastico 2009/2010 Classi 3 C 3 H Verifiche anno scolastico 2009/2010 Classi 3 C 3 H 1) Scrivi l equazione della circonferenza γ che ha centro C(- 2; 0) e raggio r = 2 2. Ricava le coordinate dei punti A, B in cui γ interseca l asse delle

Dettagli

Poligoni. Enti geometrici fondamentali. Formati dei fogli. Squadratura del foglio

Poligoni. Enti geometrici fondamentali. Formati dei fogli. Squadratura del foglio Poligoni Enti geometrici fondamentali Gli enti geometrici fondamentali sono le rette e le curve. I segmenti sono frammenti di retta, mentre gli archi sono frammenti di curva. Un angolo esprime l inclinazione

Dettagli

Postulati e definizioni di geometria piana

Postulati e definizioni di geometria piana I cinque postulati di Euclide I postulato Adimandiamo che ce sia concesso, che da qualunque ponto in qualunque ponto si possi condurre una linea retta. Tra due punti qualsiasi è possibile tracciare una

Dettagli

Tangenti. Lezione 2. Tangenti

Tangenti. Lezione 2. Tangenti Lezione. Tangenti 1 Circonferenze tangenti tra loro Poiché due circonferenze sono reciprocamente tangenti quando hanno un solo punto in comune, vi sono essenzialmente due modi in cui ciò può avvenire:

Dettagli

C8. Teoremi di Euclide e di Pitagora - Esercizi

C8. Teoremi di Euclide e di Pitagora - Esercizi C8. Teoremi di Euclide e di Pitagora - Esercizi EQUIVALENZA DI FIGURE GEOMETRICHE E CALCOLO DI AREE 1) Dimostra che ogni mediana divide un triangolo in due triangoli equivalenti. 2) Dato un parallelogramma

Dettagli

C5. Triangoli - Esercizi

C5. Triangoli - Esercizi C5. Triangoli - Esercizi DEFINIZIONI 1) Dato il triangolo in figura completare al posto dei puntini. I lati sono i segmenti,, Gli angoli sono,, Il lato AB e l angolo sono opposti Il lato AB e l angolo

Dettagli

Costruzioni con riga e compasso. Liceo Scientifico Statale S. Cannizzaro - Palermo Prof.re E. Modica

Costruzioni con riga e compasso. Liceo Scientifico Statale S. Cannizzaro - Palermo Prof.re E. Modica Costruzioni con riga e compasso Liceo Scientifico Statale S. Cannizzaro - Palermo Prof.re E. Modica I 5 postulati di Euclide Si postula che: 1) Per due punti distinti qualsiasi sia possibile tracciare

Dettagli

Problemi sulla circonferenza verso l esame di stato

Problemi sulla circonferenza verso l esame di stato Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza

Dettagli

Allenamenti di Matematica

Allenamenti di Matematica rescia, 3-4 febbraio 2006 llenamenti di Matematica Geometria 1. Il trapezio rettangolo contiene una circonferenza di raggio 1 metro, tangente a tutti i suoi lati. Sapendo che il lato obliquo è lungo 7

Dettagli

esercizi 107 Problemi sulla retta

esercizi 107 Problemi sulla retta esercizi 107 Problemi sulla retta Es. 1 Detto C il punto in cui l asse del segmento di estremi A( 3, 3) e B(1, 5) incontra l asse x, calcolare le coordinate del punto D equidistante da A, B e C. Determinare

Dettagli

AREE DEI POLIGONI. b = A h

AREE DEI POLIGONI. b = A h AREE DEI POLIGONI 1. RETTANGOLO E un parallelogramma avente quattro angoli retti, i lati opposti uguali e paralleli, le diagonali uguali non perpendicolari che si scambiano vicendevolmente a metà. Def.

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

LA CIRCONFERENZA e IL CERCHIO

LA CIRCONFERENZA e IL CERCHIO LA CIRCONFERENZA e IL CERCHIO La circonferenza è un poligono regolare con un numero infinito di lati Bisogna fare innanzitutto una distinzione: la circonferenza è la misura del perimetro; C (se sono più

Dettagli

Circonferenza e cerchio

Circonferenza e cerchio Circonferenza e cerchio Definizione Una circonferenza di centro O e raggio r è l insieme dei punti del piano che hanno da O distanza uguale a r. I segmenti che congiungono il centro O con i punti della

Dettagli

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati

C5. Triangoli. C5.1 Definizioni. C5.2 Classificazione dei triangoli in base ai lati 5. Triangoli 5.1 efinizioni Un triangolo è un poligono con tre lati. In figura 5.1 i lati sono i segmenti =c, =b e =a. Gli angoli (interni) sono α = ˆ, β = ˆ e γ = ˆ. Si dice che un angolo è opposto a

Dettagli

Triangolo rettangolo

Triangolo rettangolo Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto

Dettagli

TRIANGOLI CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI. Def: Si dice triangolo un poligono che ha 3 lati e 3 angoli.

