Circuiti a Microonde: Introduzione

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Circuiti a Microonde: Introduzione"

Transcript

1 Circuiti a Microonde: Introduzione Un circuito a microonde è un interconnessione di elementi le cui dimensioni fisiche possono essere comparabili con la lunghezza d onda corrispondente alle frequenze operative Tipologie di componenti: Interconnessioni (non hanno dimensioni nulle come nei circuiti a costanti concentrate!) Elementi pseudo-concentrati (simulano il comportamento di componenti ideali, tenendo però conto delle dimensioni fisiche) Elementi distribuiti (tratti di linee di trasmissione terminati o passanti) Nei circuiti a microonde non esistono nodi ideali. Quando due o più componenti sono connessi tra loro, nel punto di giunzione si crea una discontinuità che produce effetti più o meno evidenti sul comportamento della rete.

2 Discontinuità tra due linee di trasmissione L 1 =10 cm L 2 =10 cm Z c Z c Non va bene! Coassiale 1: R 1 =5 cm, r 1 =2.17 cm Coassiale 2: R 2 =3 cm, r 1 =1.3 cm Z c Matrice S Z c Z c R R ln 60ln 50 r1 r2 Discontinuità Modello corretto. Perché?

3 Eccitazioni di modi superiori Onda TEM incidente Onda TEM trasmessa Onda TEM Campi E, H trasversi Ampiezza modi superiori Eccitati alla discontinuità Nella discontinuità il campo non può essere trasverso (imposto dalle condizioni al contorno) Si generano modi superiori che, non essendo in propagazione, sono in pratica confinati vicino alla discontinuità In pratica è come se ci fosse del campo elettromagnetico immagazzinato localmente, che produce un effetto sulla propagazione del modo TEM. Tale effetto può essere rappresentato mediante un circuito equivalente o, più in generale, dalla matrice di scatter collocata nella sezione della discontinuità

4 Calcolo di S della discontinuità Parametri S ottenuti da un simulatore elettromagnetico dei due coax connessi alla frequenza di 1 GHz (Zc=50 ): S S , S S cm 10 cm Discontinuità Porta Porta 2 Rete a microonde Per ottenere i parametri S della discontinuità bisogna spostare le sezioni di riferimento delle due porte verso l interno di 10 cm, cioè: 2 f 10 cm 10 cm rad 120 S S S exp j , S S S exp j

5 Dipendenza dalla frequenza -10 Return Loss vs. Frequency DB( S(1,1) ) CoaxStep Frequency (MHz) Le discontinuità sono in generale variabili con la frequenza!

6 Componenti e discontinuità disponibili in MWOffice (elenco parziale)

7 Esempio: rete di adattamento a doppio stub Giunzioni a T 1 2 Z c, L 0 Z c, L 1 Z c, L 0 Z S1, L S1 Z S2, L S2 Open Schema ideale

8 Rappresentazione delle discontinuità PORT P=1 Z=50 Ohm ID=TL3 W=2.2 mm L=10 mm MTEE$ ID=TL4 ID=TL6 W=0.622 mm L=79.68 mm MTEE$ ID=TL5 ID=TL1 W=2.2 mm L=5 mm PORT P=2 Z=50 Ohm ID=TL7 W=1.33 mm L=32.92 mm ID=TL8 W=1.22 mm L=8 mm MOPEN$ ID=TL2 MOPEN$ ID=TL9 MSUB Er= 2.55 H= 0.8 mm T=.035 mm Rho= 1 Tand= 0

9 Confronto 0-10 Ideale Doppio Stub 1 2 Z IMPED ID=Z1 R=17 Ohm X=66 Ohm Microstrip Frequency (GHz)

10 Metodi di calcolo delle discontinuità Rappresentazioni con circuiti equivalenti (parametri calcolati con tecniche numeriche e successiva interpolazione dei risultati) Formule analitiche (casi più semplici) Analisi elettromagnetica (direttamente dalla rappresentazione circuitale) Spesso sono disponibili più rappresentazioni della stessa discontinuità (maggiore precisione=più tempo di calcolo)

11 Discontinuità in microstriscia: Giunzioni Step (2-port) Tee (3-port) S 1 S 2 Cross (4-port) S 2 S3 S 1 S 3 S4 S 1 -S 2 ID=TL1 W=1 mm MSTEPX$ ID=MS1 Offset=0 mm 1 2 ID=TL3 ID=TL1 W=1 mm MTEE$ ID=TL ID=TL3 ID=TL1 W=1 mm MCROSS$ ID=TL2 1 2 ID=TL5 W=2.5 mm L=5 mm 3 ID=TL3 ID=TL4 L=5 mm 4 ID=TL4 L=5 mm

