Esercizi sulle progressioni
|
|
|
- Cesare Pippi
- 8 anni fa
- Visualizzazioni
Transcript
1 Esercizi sulle progressioni Esercizio 1 Il perimetro di un trapezio è di 26 m. La somma della lunghezza dei lati minori è uguale a 7 m. Determinare le misure dei lati sapendo che sono progressione aritmetica. Soluzione Il termine generico di una progressione aritmetica è P (n) = P (0) + nd dove d viene detta ragione ed è data dalla differenza tra un termine e quello che lo precede, qualunque termine si consideri. Nel nostro caso i lati del trapezio sono i primi 4 termini di una progressione aritmetica P (0) = P (0) P (1) = P (0) + d P (2) = P (0) + 2d P (3) = P (0) + 3d. Inoltre sappiamo che la somma dei lati misura 26 m e che la somma dei due lati minori misura 7 m P (0) + P (1) = 7 P (0) + P (1) + P (2) + P (3) = 26. Nella seconda equazioni si può sostituire P 0) + P (1) = 7 e si avrà P (0) + P (1) = P (2) + P (3) = 26 P (0) + P (1) = 7 P (2) + P (3) = 19 sostituendo a ogni elemento il suo corrispettivo si avrà P (0) + P (0) + d = 7 2P (0) + d = 7 P (0) + 2d + P (0) + 3d = 19 2P (0) + 5d = 19 2P (0) = 7 d 2P (0) = 7 d 2P (0) + 5d = 19 7 d + 5d = 19 2P (0) = 7 d 2P (0) = 7 d 2P (0) = 4 4d = 12 d = 3 d = 3 1
2 Segue che d = 3. P (n) = 2 + 3n P (1) = = 5 P (2) = = 8 P (3) = = 11. Per verificare che questo risultato è giusto basta notare che P (0) + P (1) = 7 e P (0) + P (1) + P (2) + P (3) = 26 come ipotizzato. Esercizio 2 Il perimetro di un trapezio è di 24 m. La somma della lunghezza dei primi tre lati è uguale a 15 m. Determinare le misure dei lati sapendo che sono progressione aritmetica. Soluzione Sappiamo che la somma dei lati misura 24 m e che la somma dei primi tre lati misura 15 m, ragionando come per nell Esercizio 1 si ha: P (0) + P (1) + P (2) = 15 P (0) + P (1) + P (2) + P (3) = 24. Nella seconda equazioni si può sostituire P (0) + P (1) + P (2) = 15 e si avrà P (0) + P (1) + P (2) = P (3) = 24 P (0) + P (1) + P (2) = 15 P (3) = 9 sostituendo a ogni elemento il suo corrispettivo si avrà P (0) + P (0) + d + P (0) + 2d = 15 3P (0) + 3d = 15 P (0) + 3d = 9 P (0) + 3d = 9 P (0) = 5 d 5 d + 3d = 9 P (0) = 5 d P (0) = 5 d 2d = 4 d = 2 P (0) = 5 2 d = 2 2
3 Segue che P (0) = 3 d = 2. P (n) = 3 + 2n P (0) = 3 P (1) = = 5 P (2) = = 7 P (3) = = 9. Per verificare che questo risultato è giusto basta notare che P (0)+P (1)+P (2) = 15 e P (0) + P (1) + P (2) + P (3) = 24 come ipotizzato. Esercizio 3 Il perimetro di un trapezio è di 80 m. La somma della lunghezza dei lati minori è uguale a 8 m. Determinare le misure dei lati sapendo che sono progressione geometrica. Soluzione Il termine generico di una progressione geometrica è P (n) = P (0)q n dove q viene detta ragione ed è data dal rapporto tra un termine e quello che lo precede, qualunque termine si consideri. Nel nostro caso i lati del trapezio sono i primi 4 termini di una progressione geometrica P (0) = P (0) P (1) = P (0)q P (2) = P (0)q 2 P (3) = P (0)q 3. Inoltre sappiamo che la somma dei lati misura 80 m e che la somma dei due lati minori misura 8 m P (0) + P (1) + P (2) + P (3) = 80. 3