TRIANGOLI CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI. Def: Si dice triangolo un poligono che ha 3 lati e 3 angoli. TRIANGOLI Si dice triangolo un poligono che ha 3 lati e 3 angoli. Proprietà: in ogni triangolo la somma di due lati è sempre maggiore del terzo lato. CLASSIFICAZIONE DEI TRIANGOLI RISPETTO AI LATI SCALENO:

Dettagli

Elementi di Geometria euclidea

Elementi di Geometria euclidea Proporzionalità tra grandezze Date quattro grandezze A, B, C e D, le prime due omogenee tra loro così come le ultime due, queste formano una proporzione se il rapporto delle prime due è uguale al rapporto

Dettagli

Geometria. Rudimenti della Logica e della Matematica. Marzo Geometria Marzo / 18

Geometria. Rudimenti della Logica e della Matematica. Marzo Geometria Marzo / 18 Geometria Rudimenti della Logica e della Matematica Marzo 2013 Geometria Marzo 2013 1 / 18 La geometria tratta delle figure e le forme nello spazio. Letteralmente della misura della terra o più in concreto,

Dettagli

Problemi di geometria

Problemi di geometria corde e archi 1 Sia γγ una circonferenza di diametro AB. Siano AB e CD due corde parallele. Dimostra che la retta CB passa per il centro O della circonferenza. 2 3 4 5 6 7 Dimostra che due punti presi

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA

POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA POLIGONI INSCRITTI E CIRCOSCRITTI A UNA CIRCONFERENZA Poligoni Inscritti ad una circonferenza: Un poligono è inscritto in una circonferenza se tutti i suoi vertici appartengono alla circonferenza e gli

Dettagli

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE

REGOLA DELLA SEMPLIFICAZIONE DELLE AREE REGOLA DELLA SEMPLIFICAZIONE DELLE AREE Ogni formula di calcolo delle aree dei poligoni può essere espressa tramite una frazione avente al numeratore un prodotto di due valori e un unico valore al denominatore.

Dettagli

Proprietà di un triangolo

Proprietà di un triangolo Poligono con tre lati e tre angoli. Proprietà di un triangolo In un triangolo : I lati e i vertici sono consecutivi fra loro; La somma degli angoli interni è 180 ; La somma degli angoli esterni è 360 Ciascun

Dettagli

La circonferenza e il cerchio

La circonferenza e il cerchio La circonferenza e il cerchio Def.: Si dice circonferenza una linea piana chiusa formata dall insieme dei punti che hanno la stessa distanza da un punto detto centro. Si dice raggio di una circonferenza

Dettagli

Precorso di Matematica

Precorso di Matematica UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTA DI ARCHITETTURA Precorso di Matematica Anna Scaramuzza Anno Accademico 2005-2006 17-24 Ottobre 2005 INDICE 1. GEOMETRIA EUCLIDEA........................ 2 1.1 Triangoli...............................

Dettagli

D4. Circonferenza - Esercizi

D4. Circonferenza - Esercizi D4. Circonferenza - Esercizi Trasformare l equazione della circonferenza nell altra forma e rappresentare graficamente la circonferenza trovandone prima centro e raggio. 1) + --=0 [(-1) +(-1) =, C(1;1),

Dettagli

Progetto Matematica in Rete - Geometria euclidea - La similitudine. La similitudine. Figure simili

Progetto Matematica in Rete - Geometria euclidea - La similitudine. La similitudine. Figure simili Figure simili Se consideriamo due triangoli equilateri di lato diverso, due quadrati di lato diverso intuitivamente diciamo che hanno la stessa forma. Ma cosa comporta avere la stessa forma? Se osserviamo

Dettagli

Rette perpendicolari

Rette perpendicolari Rette perpendicolari Definizione: due rette incidenti (che cioè si intersecano in un punto) si dicono perpendicolari quando dividono il piano in quattro angoli retti. Per indicare che la retta a è perpendicolare

Dettagli

C9. Teorema di Talete e similitudine - Esercizi

C9. Teorema di Talete e similitudine - Esercizi C9. Teorema di Talete e similitudine - Esercizi ESERCIZI SU TEOREMA DI TALETE, TEOREMA DELLA BISETTRICE Si consideri la seguente figura e si risponda alle domande che seguono. 1) Se AB=2, BC=4 e EF=3 trovare

Dettagli

PROGRAMMA SVOLTO A.S. 2013/2014

PROGRAMMA SVOLTO A.S. 2013/2014 info@istitutosantelia.it Posta Elettronica Certificata isissantoniosantelia@pec.como.it PROGRAMMA SVOLTO A.S. 2013/2014 Materia: Classe: DISEGNO 1 C LICEO Insegnante/i: RAGUSI ANTONINO Libri di testo:

Dettagli

CIRCONFERENZA E CERCHIO

CIRCONFERENZA E CERCHIO CIRCONFERENZA E CERCHIO CERCHIO Perimetro (circonferenza) Area La circonferenza è circa 3 volte ( ) la lunghezza del diametro C= d oppure C=2 r A = r 2 Formule inverse d=c: r=c:(2 ) SETTORE CIRCOLARE È

Dettagli

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati).

Angoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). ppunti di geometria.s. 013-014 1 Prof. Luigi ai PPUNTI ngoli formati da due rette parallele tagliate da una trasversale (alterni interni ed esterni, corrispondenti, coniugati). In un triangolo l angolo

Dettagli

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi

PIANO CARTESIANO. NB: attenzione ai punti con una coordinata nulla: si trovano sugli assi PIANO CARTESIANO Il piano cartesiano è individuato da due rette perpendicolari (ortogonali) che si incontrano in un punto O detto origine del piano cartesiano. Si fissa sulla retta orizzontale il verso

Dettagli

Punti notevoli di un triangolo

Punti notevoli di un triangolo Punti notevoli dei triangoli (UbiLearning). - 1 Punti notevoli di un triangolo Particolarmente importanti in un triangolo sono i punti dove s intersecano specifici segmenti, rette o semirette (Encyclopedia

Dettagli

C3. Rette parallele e perpendicolari - Esercizi

C3. Rette parallele e perpendicolari - Esercizi C3. Rette parallele e perpendicolari - Esercizi ESERCIZI CON COSTRUZIONI E GRAFICI 1) Disegna la retta passante per A perpendicolare alla retta r contando i quadretti. 2) Disegna la retta passante per

Dettagli