12 Bend (2-port) S 1 S 1 S 1 S 2 S 2 S 2 ID=TL1 MBENDA ID=TL2 ANG=90 Deg MCURVE ID=TL2 ID=TL1 ANG=45 Deg R=2 mm ID=TL1 MUBEND$ ID=TL4 S=2 mm M=0.5 ID=TL3 ID=TL3 ID=TL3

13 Terminazioni (1-port) Open end Via hole Radial Stub S 1 S 1 S 1 ID=TL1 MOPENX$ ID=MO1 ID=TL1 VIA1P ID=V1 D=1.5 mm H=1 mm T=0.05 mm RHO=1 ID=TL1 MRSTUB2W ID=TL2 Ro=7 mm Theta=50 Deg

14 Componenti pseudo-concentrati Approssimazioni di capacità e induttanze in cascata con un tratto di linea Zc, L C jzc L cosl cos L sin L jsin Z c (matrice catena) Se L è molto piccolo e Zc molto grande: 1 jzc L 1 jzc L C L jz c X=L eq =Zc. L/v L eq =Zc. L/v Se L è molto piccolo e Zc molto piccolo: 1 jzc L L L C 1 jz c 1 0 jz c 1 B=C eq =L/(v. Zc) C eq =L/(v. Zc)

15 Altri componenti Capacità Interdigitale Spiral Inductors S 1 S 2 ID=TL1 MICAP$ ID=MI1 W=1 mm S=1 mm G=1 mm L=10 mm N=4 WP=1 mm ID=TL2 ID=TL1 W=1 mm L=2 mm EPSB=1 TDB=0 TB=0.001 mm RhoB=1 ID=TL2 W=1 mm L=2 mm

16 Circuiti equivalenti: Matrice S 2x2 Condizione di assenza di perdite (matrice S unitaria) S S * * S S S S S S S S S S SS =S SU S S S S S S S S S S S S * * * * * * * * * * * * * * S S S S S S S S 1 * * S S S S S S S S 1 S S S S S S S S S S exp j j exp j j 0 * * S S S S S S exp j j exp j j 0 * *

17 Se il circuito è reciproco (S 21 =S 12 ): Considerando i legami imposti dalle precedenti relazioni, sono sufficienti 3 numeri reali a definire completamente la matrice di un circuito a 2 porte reciproco e privo di perdite. Per esempio, se sono dati S,,, si ottengono gli altri elementi da: , S S S Conseguenza: Una rete a due bocche priva di perdite e reciproca può essere rappresentata da un circuito equivalente con non più di 3 elementi puramente reattivi jx 1 jx 2 jx 3 Zc jb Zc jx 3 jb 1 jb 2

18 Autovalori e autovettori di una matrice Gli autovalori S di una matrice quadrata S sono le soluzioni dell equazione: det S U 0 S Gli autovettori x associati a S soddisfano il sistema di equazioni omogenee: S x Sx Una matrice di ordine n possiede n autovalori ed n autovettori (ogni autovettore contiene n elementi). Gli autovettori sono definiti a meno di una costante. Proprietà Se si eccita la rete con un autovettore, ogni porta della rete vede la stessa impedenza (ammettenza, coeff. di riflessione), il cui valore coincide con l autovalore corrispondente. Se la rete è simmetrica si possono facilmente individuare gli autovettori e quindi derivare circuitalmente gli autovalori. Con semplici relazioni si ottengono poi gli elementi delle matrici Z, Y o S.

19 Esempio: Rete a due porte simmetrica Rete Simmetrica S S S S Si vede lo stesso coefficiente di riflessione alle due bocche solo se le onde incidenti sono in della stessa ampiezza e in fase oppure in opposizione di fase. Ciò significa che i due autovettori sono: x 1 1, x Se la rete simmetrica è eccitata con due onde in fase, si ha un circuito aperto lungo l asse di simmetria. Il primo autovalore si ottiene considerando l autorete pari (1 porta): p Autorete 1 (pari) Circuito aperto

20 Se la rete simmetrica è eccitata con due onde in opposizione di fase, si ha un corto circuito lungo l asse di simmetria. Il secondo autovalore si ottiene considerando l autorete dispari (1 porta): d Autorete 2 (dispari) Corto circuito Legame con gli elementi di S: b s 1s b s 1s Legame tra autovalori di S, Z e Y: S Z Z0 Y0 Y Z Z Y Y p 0 0 d Z s s s s Z 0 p 2 p 2 1 S 1 1 S Y d d

21 Esempio: calcolo di S dagli autovalori Zc jb Zc Zc j2b jb/2 Autorete pari Y jb 2 p Bexp 2 exp 2 Y jb 2 c j j j j exp 2 exp 2 d cc c Zc Autorete dispari p d 1 Y exp 2 c jb jb S S j 1 exp j Yc jb 2 2Yc jb p d 1 Y exp 2 c jb Y 1 exp 2 c S S j j 2 2 Yc jb 2 2Yc jb

22 Calcolo dei parametri del circuito equivalente da S11 e S12: B S j j S S Y 11 2, exp c S12

23 Calcolo di in, out e G T s S (50) L Tutti i coefficienti di riflessione sono definiti rispetto a 50 in out in Z Z in in 50 L s s L s s Z out 50 out Zout 50 1S s11 s S s s G T s (1 S ) (1 L ) 21 2 (1 s ) (1 s ) s s S 11 L 22 S L 12 21

24 Invertitore di impedenza Z in K Z 2 L K L E un circuito a due porte simmetrico e reciproco. L impedenza vista ad una porta è inversamente proporzionale a quella collegata all altra porta (K è un numero reale). Con questo circuito si realizza un trasformatore di impedenza: n=(k/z L )^2 Parametri S: S K 2 Z Z0 K Z0 11 S K K Z0 Z0 Z Reale (positivo o negativo=) L invertitore di impedenza è uno sfasatore reciproco di /2

25 Rappresentazione equivalente dell invertitore di impedenza /4 -jx -jx jb Z c jx -jb -jb K=Zc K=X J=1/K=B Z C jx Z C Y C jb Y C K Z C C tan X tan 2 2 ZC X KZC 2 Z 1 KZ C J Y C tan B tan 2 2 YC B JYC 2 Y 1 JY C C

Circuiti a Microonde: Introduzione

Circuiti a Microonde: Introduzione Ciruiti a Miroonde: Introduzione Un iruito a miroonde è un interonnessione di elementi le ui dimensioni fisihe possono essere omparabili on la lunghezza d onda orrispondente alle frequenze operative Tipologie

Dettagli

microonde Circuiti a microonde Circuito

microonde Circuiti a microonde Circuito Circuiti a microonde 1 N Circuito a microonde 3 Sezioni di riferimento (Bocche) 5 4 Un circuito a microonde è costituito dall interconnessione di elementi distribuiti e concentrati; l interazione con il

Dettagli

Corso di Microonde II

Corso di Microonde II POLITECNICO DI MILANO Corso di Microonde II Lezione n. 1: Richiami sui circuiti a microonde - 1 - Parametri Concentrati e Distribuiti Quando le dimensioni fisiche dei componenti di un circuito sono molto

Dettagli

Rappresentazione matriciale di Doppi Bipoli

Rappresentazione matriciale di Doppi Bipoli Rappresentazione matriciale di Doppi Bipoli Caratterizzazione matriciale di reti multi-porta V I I 1 V 1 1 1 Circuito a -porte 2 I 2 3 V 2 V 3 v v V v v 2 3. I i1 i 2 i 3. i I 5 V 5 5 4 I 3 I 4 V 4 Se

Dettagli

Adattamenti: Considerazioni Generali

Adattamenti: Considerazioni Generali Adattamenti: Considerazioni Generali g ADATT in Assenza onda di potenza riflessa in g, out out Max trasferimento di potenza in * g *, out Proprietà: se la rete di adattamento è priva di perdite ( composta

Dettagli

Campi Elettromagnetici e Circuiti I Adattatori d impedenza

Campi Elettromagnetici e Circuiti I Adattatori d impedenza Facoltà di Ingegneria Università degli studi di Pavia Corso di aurea Triennale in Ingegneria Elettronica e Informatica Campi Elettromagnetici e Circuiti I Adattatori d impedenza Campi Elettromagnetici

Dettagli

Campi Elettromagnetici e Circuiti I Reti biporta

Campi Elettromagnetici e Circuiti I Reti biporta Facoltà di ngegneria Università degli studi di Pavia Corso di Laurea Triennale in ngegneria Elettronica e nformatica Campi Elettromagnetici e Circuiti Reti biporta Campi Elettromagnetici e Circuiti a.a.

Dettagli

Adattatori. Importanza adattamento

Adattatori. Importanza adattamento Adattatori uca Vincetti a.a. 8-9 Importanza adattamento Massimizzazione della potenza disponibile dal carico Riduzione delle sovratensioni e sovracorrenti che possono danneggiare linea e trasmettitore

Dettagli

ADATTATORI di IMPEDENZA

ADATTATORI di IMPEDENZA ADATTATORI di IMPEDENZA 1. Carta di Smith PREMESSA: per motivi che saranno chiari in seguito si ricorda che nel piano complesso, l equaione della generica circonferena di centro w 0 ( C ) e raggio R (

