Complementi 7 - Le funzioni di tensione
|
|
|
- Romolo Rostagno
- 9 anni fa
- Visualizzazioni
Transcript
1 Complementi 7 - Le funzioni di tensione [Ultimarevisione: revisione:17 17gennaio gennaio2009] In questo notebook si vogliono studiare le equazioni indefinite dell'equilibrio in assenza di forze di massa: σ ij x j = 0, σ ij = σ ji (1) o, in termini vettoriali: divs = 0, S = S T (2) Si illustreranno alcune possibili forme di soluzioni, in termini di funzioni di tensione, intendendo con tale termine un qualsiasi insieme di funzioni A, tale che: S = L HAL div L HAL = 0 (3) L'operatore L e' un generico operatore differenziale, che puo' essere definito attraverso il seguente teorema di Beltrami. La definizione generale di funzione di tensione Si puo' dimostrare la seguente: Prop. - Sia A un campo tensoriale simmetrico, e sia L = curl curl. Con tale scelta dell'operatore, le tensioni S = curl curl A soddisfano le equazioni di equilibrio in assenza di forze di massa Dim. - La simmetria delle tensioni e' dimostrabile in base alla terza proprieta' notevole riportata nel Complementi 6 - Richiami di analisi vettoriale: HcurlcurlAL T = curlcurla T (4) non appena si introduca l'ipotesi di simmetria su A. La seconda proprieta' notevole e' invece: divcurlt = curldivt T (5) e quindi: divs = divcurl HcurlAL = curldiv HcurlAL T (6) Ma per la prima proprieta' notevole: div HcurlAL T = 0 (7)
2 59 Complementi 7 - Le funzioni di tensione.nb e quindi si e' dimostrato che: divs = 0 Assegnato quindi un tensore simmetrico A, si ottiene immediatamente il campo tensionale: (8) σ ij = ε imn ε jpq mn x p x q che soddisfa le equazioni indefinite dell'equilibrio, in assenza di forze di massa. Alcune scelte particolari per A portano a funzioni di tensione classiche: Le (9) si scrivono esplicitamente, ipotizzando gia' la simmetria di A: (9) σ 11 = σ 22 = σ 33 = x 1 x (10) (11) (12) σ 12 = x 3 x 3 x 2 x 1 (13) σ 13 = x 3 x 1 (14) σ 23 = x 3 x 2 (15) à La funzione di tensione di Airy La piu' semplice scelta implica che si possa rappresentare A come un singolo scalare: i0 0 0 y j z k0 0 Φ { ed applicando le (10-15), si ha: (16) σ 11 = σ 22 = 2 Φ x Φ x 1 2 σ 12 = 2 Φ σ 13 = σ 23 = σ 33 =0 Storicamente, questa rappresentazione e' dovuta ad Airy, e permette lo studio degli stati piani. [Airy]. (17)
3 Complementi 7 - Le funzioni di tensione.nb 60 à La funzione di tensione di Maxwell Un'altra scelta porta ad una matrice A diagonale, quindi definita in termini di tre funzioni scalari: i j k a a a 3 y z { ed applicando le (10-15), si ha lo stato tensionale: (18) σ 11 = 2 a 2 x2 2 a 3 3 x2 σ 22 = 2 a 1 x2 2 a 3 3 x2 1 σ 33 = 2 a 1 x2 2 a 2 x2 1 σ 12 = 2 a 3 x 2 x 1 σ 13 = 2 a 2 σ 23 = 2 a 1 x 3 x 2 Questa rappresentazione e' un po' piu' recente di quella di Airy, ed e' dovuta a Maxwell. [Maxwell]. (19) (20) (21) (22) (23) (24) à La funzione di tensione di Morera La soluzione di Morera e' ancora definita in termini di tre funzioni scalari, ma tali da rendere A duale rispetto alla scelta di Maxwell: i j k 0 ω 3 ω 2 ω 3 0 ω 1 ω 2 ω 1 0 y z { ed applicando le (10-15), si ha lo stato tensionale: (25) σ 11 = σ 22 = σ 33 = x 1 x 3 σ 12 = 2 ω 3 (26) (27) (28) (29)
4 61 Complementi 7 - Le funzioni di tensione.nb σ 13 = x 3 x 2 x 2 x 1 (30) σ 23 = Come detto, questa rappresentazione e' dovuta a Morera [Morera]. (31) Figura 1 - Giacinto Morera I campi tensionali auto-equilibrati e la completezza della soluzione di Beltrami Il teorema di Beltrami asserisce che, assegnato un tensore simmetrico A, lo stato tensionale S = curl curl A soddisfa le sei equazioni indefinite di equilibrio in assenza di forze di massa. Sorge naturale allora la domanda: assegnato uno stato tensionale S che soddisfi le equazioni di equilibrio in assenza di forze di massa, esiste un tensore simmetrico A, tale che S = curl curl A? La risposta in generale e' negativa, nel senso che esistono stati tensionali che non ammettono la rappresentazione di Beltrami. Per delucidare ulteriormente la questione, si fornisce la seguente: Def. - Un stato tensionale S sul corpo B e' auto-equilibrato se la forza risultante ed il momento risultante si annullano su una generica superficie chiusa S: Sn 0 Σ x Sn 0 Σ (32)
5 Complementi 7 - Le funzioni di tensione.nb 62 Ogni stato tensionale auto-equilibrato e' a divergenza nulla, ma non ogni stato tensionale a divergenza nulla e' auto-equilibrato. Piu' precisamente, e' possibile dimostrare la seguente: Prop - Se la frontiera del corpo B e' costituito da una singola superficie chiusa, allora ogni stato tensionale a divergenza nulla, soddisfacente le equazioni indefinite di equilibrio in assenza di forze di massa, e' anche autoequilibrato Per la dimostrazione, si veda ad esempio [Gurtin]. E' anche possibile dimostrare che uno stato tensionale che ammetta la rappresentazione di Beltrami e' necessariamente auto-equilibrato, e che all'inverso ogni stato auto-equilibrato ammette una rappresentazione di Beltrami. In altri termini, la soluzione di Beltrami e' completa, limitatamente agli stati tensionali auto-equilibrati. Inoltre, in base alla proposizione precedente, si ha la: Prop. - Se la frontiera del corpo B e' costituito da una singola superficie chiusa, e se S e' uno stato tensionale a divergenza nulla, allora esiste un tensore A simmetrico tale che S = curl curl A Note [Airy] - La rappresentazione di Airy e' contenuta in "On the strains in the interior of beams", Phil. Trans. Roy. Soc. London, 153, (1863). L'autobiografia di Airy puo' essere letta sul web, facendo parte del progetto Gutenbrg, al sito [Torna al testo] [Maxwell] - "On reciprocal diagrams in space, and their relation to Airy's function of stress", Proc. London Math. Soc. (1),2, 58-60, Il breve lavoro puo' anche leggersi nella sezione Ricerca del sito al testo] [Morera] - "Soluzione generale delle equazioni indefinite dell'equilibrio di un corpo continuo", Atti Accad. Lincei, Rend. 5(1), (1892). Una commemorazione di Morera puo' essere letta nella sezione Ricerca del sito al testo] [Gurtin] - In particolare, tutto l'articolo 17 del fondamentale "The Linear Theory of Elasticity", Handbuch der Physik Bd VIa/2 (1968) e' rilevante per questo Complemento. [Torna al testo] Figura 2 - Morton Gurtin
Complementi 3 - Richiami di algebra tensoriale
Complementi 3 - Richiami di algebra tensoriale [Ultimarevisione revisione9gennaio gennaio2009] In questo notebook si richiamano brevemente alcune definizioni ed alcune proprieta di algebra tensoriale,
