Previsioni Statistiche

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Previsioni Statistiche"

Transcript

1 Previsioni Statistiche Matteo Pelagatti Questa versione: 21 novembre Il problema della previsione Da un punto di vista statistico prevedere significa determinare con il minore errore possibile la realizzazione di una variabile casuale per mezzo della realizzazione di altre variabili casuali. Pertanto per potere risolvere il problema è necessario scegliere una funzione di perdita o di costo e determinare il previsore ottimo, cioé la funzione (misurabile delle variabili osservabili, che minimizza la perdita attesa. Formalmente, si supponga di volere prevedere Y per mezzo di X 1,..., X k. Sia l( : R [0, la funzione di perdita scelta e G la classe delle funzioni di X 1,..., X k all interno della quale cercare il previsore. Si noti che G può consistere nella classe di tutte le funzioni misurabili nei k argomenti oppure in una sottoclasse di essa come, ad esempio, quella di tutte le funzioni lineari. Un previsore ottimo è una funzione g che risolve il problema di minimo min g G E l ( Y g(x 1,..., X k, (1 dove si suppone che il valore atteso in formula esista. Non necessariamente il previsore ottimo è unico; tuttavia ciò sarà vero (con probabilità 1 nei casi concreti che prenderemo in considerazione nei prossimi paragrafi. Nel prevedere, vi sono situazioni in cui un errore per difetto implica costi molto più alti di un errore per eccesso. Per esempio, si supponga di dovere prevedere la piena di una lago vicino ad una grande città. Quando la piena supera un certo livello, il centro della città viene allagato danneggiando negozi, cantine e abitazioni, e pertanto il costo di un errore di previsione positivo (realizzazione maggiore della previsione è piuttosto ingente. Al contrario, quando si prevede per difetto, il costo consiste solamente nell apertura di alcune chiuse di sfogo, nell allagamento di bacini e campi, e nella predisposizione di barriere in città. La funzione di costo per questo problema di previsione potrebbe avere la forma della curva verde in Figura 1. Si noti che una funzione di costo di questo tipo implica un previsore ottimale distorto. In altre parole, il valore atteso dell errore di previsione non è zero, perché questa funzione di perdita implica un minore costo atteso nel prevedere valori alti del livello del lago (cioé valori negativi dell errore di previsione più frequenti. 1

2 Figura 1: Due funzioni di perdita simmetriche (linee rossa e blu e una funzione di perdita asimmetrica (linea verde. Spesso, tuttavia, non esiste una funzione di costo esplicita, specialmente quando si producono previsioni che devono essere utilizzate da una gran massa di utenti, come, ad esempio, le previsioni di crescita del prodotto interno lordo o del tasso d inflazione. In questi casi si usa preferibilmente una funzione di perdita simmetrica, in modo tale che la previsione non sia distorta (errore atteso di previsione nullo. Per motivi legati soprattutto alla semplicità matematica di cui si renderà conto il lettore più avanti, la funzione di perdita più utilizzata è l errore quadratico, l(e = E 2, dove E := Y g(x 1,..., X k. Altre funzioni talvolta usate sono l errore assoluto, l(e = E o, quando Y è strettamente positiva (con probabilità 1, l errore assoluto relativo l(e = E /Y. Il valore atteso di queste funzioni di perdita ha un nome preciso in letteratura 1 : Mean Square Error: MSE(E = E [ E 2, Mean Absolute error: MAE(E = E [ E, Mean Absolute Percentage Error: MAPE(E = 100 E [ E /Y. In questo testo si considerano solamente previsori ottimi rispetto all errore quadratico medio (MSE = Mean Square Error. 1 Dato che la letteratura statistica è prevalentemente in lingua inglese, in questo testo si preferisce rendere il lettore familiare con termini e sigle comuni in tale lettaratura. 2

3 Prima di procedere con l analisi dei previsori ottimali rispetto al MSE, ricordiamo al lettore il seguente risultato che dovrebbe essere già stato incontrato durante il corso di calcolo delle probabilità. Lemma 1 (legge dei valori attesi iterati. Siano X e Y due variabili o vettori casuali a media finita. Allora E [ E[Y X = E[Y. Se limitiamo la nostra attenzione alle variabili continue, la dimostrazione del lemma è immediata: E [ E[Y X ( = E[Y xf X (x dx = yf Y X (y x dy f X (x dx = ( yf X,Y (x, y dx dy = y f X,Y (x, y dx dy yf Y (y dy = E[Y. Si invita il lettore a fornire la dimostrazione per il caso puramente discreto. Si noti che, essendo il valore atteso condizionato, a sua volta, una variabile casuale, la legge dei valori attesi iterati può essere, appunto, iterata aggiungendo una ulteriore variabile casuale condizionante. 2 Il previsore ottimo Da questo momento in poi quando si parlerà in questo testo di previsore ottimo senza ulteriori aggettivazioni, si intenderà, ottimo rispetto al MSE, cioé ottimo rispetto ad una funzione di perdita quadratica l(e = E 2. Teorema 1 (del previsore ottimo. Siano Y, X 1,..., X k variabili casuali con varianza finita, l(e = E 2 e G = {tutte le funzioni misurabili di X 1,..., X k }. Allora l unica 2 funzione g G che risolve il problema di previsione in equazione (1 è il valore atteso condizionato g(x 1,..., X k = E[Y X 1,..., X k. Dimostrazione. Sia g G una generica funzione misurabile nei suoi argomenti e per alleggerire la scrittura si ponga X = (X 1,..., X k. L errore quadratico 2 Qui per unica si intende unica a meno di insiemi di probabilità nulla. Cioé g(x è soluzione unica del problema di previsione se per tutte le funzioni f G che risolvono il problema vale Pr{g(X = f(x} = 1. 3

4 medio di previsione è dato da E ( Y g(x 2 = E ( Y E[y X + E[Y X g(x 2 = E ( Y E[Y X 2 + E ( E[Y X g(x E [ (Y E[Y X(E[Y X g(x. Ora, se si condiziona il valore atteso dell ultimo addendo a X si ottiene [ E (Y E[Y X(E[Y X g(x X = ( [ E[Y X g(x E Y E[Y X X = ( ( E[Y X g(x E[Y X E[Y X = 0. Prendendo il valore atteso di quest ultima quantità rispetto alla distribuzione di X, si ottiene nuovamente zero, e sfruttando la legge dei valori attesi iterati possiamo concludere che tale prodotto incrociato è nullo. Pertanto, l errore quadratico medio di previsione è minimo quando E[g(X = E[Y X, dato che in questo caso la quantità non-negativa E ( E[Y X g(x 2 si annulla. Da un analoga applicazione della legge dei valori attesi iterati si ottiene il più generale risultato E [ (Y E[Y Xh(X = 0, con h generica funzione (misurabile di X. Tale risultato ci mostra che gli errori di previsione del previsore ottimo sono ortogonali (= incorrelati a qualunque funzione dei predittori X. Una ulteriore applicazione della legge dei valori attesi iterati dimostra che il valore atteso condizionato di Y è un previsore corretto (o non distorto, cioè un previsore il cui errore ha valore atteso nullo: E[Y E(Y X = E[Y E[E(Y X = E[Y E[Y = 0. Si noti che per applicare questo risultato è necessario avere un modello direttamente per il valore atteso condizionato di Y, tipo un modello di regressione, cioè un modello del tipo E[Y X = f(x o anche Y = f(x + E, con E[E X = 0, oppure la distribuzione congiunta delle variabili casuali Y, X 1,..., X k Paragrafo 4. (cfr. 4

5 3 Il previsore lineare ottimo Se nella ricerca della funzione ottima ci si limita alla classe delle funzioni lineari in 1, X 1,..., X k, allora le informazioni indispensabili alla costruzione del previsore ottimo si riducono ai primi due momenti del vettore (Y, X 1,... X k. Pertanto, definiamo i primi due momenti di (Y, X 1,... X k come segue: vettore delle medie µ Y := E[Y, µ X := E[X, e matrici di covarianza Σ Y X := E[(Y µ Y (X µ X, Σ XX := E[(X µ X (X µ X e ovviamente Σ XY := Σ Y X. Teorema 2 (del previsore lineare ottimo. Siano Y, X 1,..., X k variabili casuali con varianza finita, l(e = E 2 e Allora: G = {β 0 + β 1 X β k X k ; β := (β 0,..., β k R k+1 }. 1. l unica funzione g G che risolve il problema di previsione in equazione (1 è la proiezione lineare g(x 1,..., X k = P[Y X := µ Y + Σ Y X Σ 1 XX (X µ X, (2 con Σ 1 XX inversa generalizzata3 nel caso Σ XX non abbia rango pieno, 2. il suo MSE è dato da E ( Y P[Y X 2 = Var[Y ΣY X Σ 1 XX Σ XY, 3. P[Y X è un previsore corretto E[Y P[Y X = 0 4. e l errore di previsione è ortogonale a (= incorrelato con X E [ (Y P[Y XX = 0. Prima di dimostrare il teorema, è utile fare un paio di osservazioni. Si noti che dalla (2 è semplice derivare la formula per calcolare il vettore dei coefficienti β: β 1 := [ β 1... β k = ΣY X Σ 1 XX, β 0 = µ Y Σ Y X Σ 1 XX µ X. Inoltre, mentre sotto le condizioni del teorema il previsore lineare è sempre unico, il vettore dei coefficienti β è unico solo se Σ XX è a rango pieno. 3 Quando una matrice quadrata A non ha rango pieno, l inversa non è unica, ed esistono infiniti modi di costruire una matrice A +, detta pseudo-inversa tale che AA + = A + A = I. La pseudoinversa più comune è quella di Moore-Penrose. 5

6 Dimostrazione. Iniziamo a dimostrare il punto (iii. Per comodità si ponga β 1 := Σ Y X Σ 1 XX. Allora il valore atteso dell errore di previsione è E[Y µ Y β 1(X µ X = E[Y µ Y β 1 E[X µ X = 0. Per dimostrare il punto (iv si noti che essendo P[Y X previsore corretto, risulta (mostrare per esercizio Allora E [ (Y P[Y XX = E [ (Y P[Y X(X µ X. E [ (Y P[Y X(X µ X = E [ (Y µ Y β 1(X µ X (X µ X = E [ (Y µ Y (X µ X β 1 E[(X µ X (X µ X = Σ Y X β 1Σ XX = Σ Y X Σ Y X = 0. Dimostriamo ora il punto (i facendo vedere che non esistono funzioni lineari di (1, X 1,..., X k che comportano un MSE più piccolo di quello del previsore lineare. Sia g(x := δ + γ X una qualunque funzione lineare di X, allora il suo MSE è dato da MSE g = E(Y δ γ X 2 = E(Y P[Y X + P[Y X δ γ X 2 = E(Y P[Y X 2 + E(P[Y X δ γ X E[(Y P[Y X(P[Y X δ γ X = MSE P[Y X + E [ P[Y X g(x E [ (Y P[Y X(µ Y β 1 µ X δ + (β 1 γ X. Ora, per la correttezza di P[Y X e per la sua ortogonalità a X, il doppio prodotto nell ultima riga è sempre nullo. Pertanto il MSE del previsore lineare g è minimo quando g(x = P[Y X con probabilità 1. 4 Si lascia al lettore la dimostrazione del punto (ii. Molto spesso la consistenza dei dati X 1, X 2,... per mezzo dei quali prevedere Y aumenta con il passare del tempo. Pertanto, onde evitare di dovere ricalcolare il previsore lineare usando tutti i dati ogniqualvolta nuove informazioni si rendano disponibili, è utile ed efficiente avere a disposizione una formula che aggiorni il previsore. Il seguente teorema ci fornisce tale formula. 4 Si noti che questo non implica necessariamente che δ = β 0 e γ = β 1. Tali identità sono vere solo quando Σ XX ha rango pieno. 6

7 Teorema 3 (aggiornamento della previsione lineare. Sia Y il vettore casuale da prevedere e X 1 e X 2 vettori casuali per mezzo dei quali si vogliono formulare le previsioni. Allora con H X2 X 2 = E P[Y X 1, X 2 = P[Y X 1 + H Y X2 H 1 X 2 X 2 (X 2 P[X 2 X 1 [ (X 2 P[X 2 X 1 (X 2 P[X 2 X 1 = Σ X2 X 2 Σ X2 X 1 Σ 1 X 1 X 1 Σ X1 X 2, MSE della previsione lineare di X 2 per mezzo di X 1, e [ H Y X2 = E (Y P[Y X 1 (X 2 P[X 2 X 1 = Σ Y X2 Σ Y X1 Σ 1 X 1 X 1 Σ X1 X 2, covarianza degli errori di previsione lineare di Y e X 2 per mezzo di X 1. Per dimostrare il teorema è sufficiente scrivere la formula del previsore lineare P[Y X 1, X 2 evidenziando i blocchi delle matrici relativi a X 1 e X 2 e utilizzare il secondo enunciato del Lemma 2. Lemma 2 (determinante e inversa di una matrice a blocchi. Valgono le seguenti identità: 1. [ T U = T W V T 1 U. V W 2. [ 1 [ T U T = 1 + T 1 UQ 1 V T 1 T 1 UQ 1 V W Q 1 V T 1 Q 1, con Q = W V T 1 U. 4 Il caso gaussiano Le proprietà di gaussianità (o normalità e linearità sono intimamente legate. Infatti, ogni combinazione lineare di variabili casuali congiuntamente gaussiane è a sua volta gaussiana. Inoltre, come visto nel paragrafo precedente, per costruire il previsore lineare ottimo è sufficiente conoscere i primi due momenti del vettore casuale, e tali momenti caratterizzano completamente la distribuzione normale. Come risulterà evidente dal seguente teorema, previsore ottimo e previsore lineare ottimo coincidono nel caso gaussiano. Teorema 4 (distribuzione condizionata di una normale multivariata. Sia Z un vettore casuale gaussiano così ripartito [ X Z :=, Y 7

8 e con vettore delle medie e matrice di covarianza, conformemente ripartiti, [ [ µx µ := E[X =, Σ := E[(Z µ(z µ ΣXX Σ = XY µ Y Σ Y X Allora la variabile casuale Y X è a sua volta normale con momenti Σ Y Y. µ Y X = µ Y + Σ Y X Σ 1 XX (X µ X, Σ Y X = Σ Y Y Σ Y X Σ 1 XX Σ XY. Si invita il lettore a dimostrare il teorema sopra enunciato utilizzando il Lemma 2. Confrontando il previsore lineare in equazione (2 con l enunciato del Teorema 4 risulta chiaro che nel caso di dati congiuntamente normali risulta P[Y X = E[Y X, cioé il previsore ottimo coincide con il previsore lineare ottimo. Inoltre, nel caso gaussiano, e solo in questo caso, la varianza condizionata non dipende dal valore del vettore casuale rispetto a cui si sta condizionando, e pertanto il MSE coincide con la varianza condizionata: MSE := E[Var(Y X = Var(Y X. Esercizi Ricordiamo il seguente risultato utile per risolvere alcuni degli esercizi: ( 1 a b = b a 1 a 2 b 2 ( a b b a 1. Si consideri il processo AR(1, X t = φx t 1 + ε t, con ε t white noise a varianza unitaria e φ < 1. Si calcolino il previsore ottimo e il previsore lineare ottimo di X t+k basato su X t. Poi si calcolino i medesimi previsori di X t+k basandoli su X t e X t Si consideri Y = X 2 + Z con X e Z variabili casuali normali a media zero e varianza unitaria e tra loro indipendenti. Si derivi il previsore ottimo e il previsore lineare ottimo di Y basato su X. 3. Si consideri Y = X + X 2 + Z con X e Z variabili casuali normali a media zero e varianza unitaria e tra loro indipendenti. Si derivi il previsore ottimo e il previsore lineare ottimo di Y basato su X. 4. Si consideri il processo MA(1, X t = ε t + θε t 1, con ε t white noise a varianza unitaria. Si calcoli la previsione lineare di X t+k basata su X t. Poi si calcoli la previsione lineare di X t+k basata su X t e X t 1.. 8

1 Alcuni risultati sulle variabili Gaussiane multivariate

1 Alcuni risultati sulle variabili Gaussiane multivariate Il modello lineare-gaussiano e il filtro di Kalman Prof. P.Dai Pra 1 Alcuni risultati sulle variabili Gaussiane multivariate In questo paragrafo verranno enunciate e dimostrate alcune proprietà del valor

Dettagli

L analisi media-varianza

L analisi media-varianza L analisi media-varianza Pierpaolo Montana Università di Roma I Consideriamo un agente con preferenze di tipo VNM e funzione di utilità quadratica u(x) = x b x. La corrispondente espressione dell utilità

Dettagli

Il modello di regressione lineare multipla con regressori stocastici

Il modello di regressione lineare multipla con regressori stocastici Università di Pavia Il modello di regressione lineare multipla con regressori stocastici Eduardo Rossi Il valore atteso condizionale Modellare l esperimento casuale bivariato nel quale le variabili casuali

Dettagli

Università di Siena. Teoria della Stima. Lucidi del corso di. Identificazione e Analisi dei Dati A.A

Università di Siena. Teoria della Stima. Lucidi del corso di. Identificazione e Analisi dei Dati A.A Università di Siena Teoria della Stima Lucidi del corso di A.A. 2002-2003 Università di Siena 1 Indice Approcci al problema della stima Stima parametrica Stima bayesiana Proprietà degli stimatori Stime

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

Stima dei parametri. La v.c. multipla (X 1, X 2,.., X n ) ha probabilità (o densità): Le f( ) sono uguali per tutte le v.c.

Stima dei parametri. La v.c. multipla (X 1, X 2,.., X n ) ha probabilità (o densità): Le f( ) sono uguali per tutte le v.c. Stima dei parametri Sia il carattere X rappresentato da una variabile casuale (v.c.) che si distribuisce secondo la funzione di probabilità f(x). Per investigare su tale carattere si estrae un campione

Dettagli

Computazione per l interazione naturale: fondamenti probabilistici (2)

Computazione per l interazione naturale: fondamenti probabilistici (2) Computazione per l interazione naturale: fondamenti probabilistici (2) Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@di.unimi.it

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Capitolo 1 Variabili casuali multidimensionali Definizione 1.1 Le variabili casuali multidimensionali sono k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità.

Dettagli

Analisi della disponibilità d acqua. Valutazione dell impianto attraverso il calcolo di un indice economico (criterio)

Analisi della disponibilità d acqua. Valutazione dell impianto attraverso il calcolo di un indice economico (criterio) Analisi della disponibilità d acqua Valutazione dell impianto attraverso il calcolo di un indice economico (criterio) Approccio diverso a seconda del criterio di valutazione Nel caso di criterio statistico

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Teoria dei Fenomeni Aleatori AA 01/13 Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza

Dettagli

1 Richiami di algebra lineare

1 Richiami di algebra lineare 1 Richiami di algebra lineare Definizione 11 (matrici e vettori) Una matrice A e un insieme di numeri A hk, h = 1,, m, k = 1,, n, ordinati in base alla coppia di indici h e k nel modo seguente A 1 A n

Dettagli

Proprietà asintotiche dello stimatore OLS

Proprietà asintotiche dello stimatore OLS Università di Pavia Proprietà asintotiche dello stimatore OLS Eduardo Rossi Sequenze Consideriamo un infinita sequenza di variabili indicizzate con i numeri naturali: X 1, X 2, X 3,...,X N,... = {X N }

Dettagli

9.3 Il metodo dei minimi quadrati in formalismo matriciale

9.3 Il metodo dei minimi quadrati in formalismo matriciale 9.3. IL METODO DEI MINIMI QUADRATI IN FORMALISMO MATRICIALE 121 9.3 Il metodo dei minimi quadrati in formalismo matriciale Per applicare il MMQ a funzioni polinomiali, ovvero a dipendenze di una grandezza

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Teoria dei Fenomeni Aleatori AA 01/13 Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza

Dettagli

I VETTORI GAUSSIANI E. DI NARDO

I VETTORI GAUSSIANI E. DI NARDO I VETTOI GAUSSIANI E. DI NADO. L importanza della distribuzione gaussiana I vettori di v.a. gaussiane sono senza dubbio uno degli strumenti più utili in statistica. Nell analisi multivariata, per esempio,

Dettagli

La curva di regressione è il luogo dei punti aventi come ordinate le medie condizionate

La curva di regressione è il luogo dei punti aventi come ordinate le medie condizionate Correlazione e regressione Correlazione: le due variabili casuali sono considerate in modo per così dire simmetrico. Regressione: una delle due variabili dipende dall'altra, che per così dire la precede

Dettagli

Indici di posizione e dispersione per distribuzioni di variabili aleatorie

Indici di posizione e dispersione per distribuzioni di variabili aleatorie Indici di posizione e dispersione per distribuzioni di variabili aleatorie 12 maggio 2017 Consideriamo i principali indici statistici che caratterizzano una distribuzione: indici di posizione, che forniscono

Dettagli

Tecniche di sondaggio

Tecniche di sondaggio SMID a.a. 2005/2006 Corso di Statistica per la Ricerca Sperimentale Tecniche di sondaggio 24/1/2006 Nomenclatura Indicheremo con P una popolazione, con N la sua numerosità, con k la sua etichetta e con

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza di Variabili Aleatorie Sistema di Variabili

Dettagli

Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte. Cap.1: Probabilità

Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte. Cap.1: Probabilità Calcolo delle Probabilità e Statistica Matematica: definizioni prima parte Cap.1: Probabilità 1. Esperimento aleatorio (definizione informale): è un esperimento che a priori può avere diversi esiti possibili

Dettagli

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07

PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 2006/07 PROVE SCRITTE DI MATEMATICA APPLICATA, ANNO 006/07 Esercizio 1 Prova scritta del 16/1/006 In un ufficio postale lavorano due impiegati che svolgono lo stesso compito in maniera indipendente, sbrigando

Dettagli

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion

Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazion Teorema del limite centrale TCL Questo importante teorema della statistica inferenziale si applica a qualsiasi variabile aleatoria che sia combinazione lineare di N variabili aleatorie le cui funzioni

Dettagli

Massimi e minimi vincolati

Massimi e minimi vincolati Massimi e minimi vincolati Vedremo tra breve un metodo per studiare il problema di trovare il minimo e il massimo di una funzione su di un sottoinsieme dello spazio ambiente che non sia un aperto. Abbiamo

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Variabili casuali multidimensionali Variabili casuali multidimensionali: k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità X = (X 1,..., X k ) Funzione di

Dettagli

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE

DEFINIZIONE. u (u; v); α 3. v (u; v); α 3. ha rango 2 in ogni punto della parametrizzazione. DEFINIZIONE DEFINIZIONE Una superficie in R 3 è un applicazione α : U R 3, di classe almeno C. In realtà, tratteremo solamente superfici di classe C. Inoltre, U R deve essere un aperto, e α deve essere iniettiva.

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 II Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 4 febbraio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Statistica. Congiunte. Capitolo 5. Distribuzioni di Probabilità. Chap 5-1. Statistics for Business and Economics, 6e 2007 Pearson Education, Inc.

Statistica. Congiunte. Capitolo 5. Distribuzioni di Probabilità. Chap 5-1. Statistics for Business and Economics, 6e 2007 Pearson Education, Inc. Statistica Capitolo 5 Distribuzioni di Probabilità Congiunte Statistics for Business and Economics, 6e 2007 Pearson Education, Inc. Chap 5-1 Distribuzione di Probabilità Congiunta Una variabile casuale

Dettagli

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Prima prova scritta A.A. 8-9 Durata della prova h Punteggi: ) + + ; ) + + + ; ) +. Totale. Esercizio Sia

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Minimi quadrati ordinari Interpretazione geometrica. Eduardo Rossi

Minimi quadrati ordinari Interpretazione geometrica. Eduardo Rossi Minimi quadrati ordinari Interpretazione geometrica Eduardo Rossi Il MRLM Il modello di regressione lineare multipla è usato per studiare le relazioni tra la variabile dipendente e diverse variabili indipendenti

Dettagli

3 La curva di Peano. insieme di misura nulla in R m. Definiamo, ora,

3 La curva di Peano. insieme di misura nulla in R m. Definiamo, ora, Versione del 5/0/04 3 La curva di Peano Proposizione (a) Sia f : A R n R m con n < m. Se f è una funzione lipschitziana, allora f(a) è un insieme di misura nulla in R m. (b) Esiste una funzione ϕ C ( [0,

Dettagli

Sistemi sovradeterminati

Sistemi sovradeterminati Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione lineare di

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prova del Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (69AA) A.A. 06/7 - Prova del 07-07-07 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate. Problema

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

SCHEDA DIDATTICA N 7

SCHEDA DIDATTICA N 7 FACOLTA DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA CIVILE CORSO DI IDROLOGIA PROF. PASQUALE VERSACE SCHEDA DIDATTICA N 7 LA DISTRIBUZIONE NORMALE A.A. 01-13 La distribuzione NORMALE Uno dei più importanti

Dettagli

Il teorema di Rouché-Capelli

Il teorema di Rouché-Capelli Luciano Battaia Questi appunti (1), ad uso degli studenti del corso di Matematica (A-La) del corso di laurea in Commercio Estero dell Università Ca Foscari di Venezia, campus di Treviso, contengono un

Dettagli

Esercitazioni di Statistica Matematica A Lezione 7. Variabili aleatorie continue

Esercitazioni di Statistica Matematica A Lezione 7. Variabili aleatorie continue Esercitazioni di Statistica Matematica A Lezione 7 Variabili aleatorie continue.) Determinare la costante k R tale per cui le seguenti funzioni siano funzioni di densità. Determinare poi la media e la

Dettagli

Distribuzione normale multidimensionale

Distribuzione normale multidimensionale Capitolo 2 Distribuzione normale multidimensionale La funzione di densità normale undimensionale ha la forma seguente Anderson, 1984 fx ce 1 2 Ax b2 ce 1 2 x bax b La costante di normalizzazione c è data

Dettagli

Materiale didattico per il corso di Statistica I Quinta esercitazione SOLUZIONI

Materiale didattico per il corso di Statistica I Quinta esercitazione SOLUZIONI Materiale didattico per il corso di Statistica I Quinta esercitazione SOLUZIONI Claudia Furlan Anno Accademico 006-007 Ringrazio Carlo Gaetan, Nicola Sartori e Aldo Solari per il materiale, aggiunte e

Dettagli

MODELLO DI REGRESSIONE LINEARE. le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza,

MODELLO DI REGRESSIONE LINEARE. le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza, MODELLO DI REGRESSIONE LINEARE le ipotesi del modello di regressione classico, stima con i metodi dei minimi quadrati e di massima verosimiglianza, teorema di Gauss-Markov, verifica di ipotesi e test di

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino)

Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino) Corso di Laurea Triennale in Matematica Calcolo delle Probabilità I (docenti G. Nappo, F. Spizzichino Prova di mercoledì 22 Settembre 24 (tempo a disposizione: 2 ore e 4 minuti. consegna compiti e inizio

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso Marco Bramanti Politecnico di Milano December 20, 2017 Parte 3. Teoria della misura e dell

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Esercitazione 6 maggio 04 Calcolo delle Probabilità Davide Petturiti e-mail: davide.petturiti@sbai.uniroma.it web: https://sites.google.com/site/davidepetturiti Esercizio. Siano X e Y due variabili aleatorie

Dettagli

III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre

III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre III Appello di Processi Stocastici Cognome: Laurea Magistrale in Matematica 2014/15 Nome: 15 Settembre 2015 Email: Quando non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A

Analisi Matematica 3 (Fisica) Prova scritta del 17 febbraio 2012 Un breve svolgimento delle versioni A Analisi Matematica 3 (Fisica) Prova scritta del 7 febbraio Un breve svolgimento delle versioni A Vi sarò grato per la segnalazione di eventuali errori. