Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Acceleratori

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Acceleratori"

Transcript

1 Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 10 Acceleratori

2 Acceleratori Gli acceleratoti sono, insieme ai rivelatori, una delle componenti essenziali per la sperimentazione in fisica nucleare e subnucleare. Per esplorare dimensioni, è necessario avere sonde con lunghezza d onda λ=ħ/p< L acceleratore attuale più potente, Large Hadron Collider, p~1 TeV/c, ~10-4 fm I grandi acceleratori sono delle infrastrutture collocate in laboratori che fungono da centri ricerca aperti a più esperimenti. La fisica degli acceleratori è una settore di ricerca ormai completamente autonomo e con applicazioni ben al di là della fisica subatomica. Toccheremo solo alcuni aspetti: L accelerazione ad alta energia richiede campi elettromagnetici variabili: ciclotrone e sincrotrone Perché si possa produrre un fascio di particelle è necessario che il meccanismo di accelerazione sia stabile : stabilità di fase e oscillazioni di betatrone Negli esperimenti particelle di un fascio possono venire fatte interagire con un bersaglio o con un altro fascio: esperimenti a bersaglio fisso o collisori. Concetto di luminosità 2

3 Acceleratori elettrostatici Gli acceleratori più semplici si basano su una differenza di potenziale elettrostatica. Sono limitati ad energie di ~10 MeV massima differenza di potenziale elettrostatico che si riesce a mantenere. Cockroft-Walton Van der Graaf Tandem 3

4 Moto in un campo magnetico L equazione del moto di una particella carica in un campo magnetico è dp dt = ev B in relatività ristretta la quantità di moto si può scrivere come pc = ε v/c con ε l energia della particella v la sua velocità l equazione del moto diventa dp dt = 1 dε c 2 dt v + ε dv c 2 dt = ev B moltiplicando per v si ottiene ( v è perpendicolare a dv e a v B ) dε dt = 0 ritroviamo il risultato che il campo magnetico non fa lavoro e l energia si conserva l equazione del moto diventa pertanto dv dt = v Ω v Ω v = eb ε cioè la velocità precessa con velocità angolare Ω v se v è perpendicolare a B la traiettoria della particella è una circonferenza percorsa in un tempo T = 2π/Ω v nel caso non relativistico: T=cost. nel caso relativistico: T=1/γ Per trovare il raggio della circonferenza 2π R T = v R = vt 2π = v Ω v R = vε βε = pc ebc 2 esprimendo il momento in GeV, il raggio in metri e il campo magnetico in Tesla p = R B c 2 R = p eb p = 0.3R B 4

5 Ciclotrone Incrementi graduali dell energia attraverso multipli passaggi attraverso la stessa differenza di potenziale. V (t) = cos(ωvt) Lawrence con il primo ciclotrone, 1932 Campo magnetico per forzare traiettorie cicliche. Potenziale risonante: Ωv = 5 eb me frequenza di ciclotrone Adatto per velocità non relativistiche: richiede frequenza variabile ~1/γ Costo del magnete ~R2~p2

6 Sincrotrone Cavità a radiofrequenza forniscono il campo elettrico accelerante: E = 1-10 MV/m f = MHz Tempo necessario per percorrere l anello deve essere un multiplo esatto del periodo di oscillazione del campo elettrico T=1/f. acceleratore sincrono Raggio di curvatura definito per costruzione: il campo magnetico prodotto dai dipoli varia seguendo l energia del fascio. Sezioni rette tra gli archi per inserire rivelatori o linee di fascio. 6

7 Sincrotrone: LHC Cavità acceleratrici LHC Magneti LHC 15 m 7

8 Sincrotrone: LEAR 8

9 CERN accelerator comple 9

10 Sincrotrone Consideriamo come esempio LHC: Frequenza delle cavità: f=400.8 MHz, periodo 1/f= s Circonferenza: C= km, periodo di rotazione T=C/c= s In un giro la cavità effettua un numero di oscillazioni: T f = s s -1 = Per un energia dei fasci di 7 TeV serve un campo magnetico: B=p / 0.3 R = π/0.3 C = 5.5 T I fasci possono circolare anche per 12 ore: rivoluzioni La stabilità è un aspetto critico! 10

11 Sincrotrone Traiettoria di riferimento: particella sincrona moto esattamente circolare con periodo giusto rispetto all RF Stabilità rispetto a divergenza e posizione Oscillazioni di betatrone Stabilità rispetto alla sincronia con RF Stabilità di fase z S N N S 11

12 Oscillazione di betatrone Le particelle di un fascio hanno una loro divergenza: Lasciate propagare liberamente, tenderebbero ad allargarsi. Devo mantenerle focalizzate. Lenti magnetiche: Magneti quadrupolari Campo magnetico crescente con la distanza dall orbita di equilibrio: Danno un impulso tanto maggiore quanto più la particella è lontana dall orbita di equilibrio Problema: Se convergente in una direzione, divergente nell altra. Vanno sempre a coppie: convergente+divergente = convergente Le particelle compiono oscillazioni attorno all orbita di equilibrio: Queste oscillazioni trasversali sono dette oscillazioni di betatrone. N S B B S N 12

13 Oscillazioni di betatrone Per fare un analisi più quantitativa del processo, introduciamo nel piano trasverso le coordinate curvilinee:! = d dl =l d/dl l = lunghezza lungo la traiettoria di riferimento della particella sincrona, corrispondene al valore nominale di p e R nel campo dipolare B. Per tale traiettoria: = 0! = 0 Per una particella su una traiettoria passante per il punto l (l = 0) = 0 "(l = 0) = " 0 se sente solo il campo di dipolo B, avrà dopo una distanza L coordinate: (l = L) = 0 + L" 0 "(l = L) = " 0 (L) In forma matriciale:!(l) = 1 L (0) 0 1!(0) Stesso procedimento possiamo fare per la =l d/dl l 13

14 Oscillazioni di betatrone Una particella che passa ad un distanza dal centro di un quadrupolo, sente un campo magnetico proporzionale a : N S B = db d e percorrendo il quadrupolo di lunghezza piccola (*) d riceve un impulso trasverso: S B N Δp = F Δt = ( qvb )( d / v )= qb d = q db v~v l che corrisponde ad una variazione: Δ! = Δp p d d = db d d p B Al passaggio attraverso il quadrupolo abbiamo:! after = before! before before q db d d p = 1 0 q db d d p 1! before (*) piccola: sulla lunghezza d del quadrupolo possiamo trascurare la divergenza d! 14

15 Oscillazioni di betatrone Ripetendo lo stesso discorso per la componente : Δp = F Δt = ( qvb )( d / v ) = qb d = q db che corrisponde ad una variazione:! after = v~v l before! before + before q db d d p d d Δ! = Δp p = q db d d p 1 0 = q db d d p 1! before N S B S N Per un quadrupolo abbiamo db d = db d B e possiamo definire una lunghezza focale: f = p q db / d ( )d (*) piccola: sulla lunghezza d del quadrupolo possiamo trascurare la divergenza d! 15

16 Oscillazioni di betatrone Se f>0 allora il quadrupolo risulta focalizzante in e defocalizzante in : 1 0 =! 1 f 1! after before f 0 quadruplo f 1 0 = / f! after = f 1! before f 0 quadruplo f 1 0 = / f 16

17 Oscillazioni di betatrone Combinando quadrupoli con diversa orientazione in una cella insieme a dei dipoli: Focus+Drift+Defocus+Drift Matrice di trasformazione:! after = 1 L 0 1! after = f 1 Risolvendo l equazione agli autovalori si ottiene che, per L<2f, gli autovalori sono: λ ± = 1 L2 L 2 L2 2 f 2 ± i f f 2 λ 2 ± = 1 Gli autovettori cambiano solo di una fase: 1 L f L2 f 2 L f 2 1 L 0 1 oscillazioni stabili 2L + L2 f 1+ L f f 1! before! before 17

18 Betatrone Il Betatrone è un acceleratore per elettroni di moderata energia. La forza elettromotrice è generata facendo variare il flusso nel campo magnetico tra i poli del magnete. Effetto focalizzante del campo magnetico ai bordi. 18

19 Stabilità di fase Una particella circola con energia costante se, quando passa per la cavità a radio-frequenza RF, trova un campo elettrico che compensa l energia persa in un giro. Il periodo deve essere un multiplo del periodo dell RF: T 0 = 2π R 0 c = 2π 0.3Bc p 0 = N 1 f Una particella più energetica: Raggio R maggiore Impiega più tempo Arriva più tardi Sente un campo inferiore: perde energia Una particella meno energetica: Raggio R minore Impiega meno tempo Arriva più presto Sente un campo maggiore: guadagna energia L orbita di equilibrio è stabile! RF 19

20 Radiazione di sincrotrone Particelle cariche in moto circolare uniforme subiscono un accelerazione centripeta: a = v2 a R c =! β = β 2 c R La potenza emessa da una carica accelerata è data dalla formula di Lienard-Larmor: ( ) 2 P = e2 6πε 0 c γ 6! "β 2! β! " β Se la particolarizziamo al caso di moto circolare: a v P = e2 6πε 0 c γ! 6 1 β 2 " β 2 = e2 6πε 0 c γ 4! " β 2 1/γ 2 = e2 6πε 0 c γ 4 β 4 c 2 R 2 = e2 6πε 0 p m 4 c R 2 In particolare l energia persa in un giro è: ΔE = P 2π R = e2 p c 3ε 0 R m Questa energia compensata con quella fornita dalla RF Esempio: LEP (Large Electron-Positron collider) era un acceleratore per elettroni nello stesso tunnel di LHC: R=4.2 km Ha prodotto fasci fino ad un energia di 100 GeV: γ= Energia persa per giro: ΔE = 4π 3 α!c R γ 4 = 4π MeV m ( ) m = MeV = 2.3GeV 20

21 Radiazione di sincrotrone La potenza richiesta alle cavità RF pone dei limiti alla costruzionie di acceleratori di elettroni di grande energia. Piuttosto applicazione di acceleratori dedicati alla produzione di luce di sincrotrone: 4!c 3 γ sorgenti X intense e collimate!ω = R 5 3 Booster Linac Sale sperimentali 21

22 Bersaglio fisso e collisori Gli acceleratori vengono utilizzati con due modalità di funzionamento fascio estratto: esperimenti a bersaglio fisso collider: collisione di fasci La modalità con fascio estratto è la più semplice da utilizzare La differenza principale fra le due modalità è la massima energia disponibile per produrre nuove particelle fondamentale nella scoperta di nuovi fenomeni Vediamo qual è l energia minima che deve avere un protone per produrre una particella di massa M X In una collisione di un protone fascio con un nucleone bersaglio si ha p + N N ʹ + X dove N è un nucleone o insieme di nucleoni, necessario alla conservazione di numeri quantici (carica, numero barionico, ) dalla cinematica s = ( p p + p N ) 2 = p N ʹ + p X ( ) 2 La soglia per la produzione corrisponde al valore di s per il quale nel centro di massa la particelle N e la particella X sono a riposo L energia è stata usata solo per produrre massa (zero energia cinetica) 22

23 Bersaglio fisso e collisori Il valore di s corrispondente è s = ( m N ʹ + M X ) 2 Per un esperimento a bersaglio fisso si ha ( ) 2 = m p 2 + m N 2 + 2m N E p s = p p + p N l energia minima per la produzione della massa M X è pertanto E p = ( m N ʹ + M X ) 2 m 2 2 p m N 2m N E p M X 2 2m p Per un esperimento con fasci in collisione simmetrici, si ha N=p e E N =E p : s = ( ), p N = ( E p p p ) p p = E p p p ( p p + p N ) 2 = ( E p + E N ) 2 2 = 4E p l energia minima per la produzione della massa M X è pertanto E p = m N ʹ + M X E 2 p M X 2 Con i fasci in collisione, a parità di energia del fascio, si producono energie nel centro di massa più elevate 23

24 Luminosità In un collisore due fasci di particelle sono fatti circolare in direzione opposta e fatti collidere in opportune regiore (punti di intersezione) dove sono installati i rivelatori I fasci sono raggruppati in pacchetti (bunch): n 1 e n 2 sono il numero di particelle nei bunch dei due fasci di area (sezione) S La frequenza delle collisioni dei due bunches è f Se σ è la sezione d urto di un dato processo, il numero di eventi di quel processo prodotti al secondo è dn dt Si definisce Luminosità Si misura in cm -2 s -1 = n 1 f n 2 S σ L = n 1 f n 2 S In un dato esperimento il numero di eventi prodotti è N = dn = n 1 f n 2 S σ dt = σ L dt Luminosità Integrata In un esperimento a bersaglio fisso: dn/dt = I n T d σ I = intensità del fascio dell acceleratore n T d = densità superficiale del bersaglio La luminosità integrata è l inverso di una sezione d urto; si misura in nb -1, pb -1 Se in un esperimento, si misurano N eventi, nota la luminosità integrata la sezione d urto è σ = N / L dt L dt 24

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 15. Acceleratori

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 15. Acceleratori Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 15 Acceleratori Acceleratori (Das-Ferbel cap. 8) Gli acceleratoti sono, insieme ai rivelatori, una delle componenti essenziali per

Dettagli

Gli acceleratori di particelle

Gli acceleratori di particelle Gli acceleratori di particelle terza parte Corso di valorizzazione delle eccellenze in Matematica e Fisica Liceo Statale Scientifico, Linguistico e Classico Giolitti-Gandino Acceleratori circolari Poi

Dettagli

Theory Italiano (Italy)

Theory Italiano (Italy) Q3-1 Large Hadron Collider (10 punti) Prima di iniziare questo problema, leggi le istruzioni generali nella busta a parte. In questo problema è discussa la fisica dell acceleratore di particelle del CERN

Dettagli

Few things about Accelerators. M. Cobal, University of Udine Thanks to S. Passaggio

Few things about Accelerators. M. Cobal, University of Udine Thanks to S. Passaggio Few things about Accelerators M. Cobal, University of Udine Thanks to S. Passaggio Accelerazione = aumento di energia Campi Magnetici In ogni acceleratore esiste una traiettoria di riferimento, sulla quale

Dettagli

Acceleratori di particelle

Acceleratori di particelle Acceleratori di particelle Lo studio delle proprietà nucleari e delle particelle subatomiche utilizza le reazioni nucleari. Una particella o un nucleo viene accelerato contro un nucleo bersaglio e si studiano

Dettagli

FAM A+B C. Considera la disintegrazione di una particella A in due particelle B e C: A B +C.

FAM A+B C. Considera la disintegrazione di una particella A in due particelle B e C: A B +C. Serie 19: Relatività VIII FAM C. Ferrari Esercizio 1 Collisione completamente anelastica Considera la collisione frontale di due particelle A e B di massa M A = M B = M e v A = v B = 3/5c, tale che alla

Dettagli

Fisica ed Applicazioni degli Acceleratori di Particelle. Corso di dottorato 2014

Fisica ed Applicazioni degli Acceleratori di Particelle. Corso di dottorato 2014 Fisica ed Applicazioni degli Acceleratori di Particelle Corso di dottorato 014 Fisica degli acceleratori di particelle Parte I Corso di dottorato 014 Fisica degli acceleratori di particelle Bibliografia

Dettagli

Acceleratori per la Fisica Nucleare: Catania Nuove prospettive. Luigi Campajola

Acceleratori per la Fisica Nucleare: Catania Nuove prospettive. Luigi Campajola Università di Napoli Federico II Dipartimento di Scienze Fisiche Laboratorio Acceleratore Acceleratori per la Fisica Nucleare: Catania Nuove prospettive Luigi Campajola Perché servono gli acceleratori?

Dettagli

Introduzione alla fisica degli acceleratori di particelle

Introduzione alla fisica degli acceleratori di particelle Introduzione alla fisica degli acceleratori di particelle Catia Milardi LNF-INFN Stages per studenti di scuola media superiore Frascati 1-4 Gennaio 2010 Sommario (prima parte) Importanza degli acceleratori

Dettagli

Capitolo 4: Elementi di Acceleratori di particelle

Capitolo 4: Elementi di Acceleratori di particelle Capitolo 4: Elementi di Acceleratori di particelle Corso di Fisica Nucleare e Subnucleare I Professor Carlo Dionisi A.A. 2004-2005 Tipici microscopi Calcoliamo la lunghezza d onda delle particelle α usate

Dettagli

Dalle macchine elettrostatiche agli acceleratori di particelle

Dalle macchine elettrostatiche agli acceleratori di particelle PLS - Incontri di Orientamento Dalle macchine elettrostatiche agli acceleratori di particelle M. Diemoz - 16 dicembre 2011 INFN Sezione di Roma Accelerare le particelle Una particella di carica elettrica

Dettagli

Gli acceleratori di particelle

Gli acceleratori di particelle Gli acceleratori di particelle Generalità Quando nel 1919 Rutherford dimostrò che l atomo di Azoto può essere disintegrato dalle particelle alfa provenienti dal Radio e dal Torio (α + 14 N 17 O + p) rivelando

Dettagli

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente?

Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Perchè non si è semplicemente assunto che il campo magnetico B abbia la direzione della forza magnetica agente su di un filo percorso da corrente? Si abbia una molla verticale al cui estremo inferiore

Dettagli

LHC. Il Large Hadron Collider al CERN. P.Campana Seminario INFN Ischia

LHC. Il Large Hadron Collider al CERN. P.Campana Seminario INFN Ischia LHC Il Large Hadron Collider al CERN P.Campana Seminario INFN Ischia - 06.10.09 1. Cosa e un acceleratore? Gli acceleratori di particelle sono dappertutto Applicazioni industriali Sterilizzazione dei cibi

Dettagli

l'antimateria l'antimateria

l'antimateria l'antimateria noi e... l'antimateria l'antimateria Livio Lanceri - UniTS, Dipartimento di Fisica Prolusione all Anno Accademico 2014-2015 1 l antimateria nella stampa quotidiana nel 1996, pochi mesi dopo la fabbricazione

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Fusione nucleare

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 10. Fusione nucleare Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 10 Fusione nucleare Fusione nucleare (Das-Ferbel, cap. 5.3) Abbiamo già accennato alla fusione nucleare che costituisce la sorgente

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE ONDE ELETTROMAGNETICHE ESERCIZIO 1 Un onda elettromagnetica piana di frequenza ν = 7, 5 10 14 Hz si propaga nel vuoto lungo l asse x. Essa è polarizzata linearmente con il campo E che forma l angolo ϑ

Dettagli

CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in

CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in CAMPO MAGNETICO Proprietà della magnetite (Fe 3 O 4 ): attira a sé materiali ferrosi o altre sostanze dette magnetiche Poli del magnete = parti in cui si evidenzia tale proprietà Proprietà magnetiche possono

Dettagli

Lezione L Introduzione al Magnetismo; 2. Forza di Lorentz; 3. Momento torcente di una spira;

Lezione L Introduzione al Magnetismo; 2. Forza di Lorentz; 3. Momento torcente di una spira; Lezione L.7 1. Introduzione al Magnetismo;. Forza di Lorentz; Spettroscopia di Massa Ciclotrone Microtrone 3. Momento torcente di una spira; Amperometro 4. Campo di un filo percorso da corrente 5. Forza

Dettagli

Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm].

Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio8: il lavoro di estrazione per il tungsteno é 4.49 ev. Calcolare la lunghezza d onda massima per ottenere effetto fotoelettrico [275.6 nm]. Esercizio9: un fotone gamma sparisce formando una coppia

Dettagli

CORSO di AGGIORNAMENTO di FISICA

CORSO di AGGIORNAMENTO di FISICA MATHSIS _ ROMA CORSO di AGGIORNAMNTO di FISICA LTTRROMAGNTISMO RLATIVITA Adriana Lanza I.T:T. COLOMBO via Panisperna, 255 16 marzo 2016 Conseguenze del passaggio dalle trasformazioni di Galileo alle trasformazioni

Dettagli

Relatività. June 5, Trasformazioni di Galileo e di Lorentz

Relatività. June 5, Trasformazioni di Galileo e di Lorentz Relatività June 5, 2016 1 Trasformazioni di Lorentz 1.1 Trasformazioni di Galileo e di Lorentz a Si scriva la matrice Λ (y) che descrive un boost di Lorentz lungo l asse y. b Si scrivano le matrici G (x)

Dettagli

ELETTROLOGIA Cap II. Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica. Elettrologia II

ELETTROLOGIA Cap II. Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica. Elettrologia II ELETTROLOGIA Cap II Calcolo del Campo Elettrico dovuto ad alcune distribuzioni di carica 1 Anello di raggio R uniformemente carco con carica Q. Anello di dimensioni trasversali trascurabili rispetto al

Dettagli

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 10. Decima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 10 Radioattività... 2 L atomo... 3 Emissione di raggi x... 4 Decadimenti nucleari. 6 Il decadimento alfa.... 7 Il decadimento beta... 8 Il decadimento gamma...... 9 Interazione dei fotoni

Dettagli

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico

Il campo magnetico. n I poli magnetici di nome contrario non possono essere separati: non esiste il monopolo magnetico Il campo magnetico n Le prime osservazioni dei fenomeni magnetici risalgono all antichità n Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro n Un ago magnetico

Dettagli

Lezione 5 Moti di particelle in un campo magnetico

Lezione 5 Moti di particelle in un campo magnetico Lezione 5 Moti di particelle in un campo magnetico G. Bosia Universita di Torino G. Bosia - Fisica del plasma confinato Lezione 5 1 Moto di una particella carica in un campo magnetico Il confinamento del

Dettagli

ACCELERATORI DI PARTICELLE

ACCELERATORI DI PARTICELLE ACCELERATORI DI PARTICELLE Bardonecchia, Gennaio 2017 E.Menichetti Dip. di Fisica e INFN, Torino Gennaio 2017 E.Menichetti - Univ. di Torino 2 Fisica delle particelle Fronte piu avanzato nello studio della

Dettagli

Evidenza delle diverse famiglie di neutrini

Evidenza delle diverse famiglie di neutrini Fenomenologia del Modello Standard Prof. A. Andreazza Lezione 2 Evidenza delle diverse famiglie di neutrini Diversi tipi di neutrini Agli inizi degli anni 60 si sapeva che il numero leptonico era conservato

Dettagli

INTRODUZIONE ALLA RELATIVITÀ SPECIALE: Dalla seconda legge di Newton a E = mc 2. 8 marzo 2017

INTRODUZIONE ALLA RELATIVITÀ SPECIALE: Dalla seconda legge di Newton a E = mc 2. 8 marzo 2017 INTRODUZIONE ALLA RELATIVITÀ SPECIALE: Dalla seconda legge di Newton a E = mc 2 8 marzo 2017 Piano della presentazione Trasformazioni di Lorentz Red Shift Relatività e leggi di Newton Galileo Seconda Legge

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 7. Il modello a shell

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Lezione 7. Il modello a shell Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Lezione 7 Il modello a shell Modello a shell Le informazioni ottenute sul potenziale di interazione nucleone-nucleone vengono usate concretamente

Dettagli

Risonanza Magnetica Nucleare

Risonanza Magnetica Nucleare Risonanza Magnetica Nucleare Il fenomeno della risonanza magnetica nucleare è legato ad una proprietà p di alcuni nuclei quale lo spin. Lo spin è una proprietà fondamentale come la carica e la massa. Protoni,

Dettagli

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O

Facoltà di Ingegneria Prova scritta di Fisica II - 23 Settembre Compito A Esercizio n.1 O Esercizio n. 2 O Facoltà di Ingegneria Prova scritta di Fisica II - 3 Settembre 003 - Compito A Esercizio n.1 Quattro cariche di uguale valore q, due positive e due negative, sono poste nei vertici di un quadrato di lato

Dettagli

Acceleratori di particelle -I. M. Boscolo

Acceleratori di particelle -I. M. Boscolo Acceleratori di particelle -I M. Boscolo Frascati, 25 Febbraio 2013 Piano del colloquio Introduzione alla fisica e tecnologia degli acceleratori Lezione I: I fondamenti della macchina acceleratrice di

Dettagli

Lezione n. 13. Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo. di idrogeno. Antonino Polimeno 1

Lezione n. 13. Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo. di idrogeno. Antonino Polimeno 1 Chimica Fisica Biotecnologie sanitarie Lezione n. 13 Radiazione elettromagnetica Il modello di Bohr Lo spettro dell atomo di idrogeno Antonino Polimeno 1 Radiazione elettromagnetica (1) - Rappresentazione

Dettagli

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata

Radioattività. 1. Massa dei nuclei. 2. Decadimenti nucleari. 3. Legge del decadimento XVI - 0. A. Contin - Fisica Generale Avanzata Radioattività 1. Massa dei nuclei 2. Decadimenti nucleari 3. Legge del decadimento XVI - 0 Nucleoni Protoni e neutroni sono chiamati, indifferentemente, nucleoni. Il numero di protoni (e quindi di elettroni

Dettagli

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo

Dettagli

Lezione 14 Moti di particelle in un campo magnetico

Lezione 14 Moti di particelle in un campo magnetico Lezione 14 Moti di particelle in un campo magnetico G. Bosia Universita di Torino G. Bosia - Fisica del plasma confinato Lezione 14 1 Confinamento magnetico La difficolta della fisica di un sistema a confinamento

Dettagli

Cognome Nome Matricola

Cognome Nome Matricola Cognome Nome Matricola DOCENTE Energetica Biomedica DM 270 Elettronica Informazione Informatica DM509 Problema 1 Nel circuito di figura (a) i resistori hanno valori tali che R 1 / = 2 e i condensatori

Dettagli

Acceleratori e Rivelatori di Particelle Elementari

Acceleratori e Rivelatori di Particelle Elementari Acceleratori e Rivelatori di Particelle Elementari Massimiliano Fiorini!! Dipartimento di Fisica e Scienze della Terra! Università degli Studi di Ferrara! e-mail: Massimiliano.Fiorini@cern.ch! International

Dettagli

Acceleratori di particelle

Acceleratori di particelle Acceleratori di particelle M. Boscolo Frascati, 30 gennaio 2012 Piano del colloquio Introduzione alla fisica e tecnologia degli acceleratori Lezione I: I fondamenti della macchina acceleratrice di particelle

Dettagli

Interazione radiazione materia Dott.ssa Alessandra Bernardini

Interazione radiazione materia Dott.ssa Alessandra Bernardini Interazione radiazione materia Dott.ssa Alessandra Bernardini 1 Un po di storia Lo studio delle radiazioni ionizzanti come materia di interesse nasce nel novembre del 1895 ad opera del fisico tedesco Wilhelm

Dettagli

FISICA delle APPARECCHIATURE per RADIOTERAPIA

FISICA delle APPARECCHIATURE per RADIOTERAPIA Anno Accademico 2012-2013 Corso di Laurea in Tecniche Sanitarie di Radiologia Medica per Immagini e Radioterapia FISICA delle APPARECCHIATURE per RADIOTERAPIA Marta Ruspa 20.01.13 M. Ruspa 1 ONDE ELETTROMAGNETICHE

Dettagli

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m

L energia assorbita dall atomo durante l urto iniziale è la stessa del fotone che sarebbe emesso nel passaggio inverso, e quindi vale: m QUESITI 1 Quesito Nell esperimento di Rutherford, una sottile lamina d oro fu bombardata con particelle alfa (positive) emesse da una sorgente radioattiva. Secondo il modello atomico di Thompson le particelle

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

1.2 Moto di cariche in campo elettrico

1.2 Moto di cariche in campo elettrico 1.2 Moto di cariche in campo elettrico Capitolo 1 Elettrostatica 1.2 Moto di cariche in campo elettrico Esercizio 11 Una carica puntiforme q = 2.0 10 7 C, massa m = 2 10 6 kg, viene attratta da una carica

Dettagli

Gli acceleratori e i rivelatori di particelle

Gli acceleratori e i rivelatori di particelle Gli acceleratori e i rivelatori di particelle Come studiare le proprietà dei NUCLEI? Facendoli collidere tra loro!!!! Informazioni: Dimensioni e struttura del nucleo Forze nucleari Meccanismi di reazione

Dettagli

I rivelatori. Osservare il microcosmo. EEE- Cosmic Box proff.: M.Cottino, P.Porta

I rivelatori. Osservare il microcosmo. EEE- Cosmic Box proff.: M.Cottino, P.Porta I rivelatori Osservare il microcosmo Cose prima mai viste L occhio umano non riesce a distinguere oggetti con dimensioni inferiori a 0,1 mm (10-4 m). I primi microscopi vennero prodotti in Olanda alla

Dettagli

I rivelatori. Osservare il microcosmo. EEE- Cosmic Box proff.: M.Cottino, P.Porta

I rivelatori. Osservare il microcosmo. EEE- Cosmic Box proff.: M.Cottino, P.Porta I rivelatori Osservare il microcosmo Cose prima mai viste L occhio umano non riesce a distinguere oggetti con dimensioni inferiori a 0,1 mm (10-4 m). I primi microscopi vennero prodotti in Olanda alla

Dettagli

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.

Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D. Prova Scritta di Elettricità e Magnetismo e di Elettromagnetismo A. A. 2006-07 - 1 Febbraio 2008 (Proff. F.Lacava, C.Mariani, F.Ricci, D.Trevese) Modalità: - Prova scritta di Elettricità e Magnetismo:

Dettagli

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito

Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito Gli esperimenti condotti da Faraday hanno portato a stabilire l esistenza di una forza elettromotrice e quindi di una corrente indotta in un circuito quando: 1) il circuito è in presenza di un campo magnetico

Dettagli

SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROVA DI AMMISSIONE A.A.: SOLUZIONE DELLA PROVA SCRITTA DI FISICA

SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROVA DI AMMISSIONE A.A.: SOLUZIONE DELLA PROVA SCRITTA DI FISICA SCUOLA GALILEIANA - CLASSE DI SCIENZE NATURALI PROBLEMA 1. PROVA DI AMMISSIONE A.A.:2007-2008 SOLUZIONE DELLA PROVA SCRITTA DI FISICA a) da g = GM segue: M = gr2 R 2 G b) La forza centripeta che fa descrivere

Dettagli

Misteri nell Universo

Misteri nell Universo Misteri nell Universo Quali sono le forme di materia ed energia nell universo osservabile? Quale e la ricetta (ingredienti e proporzioni) del nostro universo? 1 L eredità di Copernico Quale è la relazione

Dettagli

Appunti di elettromagnetismo

Appunti di elettromagnetismo Appunti di elettromagnetismo Andrea Biancalana ottobre 1999 1 Magneti e correnti elettriche Magneti: esistono materiali che manifestano interazioni non-gravitazionali e non-elettriche; caratteristica dei

Dettagli

INTERPRETAZIONE CINEMATICA DELLA DERIVATA

INTERPRETAZIONE CINEMATICA DELLA DERIVATA INTERPRETAZIONE CINEMATICA DELLA DERIVATA Consideriamo un punto mobile sopra una qualsiasi linea Fissiamo su tale linea un punto O, come origine degli archi, e un verso di percorrenza come verso positivo;

Dettagli

Lez. 20 Magnetismo. Prof. Giovanni Mettivier

Lez. 20 Magnetismo. Prof. Giovanni Mettivier Lez. 20 Magnetismo Prof. Giovanni Mettivier 1 Dott. Giovanni Mettivier, PhD Dipartimento Scienze Fisiche Università di Napoli Federico II Compl. Univ. Monte S.Angelo Via Cintia, I-80126, Napoli mettivier@na.infn.it

Dettagli

Effetto Cherenkov - 1

Effetto Cherenkov - 1 Effetto Cherenkov - 1 Particelle cariche, che attraversano un mezzo denso con velocità superiore a quella con cui si propaga la luce nello stesso mezzo, emettono radiazione elettromagnetica che si propaga

Dettagli

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein)

L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA. (Plank Einstein) L ATOMO SECONDO LA MECCANICA ONDULATORIA IL DUALISMO ONDA-PARTICELLA POSTULATO DI DE BROGLIÈ Se alla luce, che è un fenomeno ondulatorio, sono associate anche le caratteristiche corpuscolari della materia

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1

Lezione n. 19. L equazione. di Schrodinger L atomo. di idrogeno Orbitali atomici. 02/03/2008 Antonino Polimeno 1 Chimica Fisica - Chimica e Tecnologia Farmaceutiche Lezione n. 19 L equazione di Schrodinger L atomo di idrogeno Orbitali atomici 02/03/2008 Antonino Polimeno 1 Dai modelli primitivi alla meccanica quantistica

Dettagli

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A

MODULO DI ELETTROMAGNETISMO Prova Pre-Esame del 28 GENNAIO 2009 A.A MODULO D ELETTROMAGNETSMO Prova Pre-Esame del 28 GENNAO 2009 A.A. 2008-2009 FSCA GENERALE Esercizi FS GEN: Punteggio in 30 esimi 1 8 Fino a 4 punti COGNOME: NOME: MATR: 1. Campo elettrostatico La sfera

Dettagli

n(z) = n(0) e m gz/k B T ; (1)

n(z) = n(0) e m gz/k B T ; (1) Corso di Introduzione alla Fisica Quantistica (f) Prova scritta 4 Luglio 008 - (tre ore a disposizione) [sufficienza con punti 8 circa di cui almeno 4 dagli esercizi nn. 3 e/o 4] [i bonus possono essere

Dettagli

Energia del campo elettromagnetico

Energia del campo elettromagnetico Energia del campo elettromagnetico 1. Energia 2. Quantità di moto 3. Radiazione di dipolo VII - 0 Energia Come le onde meccaniche, anche le onde elettromagnetiche trasportano energia, anche se non si propagano

Dettagli

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO

FORMULARIO DI FISICA 3 MOTO OSCILLATORIO FORMULARIO DI FISICA 3 MOTO OSCILLATORIO Corpo attaccato ad una molla che compie delle oscillazioni Calcolare la costante elastica della molla 2 2 1 2 2 ω: frequenza angolare (Pulsazione) ; T: Periodo

Dettagli

Gli acceleratori di particelle: da microscopi subatomici a strumenti per la medicina. David Alesini (LNF-INFN, Frascati)

Gli acceleratori di particelle: da microscopi subatomici a strumenti per la medicina. David Alesini (LNF-INFN, Frascati) Gli acceleratori di particelle: da microscopi subatomici a strumenti per la medicina David Alesini (LNF-INFN, Frascati) Stages Estivi-Residenziali 2016 Cosa è un acceleratore di particelle Sorgente Acceleratore

Dettagli

Fisica Quantistica III Esercizi Natale 2009

Fisica Quantistica III Esercizi Natale 2009 Fisica Quantistica III Esercizi Natale 009 Philip G. Ratcliffe (philip.ratcliffe@uninsubria.it) Dipartimento di Fisica e Matematica Università degli Studi dell Insubria in Como via Valleggio 11, 100 Como

Dettagli

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA

LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA LA LEGGE DI FARADAY-HENRY O DELL INDUZIONE ELETTROMAGNETICA Se un magnete è posto vicino ad un circuito conduttore chiuso, nel circuito si manifesta una f.e.m. quando il magnete è messo in movimento. Tale

Dettagli

Risonanza magnetica nucleare

Risonanza magnetica nucleare Risonanza magnetica nucleare Università di Firenze Corso di Tecnologie Biomediche Lezione del 31 ottobre 2003 Leonardo Bocchi Principi fisici Premessa Modello classico Visualizzazione semplificata Equazione

Dettagli

Gli acceleratori di particelle e LHC. Roberta Arnaldi INFN Torino

Gli acceleratori di particelle e LHC. Roberta Arnaldi INFN Torino Gli acceleratori di particelle e LHC Roberta Arnaldi INFN Torino Masterclass, 25 Marzo 2011 1 2 Sommario Come si studia l infinitamente piccolo: gli acceleratori i rivelatori Dove si studiano le particelle:

Dettagli

1 Prove esami Fisica II

1 Prove esami Fisica II 1 Prove esami Fisica II Prova - 19-11-2002 Lo studente risponda alle seguenti domande: 1) Scrivere il teorema di Gauss (2 punti). 2) Scrivere, per un conduttore percorso da corrente, il legame tra la resistenza

Dettagli

Effetto Zeeman anomalo

Effetto Zeeman anomalo Effetto Zeeman anomalo Direzione del campo B esempio: : j=3/2 Direzione del campo B j=1+1/2 = 3/2 s m j =+3/2 m j =+1/2 l m j =-1/2 m j =-3/2 La separazione tra i livelli é diversa l e µ l antiparalleli

Dettagli

Gli acceleratori di particelle

Gli acceleratori di particelle Gli acceleratori di particelle seconda parte Corso di valorizzazione delle eccellenze in Matematica e Fisica Liceo Statale Scientifico, Linguistico e Classico Giolitti-Gandino Come facciamo a vedere gli

Dettagli

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira.

Fenomeni Magnetici. Campo Magnetico e Forza di Lorentz. Moto di cariche in campo magnetico. Momento e campo magnetico di una spira. Fenomeni Magnetici Campo Magnetico e Forza di Lorentz Moto di cariche in campo magnetico Momento e campo magnetico di una spira Legge di Ampère Solenoide Campo Magnetico I fenomeni magnetici possono essere

Dettagli

Radiazione di betatrone in plasmi prodotti da LASER

Radiazione di betatrone in plasmi prodotti da LASER Radiazione di betatrone in plasmi prodotti da LASER Alessandro Curcio a, Danilo Giulietti a a Physics Department of the University and INFN, Pisa, Italy 100 o Congresso SIF 23 Settembre 2014, Pisa Regime

Dettagli

Quesiti dell Indirizzo Tecnologico

Quesiti dell Indirizzo Tecnologico Quesiti dell Indirizzo Tecnologico 1) Sapendo che la massa di Marte é 1/10 della massa della Terra e che il suo raggio é ½ di quello della Terra l accelerazione di gravità su Marte è: a) 1/10 di quella

Dettagli

Campo magnetico e forza di Lorentz (II)

Campo magnetico e forza di Lorentz (II) Campo magnetico e forza di Lorentz (II) Moto di particelle cariche in un campo magnetico Seconda legge elementare di Laplace Principio di equivalenza di Ampere Effetto Hall Galvanometro Moto di una particella

Dettagli

Unità 9. Il campo magnetico

Unità 9. Il campo magnetico Unità 9 Il campo magnetico 1. La forza di Lorentz Se un fascio catodico è in un campo magnetico: La forza di Lorentz Gli elettroni risentono di una forza magnetica anche se non sono in un filo metallico;

Dettagli

ELETTROMAGNETISMO CARICA ELETTRICA

ELETTROMAGNETISMO CARICA ELETTRICA ELETTROMAGNETISMO CARICA ELETTRICA Fenomeni di elettrizzazione noti dall antichità ( Talete di Mileto e ambra, etc), produzione di elettricità per strofinamento, elettricità passa da un corpo all altro

Dettagli

Risonanza Magnetico Nucleare

Risonanza Magnetico Nucleare Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Risonanza Magnetico Nucleare 21/3/2005 RMN ovvero NMR Spettroscopia RMN permette di - acquisire immagini 2D e 3D di parti del corpo umano ottima risoluzione

Dettagli

Campo magnetico terrestre

Campo magnetico terrestre Magnetismo Vicino a Magnesia, in Asia Minore, si trovava una sostanza capace di attrarre il ferro Due sbarrette di questo materiale presentano poli alle estremità, che si attraggono o si respingono come

Dettagli

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto

S.Barbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie. Cap. 2. Cinematica del punto SBarbarino - Appunti di Fisica - Scienze e Tecnologie Agrarie Cap 2 Cinematica del punto 21 - Posizione, velocitá e accelerazione di una particella La posizione di una particella puó essere definita, ad

Dettagli

FISICA NUCLEARE E SUBNUCLEARE II

FISICA NUCLEARE E SUBNUCLEARE II Programma del del corso di di FISICA NUCLEARE E SUBNUCLEARE II A.A. A.A. 2005-2006 2005-2006 III III Trimestre Trimestre Carlo Carlo Dionisi Dionisi Testi Consigliati [ APP-CD] Appunti del corso di Carlo

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 3. Terza unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 3 Elasticità dei materiali Deformazione di un solido..2 Legge di Hooke.. 3 Forza elastica.. 4 Deformazione elastica di una molla... 5 Accumulo di energia attraverso la deformazione elastica..6

Dettagli

Fisica delle Particelle: esperimenti. Fabio Bossi (LNF-INFN) fabio.bossi@lnf.infn.it

Fisica delle Particelle: esperimenti. Fabio Bossi (LNF-INFN) fabio.bossi@lnf.infn.it Fisica delle Particelle: esperimenti Fabio Bossi (LNF-INFN) fabio.bossi@lnf.infn.it Il processo scientifico di conoscenza Esperimento Osservazione quantitativa di fenomeni riguardanti alcune particelle

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

( ) = 4, J. ( 8, N m 2 /C ) 2 m)2 2, C

( ) = 4, J. ( 8, N m 2 /C ) 2 m)2 2, C UESITI 1 uesito Il campo elettrico è conservativo, per cui il lavoro che esso compie nello spostamento di una carica non dipende dal cammino percorso, ma solo dai punti iniziale e finale. Infatti L C ΔV

Dettagli

La presenza della radiofrequenza fa sί che le particelle si raggruppano in pacchetti (bunch).

La presenza della radiofrequenza fa sί che le particelle si raggruppano in pacchetti (bunch). La presenza della radiofrequenza fa sί che le particelle si raggruppano in pacchetti (bunch). In un acceleratore circolare si innestano inoltre, ogniqualvolta la particella passa nella cavità a RF con

Dettagli

Ottica geometrica. H = η 1 u E. S = 1 2 η 1 E 2 u = 1 2 η H 2 u

Ottica geometrica. H = η 1 u E. S = 1 2 η 1 E 2 u = 1 2 η H 2 u Ottica geometrica L ottica geometrica assume che il campo elettromagnetico in un mezzo senza perdite possa essere rappresentato in ogni punto di regolarità come somma di onde localmente piane uniformi.

Dettagli

The Large Hadron Collider LHC

The Large Hadron Collider LHC The Large Hadron Collider LHC European Masterclasses 2008 dip. di Fisica G.Galilei 12/13/14 Marzo 2008 dott Stefano Lacaprara, INFN Laboratori Nazionali di Legnaro Large Hadron Collider Perche' lo facciamo

Dettagli

Prova scritta del corso di Fisica e Fisica 1 con soluzioni

Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prova scritta del corso di Fisica e Fisica 1 con soluzioni Prof. F. Ricci-Tersenghi 17/02/2014 Quesiti 1. Un frutto si stacca da un albero e cade dentro una piscina. Sapendo che il ramo da cui si è staccato

Dettagli

prima di andare al CNAO Centro Nazionale di ADROTERAPIA ONCOLOGICA ACCELERATORI PER LA SALUTE: ADROTERAPIA

prima di andare al CNAO Centro Nazionale di ADROTERAPIA ONCOLOGICA ACCELERATORI PER LA SALUTE: ADROTERAPIA prima di andare al CNAO Centro Nazionale di ADROTERAPIA ONCOLOGICA ACCELERATORI PER LA SALUTE: ADROTERAPIA Cosa sono gli adroni? Come penetrano nel corpo? Perché si può curare un tumore con gli adroni?

Dettagli

Scattering Cinematica Relativistica

Scattering Cinematica Relativistica Scattering Cinematica Relativistica VII Invarianti 8/05/009 E.Menichetti - Univ. di Torino Invarianti (Quantita ) invariante: Grandezza fisica che ha lo stesso valore in tutti i sistemi di riferimento.

Dettagli

Cenni sugli Acceleratori

Cenni sugli Acceleratori Cenni sugli Acceleratori Bibliografia Lezioni per gli studenti estivi del CERN. http://bruening.home.cern.ch/bruening/summerschool/ Review of Particle Physics contiene parametri degli acceleratori, oltre

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

The Large Hadron Collider LHC

The Large Hadron Collider LHC The Large Hadron Collider LHC European Masterclasses 2007 dott Stefano Lacaprara, INFN Laboratori Nazionali di Legnaro stefano.lacaprara@pd.infn.it Large Hadron Collider Perche' lo facciamo Cos'e' Cosa

Dettagli

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Guida allo studio

Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza. Guida allo studio Istituzioni di Fisica Nucleare e Subnucleare Prof. A. Andreazza Guida allo studio Libri di testo A. Das and T. Ferbel. Introduction to nuclear and particle physics - 2. ed. World Scientific, 2003 Bogdan

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

Compito di Fisica II del 14/09/2009

Compito di Fisica II del 14/09/2009 Compito di Fisica II del 14/09/2009 Prof. G. Zavattini Una sbarretta conduttrice omogenea di massa m = 1g, lunghezza d = 10 cm e resistenza trascurabile è incernierata perpendicolarmente a due guide rettilinee

Dettagli

Particella in un campo elettromagnetico

Particella in un campo elettromagnetico Particella in un campo elettromagnetico Vogliamo descrivere dal punto di vista quantistico una particella carica posta in un campo elettromagnetico. Momento di una particella Dal punto di vista classico

Dettagli

Radiazioni ionizzanti

Radiazioni ionizzanti Radiazioni ionizzanti Qualunque radiazione in grado di provocare fenomeni di ionizzazione. Radiazione: trasferimento di energia attraverso lo spazio. Ionizzazione: fenomeno per il quale, da un atomo stabile

Dettagli