Lezione 9 - Le equazioni indefinite di equilibrio
Lezione 9 - Le equazioni indefinite di equilibrio ü [A.a. 212-213 : ultima revisione 28 ottobre 212] In questa lezione si deducono le cosiddette equazioni indefinite dellequilibrio, e si dimostra limportante
Lezione 19 - Stati piani di tensione e deformazione
Lezione 9 - Stati piani di tensione e deformazione [Ultimarevisione: revisione:9 9gennaio gennaio009] Si e' visto, nella lezione precedente, che la soluzione del problema ai limiti dell'elasticita' non
Lezione 19 - Stati piani di tensione e spostamento
Lezione 19 - Stati piani di tensione e spostamento ü [A.a. 01-013 : ultima revisione 5 Novembre 01] Si e' visto, nella lezione precedente, che la soluzione del problema ai limiti dell'elasticita' non sempre
Lezione 8 - Il teorema di Cauchy- Poisson
Lezione 8 - Il teorema di Cauchy- Poisson ü [A.a. 2012-2013 : ultima revisione 28 ottobre 2012] Come detto al termine della lezione precedente, occorre ora dare un criterio operativo per poter calcolare
Lezione 9 - Le equazioni indefinite di equilibrio
Leione 9 - Le equaioni indefinite di equilibrio [Ultimarevisione: revisione:11 11dicembre dicembre8] In questa leione si deducono le cosiddette equaioni indefinite dellequilibrio, e si dimostra limportante
Lezione 5: Richiami di termomeccanica dei mezzi continui
Lezione 5: Richiami di termomeccanica dei mezzi continui Dipartimento di Ingegneria Civile e Ambientale Università degli Studi di Perugia Dottorato Internazionale Congiunto Firenze Braunschweig Firenze,
Il modello di trave adottato dal Saint-Venant si basa sulle seguenti ipotesi:
IL PROBLEM DEL DE SINT-VENNT Il problema del De Saint-Venant è un particolare problema di equilibrio elastico di notevole interesse applicativo, potendosi considerare alla base della teoria tecnica delle
Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.
Le matrici Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1. Siano m, n N\{0}. Una matrice m n a coefficienti in K è una tabella di m n elementi di K disposti
Enrico Borghi DESCRIZIONI CLASSICHE DEI FENOMENI ELETTROMAGNETICI
Enrico Borghi DESCRIZIONI CLASSICHE DEI FENOMENI ELETTROMAGNETICI La materia ordinaria contiene, fra altre, particelle di due tipi, elettroni e protoni, che interagiscono scambiando fra loro particelle
Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1
Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema
8 Metodi iterativi per la risoluzione di sistemi lineari
8 Metodi iterativi per la risoluzione di sistemi lineari È dato il sistema lineare Ax = b con A R n n e x, b R n, con deta 0 Si vogliono individuare dei metodi per determinarne su calcolatore la soluzione,
Similitudine (ortogonale) e congruenza (ortogonale) di matrici.
Lezione del 4 giugno. Il riferimento principale di questa lezione e costituito da parti di: 2 Forme bilineari, quadratiche e matrici simmetriche associate, 3 Congruenza di matrici simmetriche, 5 Forme
1. Funzioni implicite
1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,
TEORIA DEI SISTEMI SISTEMI LINEARI
TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI SISTEMI LINEARI Ing. Cristian Secchi Tel.