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

Progetto di un ltro passa-basso Butterworth su microstriscia

Progetto di un ltro passa-basso Butterworth su microstriscia Progetto di un ltro passa-basso Butterworth su microstriscia Pietro Giannelli 13 aprile 2008 Sommario Progetto di un ltro passa-basso Butterworth del III ordine a partire da un prototipo normalizzato a

Dettagli

Si vuole progettare un filtro passabanda in microstriscia con le seguenti specifiche:

Si vuole progettare un filtro passabanda in microstriscia con le seguenti specifiche: Si vuole progettare un filtro passabanda in microstriscia con le seguenti specifiche: Tipologia di filtro: equiripple Numero di poli: 5 Massimo ripple in banda: 0.5 db Frequenza centrale: 2.45 Ghz Banda

Dettagli

Corso di Microonde Esercizi su Linee di Trasmissione

Corso di Microonde Esercizi su Linee di Trasmissione Corso di Microonde Esercizi su Linee di Trasmissione Tema del 6.7.1999 Il carico resistivo R L è alimentato alla frequenza f =3GHz attraverso una linea principale di impedenza caratteristica Z 0 = 50 Ω

Dettagli

DIVISORI DI POTENZA E ACCOPPIATORI DIREZIONALI

DIVISORI DI POTENZA E ACCOPPIATORI DIREZIONALI Capitolo 6 DIVIORI DI POTENZA E ACCOPPIATORI DIREZIONALI 6. Divisori di potenza e gli accoppiatori direzionali I divisori di potenza e gli accoppiatori direzionali sono componenti a microonde passivi usati

Dettagli

LE LINEE DI TRASMISSIONE

LE LINEE DI TRASMISSIONE LE LINEE DI TRASMISSIONE Modello di una linea a parametri distribuiti Consideriamo il caso di una linea di trasmissione che può essere indifferentemente un doppino telefonico, una linea bifilare o un cavo

Dettagli

Antenne e Collegamento Radio

Antenne e Collegamento Radio Antenne e Collegamento Radio Trasmissione irradiata Oltre ad essere guidato attraverso le linee di trasmissione, il campo elettromagnetico si può propagare nello spazio (radiazione) Anche la radiazione

Dettagli

Progetto di Microonde. Accoppiatore di tipo rat-race. Relazione a cura di Caracciolo Etienne, Piccoli Riccardo, Gabriele Porro

Progetto di Microonde. Accoppiatore di tipo rat-race. Relazione a cura di Caracciolo Etienne, Piccoli Riccardo, Gabriele Porro Progetto di Microonde Accoppiatore di tipo rat-race Relazione a cura di Caracciolo Etienne, Piccoli Riccardo, Gabriele Porro 09/02/2009 Richieste del progetto Si vuole analizzare con MWOffice il comportamento

Dettagli

Appendice 1 MODI DI PROPAGAZIONE IN CAVI COASSIALI. b/a. Lunghezza d'onda critica in cavi coassiali per alcuni modi di propagazione ( e r =1 ).

Appendice 1 MODI DI PROPAGAZIONE IN CAVI COASSIALI. b/a. Lunghezza d'onda critica in cavi coassiali per alcuni modi di propagazione ( e r =1 ). Appendice 1 MODI DI PROPAGAZIONE IN CAVI COASSIALI I cavi coassiali oltre al modo di propagazione TEM consentono la propagazione anche con modi tipici delle guide d'onda. Due distinti gruppi di modi sono

Dettagli

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1)

Il comportamento di un amplificatore ideale, ad esempio di tensione, è descritto dalla relazione lineare V out = A V in (3.1) Capitolo 3 Amplificazione 3.1 Circuiti attivi Gli elementi circuitali considerati sino ad ora, sia lineari (resistenze, capacità, induttanze e generatori indipendenti), sia non lineari (diodi), sono detti

Dettagli

Progetto di Oscillatori a Microonde

Progetto di Oscillatori a Microonde Progetto di Oscillatori a Microonde Classificazione degli oscillatori Oscillatori a retroazione Condizione di oscillazione: Gloop = A (j )= 1 Gloop(j ) = 1, Gloop(j )=2n Oscillatori a resistenza negativa

Dettagli

antenna ΔV J b V o O : centro di fase dell antenna

antenna ΔV J b V o O : centro di fase dell antenna CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A. 2013-14 - MARCO BRESSAN 1 Antenne Riceventi Per determinare le caratteristiche di un antenna ricevente ci si avvale del teorema di reciprocità applicato al campo

Dettagli

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2 Elettronica II Modello per piccoli segnali del diodo a giunzione Valentino Liberali ipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema e-mail: [email protected] http://www.dti.unimi.it/

Dettagli

Capitolo 14. Il progetto di circuiti a microonde assistito da CAD

Capitolo 14. Il progetto di circuiti a microonde assistito da CAD Capitolo 14 Il progetto di circuiti a microonde assistito da CAD 14.1 Introduzione Il progetto di un circuito a microonde segue le stesse linee sia che si tratti di una rete di adattamento, di un filtro,

Dettagli

CLASSIFICAZIONE DELLE CONICHE AFFINI

CLASSIFICAZIONE DELLE CONICHE AFFINI CLASSIFICAZIONE DELLE CONICHE AFFINI Pre-requisiti necessari. Elementi di geometria analitica punti e rette nel piano cartesiano, conoscenza delle coniche in forma canonica). Risoluzione di equazioni e

Dettagli

Linee prive di perdite

Linee prive di perdite inee prive di perdite Una linea si dice priva di perdite se nel circuito equivalente risulta: R=G. Perché tale approssimazione sia valida deve risultare: α 1 essendo la lunghezza del tronco di linea che

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017

ISTITUTO ISTRUZIONE SUPERIORE L. EINAUDI ALBA ANNO SCOLASTICO 2016/2017 ISTITUTO ISTRUZIONE SUPERIORE "L. EINAUDI" ALBA ANNO SCOLASTICO 2016/2017 CLASSE 4 I Disciplina: Elettrotecnica ed Elettronica PROGETTAZIONE DIDATTICA ANNUALE Elaborata dai docenti: Linguanti Vincenzo,

Dettagli

Filtri in microstriscia

Filtri in microstriscia Filtri in microstriscia Corso di Componenti e Circuiti a Microonde Ing. Francesco Catalfamo 5-7 Novembre 006 Indice Circuiti risonanti accoppiati Una classica struttura di filtri passa basso: Filtro stepped-impedance

Dettagli

La buca di potenziale di altezza infinita.

La buca di potenziale di altezza infinita. La buca di potenziale di altezza infinita. Un caso semplice, ma interessante per le implicazioni, anche intuitive, che ne derivano, è quello della particella quantistica in una buca di potenziale. Consideriamo

Dettagli

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G.

L INDUZIONE ELETTROMAGNETICA. V Scientifico Prof.ssa Delfino M. G. L INDUZIONE ELETTROMAGNETICA V Scientifico Prof.ssa Delfino M. G. INDUZIONE E ONDE ELETTROMAGNETICHE 1. Il flusso del vettore B 2. La legge di Faraday-Neumann-Lenz 3. Induttanza e autoinduzione 4. I circuiti

Dettagli

Mezzi non omogenei. Corso di Microonde I A.A. 2004/2005

Mezzi non omogenei. Corso di Microonde I A.A. 2004/2005 Mezzi non omogenei Nelle microonde si usano spesso mezzi trasmissivi non omogenei; Lo studio di questi mezzi viene ricondotto al caso equivalente TEM mediante la definizione di opportuni parametri caratteristici;

Dettagli

Testi di riferimento

Testi di riferimento Testidiriferimento [1] Biorci G.: Fondamenti di elettrotecnica: circuiti. UTET, Torino, (1984) [2] Desoer A.C., Kuh E.S.: Fondamenti di teoria dei circuiti. Franco Angeli, Milano (1999) [3] Chua L. O.,

Dettagli

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a 5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale

Dettagli

Linee di trasmissione

Linee di trasmissione Linee di trasmissione Finora esperienza con circuiti a costanti concentrate. E un approssimazione, valida solo per lunghezze d onda dei segnali grandi rispetto alle dimensioni del circuito. Esempio Sinusoidale

Dettagli

Risonatori a microonde

Risonatori a microonde Risonatori a microonde Corso di Componenti e Circuiti a Microonde Ing. Francesco Catalfamo 11 Ottobre 6 Indice Circuiti risonanti serie e parallelo Fattore di qualità esterno: Q e Risonatori realizzati

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

La matrice delle correlazioni è la seguente:

La matrice delle correlazioni è la seguente: Calcolo delle componenti principali tramite un esempio numerico Questo esempio numerico puó essere utile per chiarire il calcolo delle componenti principali e per introdurre il programma SPAD. IL PROBLEMA

Dettagli

SISTEMI ELETTRONICI A RF (A.A )

SISTEMI ELETTRONICI A RF (A.A ) SISTEMI ELETTRONICI A RF (A.A. 2016-2017) Docenti: Ing. Pasquale Tommasino Prof. Stefano Pisa Orario Lezioni - Lunedì 12.00-14.00 AULA 6 -Martedì 10:00-12.00 AULA 6 - Mercoledì 12.00-14.00 AULA 6 LABORATORIO