4 Nella seconda equazioni si può sostituire e si avrà 8 + P (2) + P (3) = 80 P (2) + P (3) = 72 sostituendo a ogni elemento il suo corrispettivo si avrà P (0)q 2 + P (0)q 3 = 72 (P (0) + P (0)q) q 2 = 72 dove nella seconda equazione abbiamo messo in evidenza q 2. Ora il termine tra parentesi coincide col primo membro della prima equazione si può sostituire a questa quantità 8 e si avrà 8q 2 = 72 q 2 = 9 q = ±3. A questo punto occorre osservare che la soluzione q = 3 non ha senso perché in un trapezio non esistono lati negativi. Tuttavia se non abbiamo a che fare con un trapezio questa soluzione non va scartata. Consideriamo il caso. Si ha P (0) + 3P (0) = 8 4P (0) = 8. Avremo che P (n) = 2 3 n P (1) = 2 3 = 6 P (2) = = 18 P (3) = = 54. Per verificare che questo risultato è giusto basta notare che e P (0) + P (1) + P (2) + P (3) = 80 come ipotizzato. Esercizio 4 La somma dei primi quattro termini di una progressione geometrica è 80; la somma dei due termini minori è uguale a 8. Determinare i valori dei quattro termini. 4
5 Soluzione Sappiamo che la somma dei termini è 80 e che la somma dei due termini minori è 8, ragionando come nell Esercizio 3 si ha: P (0) + P (1) + P (2) + P (3) = 80. Nella seconda equazioni si può sostituire e si avrà 8 + P (2) + P (3) = 80 P (2) + P (3) = 72 sostituendo a ogni elemento il suo corrispettivo si avrà P (0)q 2 + P (0)q 3 = 72 (P (0) + P (0)q) q 2 = 72 dove nella seconda equazione abbiamo messo in evidenza q 2. Ora il termine tra parentesi coincide col primo membro della prima equazione si può sostituire a questa quantità 8 e si avrà 8q 2 = 72 q 2 = 9 q = ±3. Consideriamo il caso Caso 1: q = 3. Si ha q = 3 P (0) 3P (0) = 8 q = 3 2P (0) = 8 q = 3 P (0) = 4 q = 3 Avremo che P (n) = 4 ( 3) n P (0) = 4 P (1) = 4 ( 3) = 12 P (2) = 4 ( 3) 2 = 36 P (3) = 4 )( 3) 3 =
6 Per verificare che questo risultato è giusto basta notare che e P (0) + P (1) + P (2) + P (3) = 80 come ipotizzato. Caso 2:. Si ha q = ±3 P (0) + 3P (0) = 8 4P (0) = 8 Avremo che P (n) = 2 3 n P (1) = 2 3 = 6 P (2) = = 18 P (3) = = 54. Per verificare che questo risultato è giusto basta notare che e P (0) + P (1) + P (2) + P (3) = 80 come ipotizzato. Esercizio 5 La somma dei primi quattro termini di una progressione geometrica è 60; la somma dei due termini maggiori è uguale a 48. Determinare i valori dei quattro termini. Soluzione Sappiamo che la somma dei termini è 60 e che la somma dei due termini maggiori è 48, ragionando come nell Esercizio 3 si ha: P (2) + P (3) = 48 P (0) + P (1) + P (2) + P (3) = 60. Nella seconda equazioni si può sostituire P (2) + P (3) = 48 e si avrà P (2) + P (3) = 48 P (0) + P (1) + 48 = 60 P (2) + P (3) = 48 P (0) + P (1) = 12 6