1 Ampliamento del piano e coordinate omogenee
1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di
Intersezione e somma di sottospazi vettoriali
Capitolo 6 Intersezione e somma di sottospazi vettoriali 6.1 Introduzione Ricordiamo le definizioni di intersezione e somma di due sottospazi vettoriali. Anche in questo caso rimandiamo al testo di geometria
29. Mezzi elastici RELAZIONE SFORZO-DEFORMAZIONE
29. Mezzi elastici I mezzi continui solidi sono caratterizzati da piccole deformazioni, che consentono di stabilire una relazione lineare tra sforzo e deformazione nota come legge di Hook. Linearizzando
TEOREMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco)
Capitolo 5 TEOEMA DI BETTI E LINEE DI INFLUENZA (prof. Elio Sacco) 5.1 Teorema di Betti Siano S 1 = {b 1, p 1, û 1 } ed S 2 = {b 2, p 2, û 2 } due differenti sistemi di sollecitazioni agenti sul medesimo
Operatori C, P e T. Stati fisici. Osservabili (II) Osservabili. prof. Domenico Galli
Stati fisici Operatori C, P e T prof. Domenico Galli Temi di Fisica delle Particelle Elementari al LHC Dottorato di ricerca in Fisica, Bologna Uno stato fisico è rappresentato da un vettore di stato (ket)
Sviluppi e derivate delle funzioni elementari
Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim
Operatori antisimmetrici
Operatori antisimmetrici F. Pugliese November 9, 2011 Abstract In questa breve nota ricordiamo le principali proprietà degli endomorfismi antisimmetrici di uno spazio vettoriale euclideo. Nel caso di spazi
Esercizi di Geometria - 2
Esercizi di Geometria - 2 Samuele Mongodi - [email protected] La prima sezione contiene alcune domande aperte e alcune domande verofalso, come quelle che potrebbero capitare nel test. E consigliabile, nel
Note sulle Catene di Markov
Note sulle Catene di Markov ELAUT Prof. Giuseppe C. Calafiore Sommario Queste note contengono un estratto schematico ridotto di parte del materiale relativo alle Catene di Markov a tempo continuo e a tempo
Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari
Spazi euclidei, endomorfismi simmetrici, forme quadratiche R. Notari 14 Aprile 2006 1 1. Proprietà del prodotto scalare. Sia V = R n lo spazio vettoriale delle n-uple su R. Il prodotto scalare euclideo
Prodotto scalare, covarianza e controvarianza, tensore metrico
Prodotto scalare, covarianza e controvarianza, tensore metrico Marco Bonvini 29 settembre 2005 1 Prodotto scalare Sia V spazio lineare su R; dati u, v V il loro prodotto scalare, indicato con (u, v), è:
Massimi e minimi vincolati
Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo
Capitolo IV SPAZI VETTORIALI EUCLIDEI
Capitolo IV SPAZI VETTORIALI EUCLIDEI È ben noto che in VO 3 si possono considerare strutture più ricche di quella di spazio vettoriale; si pensi in particolare all operazioni di prodotto scalare di vettori.
Lezione 43 - Le linee di influenza delle c.s.i.
Lezione 43 - Le linee di influenza delle c.s.i. ü [.a. 2012-2013 : ultima revisione 8 prile 2014] In questa Lezione si continua lo studio delle linee di influenza, affrontando il secondo gruppo di possibili
Esercizio 2. Consideriamo adesso lo spazio di funzioni V = {f : [0, 1] R}. Dire quali dei seguenti insiemi di funzioni sono sottospazi.
1 Esercizi 1.1 Spazi vettoriali Studiare gli insiemi definiti di seguito, e verificare quali sono spazi vettoriali e quali no. Per quelli che non lo sono, dire quali assiomi sono violati. x 1, x 2, x 3
Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI
Pagine di Algebra lineare di premessa al testo Pagine di Geometria di Sara Dragotti Parte terza: SISTEMI LINEARI 1. Definizioni Dato un campo K ed m 1 polinomi su K in n indeterminate di grado non superiore
Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico
5 Il teorema dei lavori virtuali, l elasticità lineare ed il problema dell equilibrio elastico Tema 5.1 Si consideri un corpo continuo libero nello spazio, di forma parallelepipedica e di dimensioni a
Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11
Indice Indice 3 Note di utilizzo 9 Ringraziamenti 10 Introduzione 11 Capitolo 1 Grandezze fisiche e schematizzazione dei sistemi materiali 13 1.1 Grandezze fisiche ed operazione di misura 13 1.2 Riferimento
Anna Pandolfi Analisi Strutturale e Termica 4.1
Statica e Cinematica Ammissibili Deformazioni e sforzi sono detti virtuali (non necessariamente veri) quando sono rispettosi di determinate condizioni. Corpo in equilibrio nella configurazione deformata
Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara
Vettori e matrici Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utentiunifeit/lorenzopareschi/ lorenzopareschi@unifeit Lorenzo Pareschi Univ Ferrara
I teoremi della funzione inversa e della funzione implicita
I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1
STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI
M. G. BUSATO STUDIO DELLE RADICI DI UNA EQUAZIONE ALGEBRICA DI TERZO GRADO A COEFFICIENTI REALI mgbstudio.net PAGINA INTENZIONALMENTE VUOTA SOMMARIO In questo scritto viene compiuto lo studio dettagliato
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente
Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente Dati i vettori di R (i) Calcolare il prodotto scalare v w, (ii) Stabilire se v e w sono ortogonali, (ii) Stabilire
Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico
Trasformazioni elementari sulle matrici Data una matrice A K m,n definiamo su A le seguenti tre trasformazioni elementari: T : scambiare tra loro due righe (o due colonne) di A; T : sommare ad una riga
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016
Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2
UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12
REGISTRO DELLE LEZIONI-ESERCITAZIONI- SEMINARI Anno accademico 2011/12 Cognome e Nome BISI FULVIO Qualifica RICERCATORE CONFERMATO MAT/07 Insegnamento di FISICA MATEMATICA (500474) Impartito presso: Corso
Esercizi svolti. delle matrici
Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa
Dalla meccanica del continuo alle Equazioni di Lagrange g per i solidi elastici. Dinamica delle Strutture Aerospaziali
Dalla meccanica del continuo alle Equazioni di Lagrange g per i solidi elastici Franco Mastroddi http://www.diaa.uniroma1.it/docenti/f.mastroddi dal Dinamica delle Strutture Aerospaziali Anno Accademico
Lezione 17 - Il solido isotropo
Lezione 17 - Il solido isotropo ü [A.a. 2011-2012 : ultima revisione 23 agosto 2011] Si e' visto che le costanti elastiche previste dalla teoria di Green sono, in generale, 21. Non sembra possibile ridurre
2 Vettori applicati. 2.1 Nozione di vettore applicato
2 Vettori applicati 2 Vettori applicati 2.1 Nozione di vettore applicato Numerose grandezze fisiche sono descritte da vettori (spostamento, velocità, forza, campo elettrico, ecc.). Per alcune di esse e,
Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite
3 Sistemi lineari 3 Generalità Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite ovvero, in forma matriciale, a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n x
TECNICHE COMPUTAZIONALI AVANZATE
TECNICHE COMPUTAZIONALI AVANZATE Francesca Pelosi e Salvatore Filippone Università di Roma Tor Vergata Esempi Pb. Ellittici http://www.mat.uniroma2.it/ pelosi/ TECNICHE COMPUTAZIONALI AVANZATE p.1/15 ESEMPIO
Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 2012 Uno svolgimento
Analisi Matematica 3 (Fisica) Prova scritta del 27 gennaio 22 Uno svolgimento Prima di tutto, eccovi alcuni commenti che potrebbero aiutarvi a svolgere meglio le prove scritte. Ad ogni domanda del testo
METODI MATEMATICI PER LA FISICA
METODI MATEMATICI PER LA FISICA SECONDO ESONERO - 5 GIUGNO 6 Si svolgano cortesemente i seguenti Problemi. PRIMO PROBLEMA (PUNTEGGIO: 3/3) Dati due operatori hermitiani  and ˆB in uno spazio di Hilbert
Onde. Antonio Pierro. Per consigli, suggerimenti, eventuali errori o altro potete scrivere una a antonio.pierro[at]gmail.com
Onde Video Introduzione Onde trasversali e onde longitudinali. Lunghezza d'onda e frequenza. Interferenza fra onde. Battimenti. Moto armonico smorzato e forzato Antonio Pierro Per consigli, suggerimenti,
Elementi di Algebra Lineare Applicazioni lineari
Elementi di Algebra Lineare Applicazioni lineari Cristina Turrini UNIMI - 2016/2017 Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra Lineare 1 / 50 index Applicazioni lineari 1 Applicazioni lineari
Lezione 20 - I principi variazionali
Lezione 20 - I principi variazionali ü [A.a. 202-203 : ultima revisione 9 aprile 203] Nelle lezioni precedenti si e' adottata la cosiddetta via differenziale, o metodo diretto, nel senso che si sono scritte
Parte 8. Prodotto scalare, teorema spettrale
Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,
TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI
TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)
Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti) April 14, 2011 (alcune note non complete sugli argomenti trattati: eventuali completamenti saranno aggiunti)
Chiusura lineare. N.B. A può essere indifferentemente un insieme, finito o no, o un sistema. Es.1. Es.2
Chiusura lineare Def. Sia A V (K) con A. Si dice copertura lineare (o chiusura lineare) di A, e si indica con L(A), l insieme dei vettori di V che risultano combinazioni lineari di un numero finito di
Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari
Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare
NORMA DI UN VETTORE. Una NORMA VETTORIALE su R n è una funzione. : R n R +
NORMA DI UN VETTORE Una NORMA VETTORIALE su R n è una funzione. : R n R + {0}, che associa ad ogni vettore x R n di componenti x i, i = 1,..., n, uno scalare in modo che valgano le seguenti proprietà:
I.T.I.S. TRASFORMATA DI LAPLACE DIAGRAMMI DI BODE
I.T.I.S. APPUNTI DI ELETTRONICA TRASFORMATA DI LAPLACE E DIAGRAMMI DI BODE PREMESSA Per lo studio dei sistemi di controllo si utilizzano modelli matematici dinamici lineari. L analisi o il progetto di
Teoria dei mezzi continui
Teoria dei mezzi continui Il modello di un sistema continuo è un modello fenomenologico adatto a descrivere sistemi fisici macroscopici nei casi in cui le dimensione dei fenomeni osservati siano sufficientemente
Il metodo di Galerkin Elementi Finiti Lineari
Il metodo di Galerkin Elementi Finiti Lineari Si consideri il problema: u(x) = f(x), x (, ), u() = 0, u() = 0. Se ne fornisca la corrispondente formulazione debole. Si costruiscano inoltre la matrice di
Lezione 13 - Il gradiente di deformazione
Lezione 3 - Il gradiente di deformazione ü [A.a. 0-03 : ultima revisione 3 ottobre 0] In questa lezione si comincia ad affrontare l'analisi della deformazione, cui compito principale e' rispondere al seguente
Meccanica quantistica (5)
Meccanica quantistica (5) 0/7/14 1-MQ-5.doc 0 Oscillatore armonico Se una massa è sottoposta ad una forza di richiamo proporzionale allo spostamento da un posizione di equilibrio F = kx il potenziale (
Sommario 1 VOLUME CAPITOLO 1 - Matrici 1 VOLUME CAPITOLO 3 - Geometria delle masse 1 VOLUME CAPITOLO 2 - Notazione indiciale
Sommario CAPITOLO 1 - Matrici...! Definizione! Matrici di tipo particolare Definizioni relative-! Definizioni ed operazioni fondamentali! Somma di matrici (o differenza)! Prodotto di due matrici! Prodotti
Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà. Proprietà delle matrici di rigidezza e di flessibilità
Formulazione delle equazioni del moto per un sistema lineare a tre gradi di libertà Proprietà delle matrici di rigidezza e di flessibilità Prof. Adolfo Santini - Dinamica delle Strutture Introduzione In
EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO
EQUILIBRIO DI UN PUNTO MATERIALE, DI UN SITEMA DI PUNTI EDIUNCORPORIGIDO Equilibrio di un Punto Materiale Definizione 1 Un punto materiale è in una posizione di equilibrio quando posto in quella posizione
Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010
Formulario sui Prodotti Hermitiani Marcello Mamino Pisa, 24 v 2010 In quetsa dispensa: V è uno spazio vettoriale di dimensione d sul campo complesso C generato dai vettori v 1,..., v d. Le variabili m,
Capacita` di un conduttore isolato
Capacita` di un conduttore isolato Carica sulla superficie di un conduttore isolato Q =!! (! r )da Potenziale del conduttore in un punto qualsiasi V = 1!! ( r )! da (Equipotenziale) 4!" 0 r La distribuzione
Potenza in regime sinusoidale
26 Con riferimento alla convenzione dell utilizzatore, la potenza istantanea p(t) assorbita da un bipolo è sempre definita come prodotto tra tensione v(t) e corrente i(t): p(t) = v(t) i(t) Considerando
Il Principio dei lavori virtuali
Il Principio dei lavori virtuali Il P..V. rientra nella classe di quei principi energetici che indicano che i sistemi evolvono nel senso di minimizzare l energia associata ad ogni stato di possibile configurazione.
= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con
Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione
Esercizi di Geometria - 1
Esercizi di Geometria - Samuele Mongodi - smongodi@snsit Di seguito si trovano alcuni esercizi assai simili a quelli che vi troverete ad affrontare nei test e negli scritti dell esame Non è detto che vi
determinare una soluzione y(t) dell equazione completa e, quindi dedurne tutte le y(t) soluzioni dell equazione.
ANALISI VETTORIALE Soluzione esercizi 4 febbraio 2011 10.1. Esercizio. Assegnata l equazione lineare omogenea di primo ordine y + a y = 0 determinare le soluzioni di tale equazione in corrispondenza ai
Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.
Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo
Costruzioni in zona sismica
Costruzioni in zona sismica Lezione 8 Sistemi a più gradi di liberà: Oscillazioni libere in assenza di smorzamento N equazioni differenziali omogenee accoppiate tramite la matrice delle masse, la matrice
Alcune nozioni di calcolo differenziale
Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio
Capitolo 1. Introduzione. 1.1 Argomenti Meccanica del continuo
Capitolo 1 Introduzione La Scienza delle Costruzioni fornisce gli strumenti di base ed i metodi necessari per la determinazione del grado di sicurezza, inteso in senso generale, di una qualsiasi struttura
Elementi di Algebra Lineare Spazi Vettoriali
Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2015/2016 Antonio Lanteri e Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali
( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1
. Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo
Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice
Pordenone Corso di Matematica e Statistica 3 Algebra delle UNIVERSITAS STUDIORUM UTINENSIS Giorgio T. Bagni Facoltà di Scienze della Formazione Dipartimento di Matematica e Informatica Università di Udine
SPAZI VETTORIALI CON PRODOTTO SCALARE A =
SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo
FORMALISMO LAGRANGIANO PER SISTEMI VINCOLATI (Schema del contenuto delle lezioni e riferimenti bibliografici)
FORMALISMO LAGRANGIANO PER SISTEMI VINCOLATI (Schema del contenuto delle lezioni e riferimenti bibliografici) 1. Vincoli e principio di D Alembert (vd. Fasano Marmi cap 1 (o anche Dell Antonio cap. 6,
NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n
NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare
RICHIAMI SULLE MATRICI. Una matrice di m righe e n colonne è rappresentata come
RICHIAMI SULLE MATRICI Una matrice di m righe e n colonne è rappresentata come A = a 11 a 12... a 1n a 21 a 22... a 2n............ a m1 a m2... a mn dove m ed n sono le dimensioni di A. La matrice A può
Le piastre:classificazione
Le piastre 1. piastre sottili h/l= 1/50-1/10 : piastre sottili con rigidezza flessionale che portano distribuzioni di carico bidimensionale prevalentemente attraverso momenti flettenti, momenti torcenti
ELEMENTI MONODIMENSIONALI : TRAVE
ELEMENTI MONODIMENSIONALI : TRAVE La trave è un elemento strutturale con una dimensione predominante sulle altre due. baricentro G sezione trasversale linea d asse rappresentazione schematica 1 ELEMENTI