Dettagli

Report Tecnico. Accoppiatore di Potenza Cilindrico

Report Tecnico. Accoppiatore di Potenza Cilindrico Report Tecnico Accoppiatore di Potenza Cilindrico Di seguito è riportata una linea coassiale (quindi in modo TEM) adattata a 50 Ω (lunghezza di 500mm). Il dielettrico interno è aria. 45 mm 104 mm Le due

Dettagli

Indice. XI Prefazione. 1 Capitolo 1 METODO CIRCUITALE: COMPONENTI E LEGGI DI KIRCHHOFF Modello circuitale dei fenomeni elettromagnetici

Indice. XI Prefazione. 1 Capitolo 1 METODO CIRCUITALE: COMPONENTI E LEGGI DI KIRCHHOFF Modello circuitale dei fenomeni elettromagnetici XI Prefazione 1 Capitolo 1 METODO CIRCUITALE: COMPONENTI E LEGGI DI KIRCHHOFF 1 1.1 Modello circuitale dei fenomeni elettromagnetici 1.1.1 Modello a parametri concentrati, p. 1-1.1.2 Modello a parametri

Dettagli

Corso di elettrotecnica Materiale didattico: reti a due porte

Corso di elettrotecnica Materiale didattico: reti a due porte Corso di elettrotecnica Materiale didattico: reti a due porte A. Laudani 8 gennaio 2007 Si consideri una rete accessibile da quattro morsetti distinti (1), (2), (3) e (4) e si supponga che siano presenti

Dettagli

Costruzioni in zona sismica

Costruzioni in zona sismica Costruzioni in zona sismica Lezione 8 Sistemi a più gradi di liberà: Oscillazioni libere in assenza di smorzamento N equazioni differenziali omogenee accoppiate tramite la matrice delle masse, la matrice

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

Esercitazione 8 : LINEE DI TRASMISSIONE

Esercitazione 8 : LINEE DI TRASMISSIONE Esercitazione 8 : LINEE DI TRASMISSIONE Specifiche Scopo di questa esercitazione è verificare il comportamento di spezzoni di linea in diverse condizioni di pilotaggio e di terminazione. L'esecuzione delle

Dettagli

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1

Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà. Prof. Adolfo Santini - Dinamica delle Strutture 1 Risposta in vibrazioni libere di un sistema lineare viscoso a più gradi di libertà Prof. Adolfo Santini - Dinamica delle Strutture 1 Vibrazioni libere non smorzate 1/6 Le equazioni del moto di un sistema

Dettagli

Esercizi su Autovalori e Autovettori

Esercizi su Autovalori e Autovettori Esercizi su Autovalori e Autovettori Esercizio n.1 5 A = 5, 5 5 5 Esercizio n.6 A =, Esercizio n.2 4 2 9 A = 2 1 8, 4 2 9 Esercizio n.7 6 3 3 A = 6 3 6, 3 3 6 Esercizio n.3 A = 4 6 6 2 2, 6 6 2 Esercizio

Dettagli

Ingegneria dei Sistemi Elettrici_6f

Ingegneria dei Sistemi Elettrici_6f Ingegneria dei Sistemi Elettrici_6f Guide d onda e cavità risonanti Sono state studiate le proprietà caratteristiche delle onde elettromagnetiche trasversali guidate da linee di trasmissione. Una delle

Dettagli

Adattamento di un carico ad alta frequenza

Adattamento di un carico ad alta frequenza Adattamento di un carico ad alta frequenza Con il termine adattamento di un carico si intende la sintesi di una rete due porte che, chiusa sulla seconda porta con un carico di valore, presenti alla prima

Dettagli

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 28 Febbraio 2013

Fisica dei mezzi trasmissivi Prof. G. Macchiarella Prova del 28 Febbraio 2013 Fisia dei mezzi trasmissivi Prof. G. Mahiarella Prova del 8 Febbraio 013 1 3 4 non srivere nella zona soprastante COGNOME E NOME MTRICO FIRM Eserizio 1 Un generatore, la ui tensione varia nel tempo ome

Dettagli

Impedenze ed Ammettenze 1/5

Impedenze ed Ammettenze 1/5 Impedenze ed Ammettenze 1/5 V=Z I. Rappresentazione alternativa I=Y V Z ed Y sono numeri complessi Bipolo di impedenza Z = R+ j X Resistenza Reattanza Conduttanza 1 Y = = G+ jb Z Suscettanza Lezione 2

Dettagli

ESERCITAZIONI DI AZIONAMENTI ELETTRICI. Circuiti equivalenti della macchina asincrona.

ESERCITAZIONI DI AZIONAMENTI ELETTRICI. Circuiti equivalenti della macchina asincrona. ESERCITAZIONI DI AZIONAMENTI ELETTRICI Circuiti equivalenti della macchina asincrona. 1. Le prove a vuoto e a rotore bloccato di una macchina asincrona, eseguite in laboratorio, hanno dato i seguenti risultati:

Dettagli

Accoppiatore direzionale

Accoppiatore direzionale Aoppiatore direzionale 1 Rete 4 porte 3 4 Un aoppiatore direzionale ideale è un giunzione a 4 bohe on Adattamento alle porte quando sono hiuse sul ario di riferimento (ioè S 11 =S =S 33 =S 44 =) Due oppie

Dettagli

In questo articolo viene descritto come si è operato e vengono commentati i risultati.

In questo articolo viene descritto come si è operato e vengono commentati i risultati. Valutazione di un trasformatore di impedenza - Un utile impiego per il VNA di N2PK La valutazione di un trasformatore di impedenza può essere effettuata in diversi modi: con l analizzatore vettoriale di

Dettagli

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ

= (cioè le due terne di numeri direttori ( devono essere ) proporzionali). Tale uguaglianza non è verificata, poiché risulta ρ Alcuni esercizi sullo spazio euclideo R Nel seguito R indicherà lo spazio euclideo tridimensionale standard, dotato del riferimento cartesiano naturale (pag 56-57 del libro Nota: gli esercizi proposti

Dettagli

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013

Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 Argomenti per esame orale di Fisica Generale (Elettromagnetismo) 9 CFU A.A. 2012/2013 1. Il campo elettrico e legge di Coulomb: esempio del calcolo generato da alcune semplici distribuzioni. 2. Il campo

Dettagli

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza

Principi di ingegneria elettrica. Reti in regime sinusoidale. Lezione 13 a. Impedenza Ammettenza Principi di ingegneria elettrica Lezione 3 a Reti in regime sinusoidale mpedenza Ammettenza Legge di Ohm simbolica n un circuito lineare comprendente anche elementi dinamici (induttori e condensatori)

Dettagli

ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE

ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE ONDE PROGRESSIVE E REGRESSIVE, ONDE STAZIONARIE Nel paragrafo 4 del capitolo «e onde elastiche» sono presentate le equazioni e y = acos T t +0l (1) y = acos x+0l. () a prima descrive l oscillazione di

Dettagli

Indice del Volume I. Introduzione Generalità sugli impianti elettrici

Indice del Volume I. Introduzione Generalità sugli impianti elettrici Indice del Volume I Introduzione Generalità sugli impianti elettrici I.1 Produzione, trasporto, distribuzione, utilizzazione dell energia elettrica... 1 I.1.1 Impianti di produzione..... 2 I.1.2 Impianti

Dettagli

10 Il problema dell adattamento d impedenza Introduzione

10 Il problema dell adattamento d impedenza Introduzione 0 Il problema dell adattamento d impedenza Introduzione Tra le differenti problematiche relative alla propagazione di energia nelle guide d onda, un argomento di notevole rilevanza pratica è l adattamento

Dettagli

ONDE ELETTROMAGNETICHE

ONDE ELETTROMAGNETICHE Fisica generale II, a.a. 01/014 OND LTTROMAGNTICH 10.1. Si consideri un onda elettromagnetica piana sinusoidale che si propaga nel vuoto nella direzione positiva dell asse x. La lunghezza d onda è = 50.0

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a Prova scritta del TESTO E SOLUZIONI UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica GE110 - Geometria 1 a.a. 2011-2012 Prova scritta del 28-1-2013 TESTO E SOLUZIONI 1. Per k R considerare il sistema lineare X 1 X 2 + kx 3 =

Dettagli

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0

Compito Parziale di Algebra lineare e Geometria analitica. 2x + 3y + 2z = 0 x y z = 0 Compito Parziale di Algebra lineare e Geometria analitica ) Dire se il seguente sottoinsieme di R 3 H = (x; y; z) R 3 : x + 3y + z = x y z = è o non un sottospazio vettoriale di R 3 e eventualmente calcolarne

Dettagli

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale

Dettagli

Classificazione delle coniche.

Classificazione delle coniche. Classificazione delle coniche Ora si vogliono studiare i luoghi geometrici rappresentati da equazioni di secondo grado In generale, non è facile riconoscere a prima vista di che cosa si tratta, soprattutto

Dettagli

Laboratorio di Elettronica Dispositivi elettronici e circuiti Linee di trasmissione Proprieta' e fenomenologia dei semiconduttori. Dispositivi a semiconduttore: * diodo a giunzione * transistor bjt * transistor

Dettagli

Antenna stampata singola in polarizzazione circolare. Antenne stampate: adattamento Lamda/4-Lamda/8

Antenna stampata singola in polarizzazione circolare. Antenne stampate: adattamento Lamda/4-Lamda/8 5 Esercitazione Antenna stampata singola in polarizzazione circolare Antenne stampate: adattamento Lamda/4-Lamda/8 Progettazione di una antenna singola in Polarizzazione Circolare Progettare un antenna

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

INTERFERENZA - DIFFRAZIONE

INTERFERENZA - DIFFRAZIONE INTERFERENZA - F. Due onde luminose in aria, di lunghezza d onda = 600 nm, sono inizialmente in fase. Si muovono poi attraverso degli strati di plastica trasparente di lunghezza L = 4 m, ma indice di rifrazione

Dettagli

Capitolo 3. Tecniche di adattamento

Capitolo 3. Tecniche di adattamento Capitolo 3 Tecniche di adattamento 3.1 Introduzione Nei circuiti a microonde si utilizzano essenzialmente due tecniche di adattamento: l'adattamento coniugato, con il quale si cerca di ottenere il massimo

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Soluzioni Eletromagnetiche per l Hi-Tech

Soluzioni Eletromagnetiche per l Hi-Tech Soluzioni Eletromagnetiche per l Hi-Tech Materiale di supporto: cavi coassiali e guide circolari Prof. Luca Catarinucci Innovation Engineering Department University of Salento - Lecce - Italy Cavo coassiale

Dettagli

RISONANZA. Fig.1 Circuito RLC serie

RISONANZA. Fig.1 Circuito RLC serie RISONANZA Risonanza serie Sia dato il circuito di fig. costituito da tre bipoli R, L, C collegati in serie, alimentati da un generatore sinusoidale a frequenza variabile. Fig. Circuito RLC serie L impedenza

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1

ẋ 1 = 2x 1 + (sen 2 (x 1 ) + 1)x 2 + 2u (1) y = x 1 Alcuni esercizi risolti su: - calcolo dell equilibrio di un sistema lineare e valutazione delle proprietà di stabilità dell equilibrio attraverso linearizzazione - calcolo del movimento dello stato e dell

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: [email protected]

Dettagli

Convezione Conduzione Irraggiamento

Convezione Conduzione Irraggiamento Sommario Cenni alla Termomeccanica dei Continui 1 Cenni alla Termomeccanica dei Continui Dai sistemi discreti ai sistemi continui: equilibrio locale Deviazioni dalle condizioni di equilibrio locale Irreversibilità

Dettagli

Misura di impedenze Impedenza

Misura di impedenze Impedenza Misura di impedenze Impedenza in un bipolo misura opposizione al passaggio di corrente. Im Re anche in quadripoli o in sistemi a più terminali: Es.: impedenza di trasferimento: è espressa da un numero

Dettagli

I SEGNALI SINUSOIDALI

I SEGNALI SINUSOIDALI I SEGNALI SINUSOIDALI I segnali sinusoidali sono i segnali più importanti nello studio dell elettronica e dell elettrotecnica. La forma d onda sinusoidale è una funzione matematica indispensabile per interpretare

Dettagli

1 ANTENNE IN RICEZIONE SU PIANO DI MASSA

1 ANTENNE IN RICEZIONE SU PIANO DI MASSA 1 ANTENNE IN RICEZIONE SU PIANO DI MASSA Esaminiamo il problema di una antenna in ricezione in presenza di un C.E.P. piano. Supponiamo di avere un antenna filiforme verticale investita da un campo elettromagnetico

Dettagli

Accoppiatore direzionale

Accoppiatore direzionale Aoppiatore direzionale 1 Rete 4 porte 3 4 Un aoppiatore direzionale ideale è un giunzione a 4 bohe on Adattamento alle porte quando sono hiuse sul ario di riferimento (ioè S 11 =S =S 33 =S 44 =) Due oppie

Dettagli

Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente p. 2

Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente p. 2 Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: [email protected]

Dettagli

Caratterizzazione in laboratorio di componentistiche a microonde

Caratterizzazione in laboratorio di componentistiche a microonde Caratterizzazione in laboratorio di componentistiche a microonde Dott.ssa Paola Battaglia Dott. Cristian Franceschet Università degli Studi di Milano Dipartimento di Fisica Cosa trattiamo oggi Caratterizzazione

Dettagli

Parabola ************************* La curva chiamata PARABOLA si rappresenta con la seguente funzione matematica (1)

Parabola ************************* La curva chiamata PARABOLA si rappresenta con la seguente funzione matematica (1) ttività di recupero conoscenze di ase) araola Oiettivi Saper riconoscere la funzione che esprime la conica. Saper tracciare il grafico di una paraola. Saper determinare gli elementi caratterizzanti una

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 8 aprile 014 Esercizio 1 Si consideri E dotato di un riferimento cartesiano ortonormale di coordinate (x, y) e origine O. Si

Dettagli