7 sostituendo a ogni elemento il suo corrispettivo si avrà P (0)q 2 + P (0)q 3 = 48 P (0) + P (0)q = 12 q 2 (P (0) + P (0)q) = 48 P (0) + P (0)q = 12 dove nella prima equazione abbiamo messo in evidenza q 2. Ora il termine tra parentesi coincide col primo membro della seconda equazione si può sostituire a questa quantità 12 e si avrà 12q 2 = 48 P (0) + P (0)q = 12 q 2 = 4 P (0) + P (0)q = 12 q = ±2 P (0) + P (0)q = 12 A questo punto occorre distinguere i due casi q = 2 e q = 2. Caso 1: q = 2. Si ha q = 2 P (0) + P (0)q = 12 q = 2 P (0) 2P (0) = 12 q = 2 P (0) = 12 Avremo che P (n) = 12 ( 2) n P (0) = 12 P (1) = 12 ( 2) = 24 P (2) = 12 ( 2) 2 = 48 P (3) = 12 ( 2) 3 = 96. Per verificare che questo risultato è giusto basta notare che P (2) + P (3) = 48 e P (0) + P (1) + P (2) + P (3) = 60 come ipotizzato. Caso 2: q = 2. Si ha q = 2 q = 2 q = 2 P (0) + P (0)q = 12 P (0) + 2P (0) = 12 3P (0) = 12 q = 2 P (0) = 4 Avremo che P (n) = 4 2 n 7
8 P (0) = 4 P (1) = 4 2 = 8 P (2) = = 16 P (3) = = 32. Per verificare che questo risultato è giusto basta notare che P (2) + P (3) = 48 e P (0) + P (1) + P (2) + P (3) = 60 come ipotizzato. 8
Soluzione. Soluzione. Soluzione. Soluzione
SUCCESSIONI E PROGRESSIONI Esercizio 78.A, 5, 8,, 4, La differenza tra ogni termine e il suo precedente è sempre uguale a 3. Pertanto si tratta di una progressione aritmetica crescente di ragione 3. La
Sistema di due equazioni di primo grado in due incognite
Sistema di due equazioni di primo grado in due incognite Problema Un trapezio rettangolo di area cm ha altezza di 8 cm. Sapendo che il triplo della base minore è inferiore di cm al doppio della base maggiore
Problemi di secondo grado con argomento geometrico (aree e perimetri)
Problemi di secondo grado con argomento geometrico (aree e perimetri) Impostare con una o due incognite 1. Un rettangolo ha perimetro 10 cm ed è tale che l area gli raddoppia aumentando di 1 cm sia la
CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica
ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEDE DI VIA FATTORI CORSI I.D.E.I. - LA PARABOLA CLASSI QUARTE Prof. E. Modica [email protected] DEFINIZIONI Definizione. Dicesi parabola il luogo
Test sui teoremi di Euclide e di Pitagora
Test sui teoremi di Euclide e di Pitagora I test proposti in questa dispensa riguardano il teorema di Pitagora e i due teoremi di Euclide, con le applicazioni alle varie figure geometriche. Vengono presentate
se d=0 Dimostrazione In una progressione aritmetica la differenza tra ogni termine e quello predente è uguale a d:
Progressioni aritmetiche Progressioni Una progressione aritmetica è una successione numerica tale che la differenza tra ogni termine e il suo precedente è costante. Tale differenza costante è detta ragione,
B7. Problemi di primo grado
B7. Problemi di primo grado B7.1 Problemi a una incognita Per la risoluzione di problemi è possibile usare le equazioni di primo grado. Il procedimento può essere solo indicativo; è fondamentale fare molta
LA RETTA NEL PIANO CARTESIANO
LA RETTA NEL PIANO CARTESIANO LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un verso di percorrenza;
Una rappresentazione grafica indicativa della parabola nel piano cartesiano è data dalla figura seguente.
La paraola Definizione: si definisce paraola il luogo geometrico dei punti del piano equidistanti da un punto fisso detto fuoco e da una retta fissa detta direttrice. Una rappresentazione grafica indicativa
C I R C O N F E R E N Z A...
C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della
Funzioni implicite - Esercizi svolti
Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita
UNITÀ DIDATTICA 5 LA RETTA
UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme
Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. D contorno
I POLIGONI Si definisce poligono la parte di piano delimitata da una spezzata semplice chiusa. E D contorno La linea spezzata chiusa che delimita il F C poligono si chiama contorno I punti A, B, C, D,
Esercizi svolti sulla parabola
Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice
GEOMETRIA ANALITICA. Il Piano cartesiano
GEOMETRIA ANALITICA La geometria analitica consente di studiare e rappresentare per via algebrica informazioni di tipo geometrico. Lo studio favorisce una più immediata visualizzazione di informazioni,
GEOMETRIA ANALITICA
GEOMETRIA ANALITICA [email protected] LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate cartesiane su una retta r, è necessario considerare: un punto O detto origine; un
GEOMETRIA ANALITICA Prof. Erasmo Modica
ISTITUTO PROVINCIALE DI CULTURA E LINGUE NINNI CASSARÀ SEZIONE DISTACCATA DI CEFALÙ CLASSE V C GEOMETRIA ANALITICA Prof. Erasmo Modica LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate
Mutue posizioni della parabola con gli assi cartesiani
Mutue posizioni della parabola con gli assi cartesiani L equazione di una parabola generica è data da: Consideriamo l equazione che definisce i punti di intersezione della parabola con l asse delle ascisse
Operazioni tra matrici e n-uple
CAPITOLO Operazioni tra matrici e n-uple Esercizio.. Date le matrici 0 4 e dati λ = 5, µ =, si calcoli AB, BA, A+B, B A, λa+µb. Esercizio.. Per ognuna delle seguenti coppie di matrici A, B e scalari λ,
Determina il terzo vertice A di un triangolo di cui. l ortocentro
La Retta Esercizi Esercizio 6. Determina il terzo vertice A di un triangolo di cui sono noti due vertici ; 1, 1; e l ortocentro ;. Soluzione 1 Analizziamo il problema ragionando, per semplicità, su un
Progressioni aritmetiche
Progressioni aritmetiche Cominciamo con due esempi: Esempio Consideriamo la successione di numeri: 3, 7,,, 9, 23 + + + + + La successione è tale che si passa da un termine al successivo aggiungendo sempre
IL Calcolo letterale (o algebrico). (teoria pag ;esercizi pag , es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle..
IL Calcolo letterale (o algebrico). (teoria pag. 29 31;esercizi pag. 100 103, es.59 66) 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il
2. Determina l equazione della circonferenza passante per i punti A ( 2; 4), B ( 1; 3) ed avente centro sulla retta di equazione 2x 3y + 2 = 0.
CLASSE 3^ C LICEO SCIENTIFICO Novembre 01 La circonferenza 1. Ricava l equazione di ciascuna delle circonferenze rappresentate, spiegando in maniera esauriente il procedimento che seguirai, prima di svolgere
Versione di Controllo
Università degli Studi di Trento test di ammissione ai corsi di laurea in Fisica - Matematica - Informatica Ingegneria dell Informazione e Organizzazione d Impresa Ingegneria dell Informazione e delle
Geometria figure piane Raccolta di esercizi
Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha
k l equazione diventa 2 x + 1 = 0 e ha unica soluzione
a B 3 Compito del Q 8 maggio 009 A) Equazioni con parametro. Data l equazione ( k + k ) + k + 0 determinare il valore di k in ciascuno dei seguenti casi. L equazione si abbassa di grado (risolvere l equazione
Geometria Analitica Domande e Risposte
Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano
Kangourou della Matematica 2017 Coppa Kangourou a squadre Finale Cervia, 7 maggio Quesiti
Kangourou della Matematica 2017 Coppa Kangourou a squadre Finale Cervia, 7 maggio 2017 Quesiti 1. Speciale Chiamiamo numero speciale un numero intero (positivo) di quattro cifre (significative) tale che
Esercizi sullo scambio termico per irraggiamento
Esercizi sullo scambio termico per irraggiamento 3 giugno 2013 Esercizio 1 Si considerino due dischi paralleli con D = 0,6 m, disposti direttamente l uno sull altro, ad una distanza L=0,4m, in modo che
SESSIONE SUPPLETIVA QUESTIONARIO QUESITO 1
www.matefilia.it SESSIONE SUPPLETIVA 216 - QUESTIONARIO QUESITO 1 Si consideri questa equazione differenziale: y + 2y + 2y = x. Quale delle seguenti funzioni ne è una soluzione? Si giustifichi la risposta.
Problemi sulla circonferenza verso l esame di stato
Problemi sulla circonferenza verso l esame di stato * * * n. 0 pag. 06 a) Scrivi l equazione della circonferenza γ 1 di centro P ; ) e passante per il punto A0; 1). b) Scrivi l equazione della circonferenza
LE COORDINATE CARTESIANE
CORSO ZERO DI MATEMATICA per Ing. Chimica e Ing. delle Telecomunicazioni GEOMETRIA ANALITICA Prof. Erasmo Modica [email protected] LE COORDINATE CARTESIANE Quando si vuole fissare un sistema di coordinate
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04/11/ 13
Soluzione esercizi sulle funzioni - 5 a E Liceo Scientifico - 04// 3 Esercizio. Si consideri la funzione ) se 0 f) e se 0. e si verifichi che non è continua in 0. Che tipo di discontinuità presenta in
www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di 2 grado 1
www.matematicamente.it Verifica classe II liceo scientifico: equazioni, disequazioni, problemi di grado 1 Verifica di matematica, classe II liceo scientifico Equazioni di secondo grado, equazioni frazionarie,
Appunti ed esercizi di geometria analitica PRIMA PARTE
Appunti ed esercizi di geometria analitica PRIMA PARTE Per la teoria studiare su il libro di testo La retta e i sistemi lineari, modulo E, da pagina 594 a pagina 597. Esercizi da pagina 617 a pagina 623.
1) Premessa: Al posto dei numeri posso utilizzare delle.. m) La differenza tra due numeri qualsiasi:...
IL Calcolo letterale ( o algebrico ). 1) Premessa: Al posto dei numeri posso utilizzare delle.. Esempi:. 2) Introduzione. a) Un numero qualsiasi: b) Il doppio di un numero qualsiasi:. c) Il triplo di un
Unità Didattica N 9 : La parabola
0 Matematica Liceo \ Unità Didattica N 9 La parabola Unità Didattica N 9 : La parabola ) La parabola ad asse verticale ) La parabola ad asse orizzontale 5) Intersezione di una parabola con una retta 6)
ˆ b, si usa la convenzione di prendere. come verso positivo quello antiorario e come verso negativo quello orario.
Capitolo 4 Le rotazioni 4.1 Richiami di teoria E' opportuno ricordare che, dato un angolo orientato ao ˆ b, si usa la convenzione di prendere come verso positivo quello antiorario e come verso negativo
PROBLEMI DI SECONDO GRADO: ESEMPI
PROBLEMI DI SECONDO GRADO: ESEMPI Problema 1 Sommando al triplo di un numero intero il quadrato del suo consecutivo si ottiene il numero 9. Qual è il numero? Il campo di accettabilità delle soluzioni è,
RISPOSTE MOTIVATE QUIZ D AMMISSIONE MATEMATICA
RISPOSTE MOTIVATE QUIZ D AMMISSIONE 1999-2000 MATEMATICA 76. A cosa è uguale: a-b? A) a-b = (- b-a) B) a-b = (- a-b) C) a-b = (a/b) D) a-b = -( b- a) E) a-b = 1/(ab) L espressione a-b costituisce un polinomio,
Soluzioni dei quesiti della maturità scientifica A.S. 2007/2008
Soluzioni dei quesiti della maturità scientifica A.S. 007/008 Nicola Gigli Sun-Ra Mosconi 19 giugno 008 1. La proposizione è falsa. Per trovare un controesempio ad essa, si consideri un qualunque piano
Problema Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo.
SIMILITUDINE Problemi Problema 8.179 Un triangolo rettangolo ha l angolo =60. La bisettrice dell angolo msura 6. Calcola il perimetro del triangolo. La bisettrice divide l angolo =60 in due angoli di 30,
Stabilire se il punto di coordinate (1,1) appartiene alla circonferenza centrata nell origine e di raggio 1.
Definizione di circonferenza e cerchio. Equazione della circonferenza centrata in O e di raggio R. Esercizi. La circonferenza e il cerchio Definizioni: dato un punto C nel piano cartesiano e dato un numero
CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA
CORSO DI LAUREA IN INGEGNERIA EDILE/ARCHITETTURA FOGLIO DI ESERCIZI 1 GEOMETRIA 2009/10 Esercizio 1.1 (2.2). Determinare l equazione parametrica e Cartesiana della retta dello spazio (a) Passante per i
ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.
. Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione
Fila A 1. Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni:
LS Fila A Determina l insieme delle soluzioni reali per ciascuna delle seguenti equazioni: NB Ciascun procedimento risolutivo si deve concludere con la frase L'insieme delle soluzioni è a) Trasformando
La retta nel piano cartesiano
La retta nel piano cartesiano Abbiamo visto come, fissato un sistema di riferimento, a ciascun punto sia possibile associare una coppia ordinata di numeri reali (le sue coordinate). Se adesso consideriamo
1 Geometria analitica nel piano
Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )
Buone Vacanze! Compiti per le vacanze. Classe II A
Compiti per le vacanze Classe II A Indicazioni Procurati un quaderno a quadretti, dove eseguirai tutti gli esercizi. Se le espressioni non ti dovessero riuscire ritenta almeno tre volte sul quaderno Nei
ESERCITAZIONE SULLE RETTE CON DERIVE
ESERCITAZIONE SULLE RETTE CON DERIVE Dati i punti : A (,) B (6,-) C (-3,-3) determinare:. il perimetro del triangolo avente come vertici i punti A,B,C. l area del triangolo avente come vertici i punti
I quadrati sono 5. Esercizio pagina 198 numero 119 Calcola la misura del perimetro dell'area del trapezio in figura
Considera il piano cartesiano. Quanti sono i quadrati aventi un vertice in (-1;-1) e tali che uno degli assi coordinati sia asse di simmetria del quadrato stesso? I quadrati sono 5 Esercizio pagina 198
Triangolo rettangolo
Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto sen OP cos tg OA cateto OP PA cateto OA cateto opposto ad ipotenusa
246 PROBLEMI GEOMETRICI DI 2 GRADO - ESEMPI SVOLTI In un triangolo isoscele la somma di base e altezza è 10 cm, e l area è di 12 cm
46 PROBLEMI GEOMETRICI DI GRADO - ESEMPI SVOLTI In un triangolo isoscele la somma di base e altezza è 10 cm, e l area è di 1 cm. Trovare il perimetro. Disegno Dati e richieste del problema CA CB CH AB
1 Cambiamenti di riferimento nel piano
1 Cambiamenti di riferimento nel piano Siano date due basi ortonormali ordinate di V : B = ( i, j) e B = ( i, j ) e supponiamo che i = a i + b j j = c i + d j allora per un generico vettore v V abbiamo
2 di quello dela circonferenza data. Scrivere le
PROBLEMA. Raccolta di problemi sulla circonferenza Scritta l equazione della circonferenza con centro in ( ) C e passante per l origine O, si conducano per O la retta a di equazione + y indicando con A
ESERCIZI SULLE DISEQUAZIONI I
ESERCIZI SULLE DISEQUAZIONI I Risolvere le seguenti disequazioni: 1 1) { x < x + 1 4x + 4 x ) { x + 1 > x 4x x 10 ) x 4 x 5 4x + > ; 4) ; 5) x 1 x + 1 x + 1 0 ) x > x 0 7) x > 4x + 1; 8) 4 5 x 1 < 1 x
12BHD - Informatica (I anno Ingegneria) - esercizi sulle funzioni logiche - v. 1.0
Esercizio 1 Semplificare la seguente espressione ooleana: a (b + c) + b (a + c) pplicando le proprietà dell algebra ooleana: [ a + b c ] a b + a c + a b + b c = a (b + b) + a c + b c = a 1 + a c + b c
RIPASSO DI MATEMATICA FRAZIONI
SOMMA a) Trovo m.c.m.tra i denominatori b) il risultato diventa il nuovo denominatore RIPASSO DI MATEMATICA FRAZIONI a) eseguo la divisione tra il nuovo denominatore con il denominatore b) moltiplico il
Esercitazione: 16 novembre 2009 SOLUZIONI
Esercitazione: 16 novembre 009 SOLUZIONI Esercizio 1 Scrivere [ ] equazione vettoriale, parametrica [ ] e cartesiana della retta passante 1 per il punto P = e avente direzione d =. 1 x 1 Soluzione: Equazione
Equazioni simboliche
581 Alcuni quiz riportano lo schema classico di un equazione matematica o di un sistema di equazioni matematiche, utilizzando, tuttavia, in luogo delle comuni lettere, dei simboli come @, #,!, etc. o delle
Ellisse. Come fa un giardiniere a creare un aiuola di forma ellittica?
Ellisse Come fa un giardiniere a creare un aiuola di forma ellittica? Pianta due chiodi, detti fuochi, nel terreno ad una certa distanza. Lega le estremità della corda, la cui lunghezza supera la distanza
RETTE E PIANI NELLO SPAZIO
VETTORI E GEOMETRIA ANALITICA 1 RETTE E PIANI NELLO SPAZIO Rette e piani in forma cartesiana e parametrica. Parallelismo e perpendicolarità, posizioni reciproche tra rette e piani, distanze. Esercizio
Test sull ellisse (vai alla soluzione) Quesiti
Test sull ellisse (vai alla soluzione) Quesiti ) Considerata nel piano cartesiano l ellisse Γ : + y = 8 valutare il valore di verità delle seguenti affermazioni. I fuochi si trovano sull asse delle ordinate
UNIVERSITÀ DEGLI STUDI DI TRENTO
UNIVERSITÀ DEGLI STUDI DI TRENTO PROVA DI AMMISSIONE AI CORSI DI LAUREA IN Fisica Matematica Informatica Ingegneria dell Informazione e Organizzazione d Impresa, Ingegneria dell Informazione e delle Comunicazioni
Prerequisiti Per affrontare questo argomento sono necessarie conoscenze in:. atematica di base. Risoluzione di triangoli e quadrilateri. alcolo delle
 N DIVIIONE DEI TERRENI Prerequisiti Per affrontare questo argomento sono necessarie conoscenze in:. atematica di base. Risoluzione di triangoli e quadrilateri. alcolo delle aree. Tecniche di rilievo
Il moto uniformemente accelerato. Prof. E. Modica
Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in
GEOMETRIA ANALITICA: LE CONICHE
DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale
Anno 1. Quadrilateri
Anno 1 Quadrilateri 1 Introduzione In questa lezione impareremo a risolvere i problemi legati all utilizzo dei quadrilateri. Forniremo la definizione di quadrilatero e ne analizzeremo le proprietà e le
Triangolo rettangolo
Dato il triangolo rettangolo Possiamo perciò utilizzare angoli). Progetto Matematica in Rete Triangolo rettangolo OPA sappiamo che: PA cateto senα OP OA cateto cos α OP PA cateto tgα OA cateto opposto
Appunti ed esercizi sulle coniche
1 LA CIRCONFERENZA 1 Appunti ed esercizi sulle coniche Versione del 1 Marzo 011 1 La circonferenza Nel piano R, fissati un punto O = (a, b) e un numero r > 0, la circonferenza (o cerchio) C di centro O
11.4 Chiusura transitiva
6 11.4 Chiusura transitiva Il problema che consideriamo in questa sezione riguarda il calcolo della chiusura transitiva di un grafo. Dato un grafo orientato G = hv,ei, si vuole determinare il grafo orientato)
Chi non risolve esercizi non impara la matematica.
60 equazioni di secondo grado Esercizio 7. Scomponi + +. Soluzione. Poiché = = = < 0, l equazione associata è impossibile e il trinomio è irriducibile (tabella )..5 esercizi hi non risolve esercizi non
Piano cartesiano e retta
Piano cartesiano e retta Il punto, la retta e il piano sono concetti primitivi di cui non si da una definizione rigorosa, essi sono i tre enti geometrici fondamentali della geometria euclidea. Osservazione
Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1
Teorema di Pitagora. Triangoli con angoli di 45, 30 e 60. Eserciziario con soluzioni. - 1 Raccolta di problemi di geometra piana sul teorema di Pitagora applicato ai triangolo con angoli di 45, 30 e 60
1. In una progressione aritmetica il prodotto del nono termine per il sesto è 2146 e la loro differenza è 21.Calcolare il primo termine e la ragione.
1. In una progressione aritmetica il prodotto del nono termine per il sesto è 2146 e la loro differenza è 21.Calcolare il primo termine e la ragione. 2. Un quadrilatero ha tre angoli in progressione aritmetica
Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione. risolvere con il metodo di Cramer
Verifica di matematica, classe II liceo scientifico sistemi, problemi con sistemi, radicali, equiestensione 1. 5 x y x 3y 1 risolvere con il metodo di Cramer. x 1 3 y y x 3 risolvere con il metodo di riduzione
L equazione generica della funzione costante è y=k, il grafico è una retta parallela all asse x (asse delle ascisse). retta parallela all'asse x y
La funzione costante L equazione generica della funzione costante è =k, il grafico è una retta parallela all asse (asse delle ascisse). Esempio di esercizio, dall equazione al grafico: =- retta parallela
Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni
Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x
ESAME DI STATO DI LICEO SCIENTIFICO Corso Sperimentale P.N.I. Tema di MATEMATICA - 17 giugno 2004
ESAME DI STATO DI LICEO SCIENTIFICO 00-004 Corso Sperimentale PNI Tema di MATEMATICA - 7 giugno 004 Svolgimento a cura della profssa Sandra Bernecoli e del prof Luigi Tomasi (luigitomasi@liberoit) RISOLUZIONE
Una successione numerica è una funzione : che associa ad ogni numero naturale un numero reale :. In simboli:
Successioni numeriche Successioni Una successione numerica è una funzione : che associa ad ogni numero naturale un numero reale :. In simboli:. = Una successione è un insieme ordinato e infinito di numeri,
Y = ax 2 + bx + c LA PARABOLA
LA PARABOLA La parabola è una figura curva che, come la retta, è associata ad un polinomio che ne definisce l'equazione. A differenza della retta, però, il polinomio non è di primo grado, ma è di secondo
4. Determina le misure dei tre lati x, y, z di un triangolo sapendo che il perimetro è 53cm, inoltre
www.matematicamente.it Verifica II liceo scientifico: Sistemi, Radicali, Equiestensione 1 Verifica di matematica, classe II liceo scientifico Sistemi, problemi con sistemi, radicali, equiestensione 1.
x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi)
1 Esercizio (tratto dal Problema 1.4 del Mazzoldi) Un punto materiale si muove con moto uniformemente accelerato lungo l asse x. Passa per la posizione x 1 con velocità v 1 1.9 m/s, e per la posizione
PROBLEMI GEOMETRICI + GRAFICI DI FUNZIONI
7 PROBLEMI GEOMETRICI + GRAFICI DI FUNZIONI ESERCITAZIONE 1 (la correzione completa è a pag. 75) In un triangolo ABC, rettangolo in A, con AB = 1 cm e AC = cm, è inscritto un rettangolo ADEF (con D su
SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA
SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;
Esercizi sulle affinità - aprile 2009
Esercizi sulle affinità - aprile 009 Ingegneria meccanica 008/009 Esercizio Sono assegnate nel piano le sei rette r : =, s : =, t : =, r : =, s : =, t : = determinare l affinità che trasforma ordinatamente
Rilevazione degli apprendimenti
Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato
Problemi di secondo grado con argomento vario
Problemi di secondo grado con argomento vario Impostare con una o due incognite Problemi Età. L età di Carlo è oggi il quadrato dell età di Massimo e fra quattro anni sarà il quadruplo. Quanti anni hanno
PROGRAMMA A.S. 2014/2015
MATERIA CLASSI DOCENTE LIBRI DI TESTO PROGRAMMA A.S. 2014/2015 MATEMATICA 1A tecnico Prof. VIGNOTTI Margherita Maria Dodero Baroncini Manfredi - Fragni Lineamenti. MATH VERDE, algebra 1 Ghisetti e Corvi
623 = , 413 = , 210 = , 203 =
Elementi di Algebra e Logica 2008. 3. Aritmetica dei numeri interi. 1. Determinare tutti i numeri primi 100 p 120. Sol. :) :) :) 2. (i) Dimostrare che se n 2 non è primo, allora esiste un primo p che divide
SOLUZIONE COMMENTATA TEST DI AUTOVALUTAZIONE
SLUZINE CMMENTATA TEST DI AUTVALUTAZINE CRS DI MATEMATICA PER L ECNMIA III MDUL ) Individuare il campo di esistenza della seguente funzione polinomiale: = + 5+ 6 6, 6 Poiché la funzione data è polinomiale,
Carlo Sintini, Problemi di maturità, 1948 Luglio, matematicamente.it Luglio 1948, primo problema
Luglio 1948, primo problema In un cerchio di raggio r è condotta una corda AB la cui distanza dal centro è r/. Inscrivere nel segmento circolare che non contiene il centro, un triangolo ABC in modo che
Rilevazione degli apprendimenti
Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato
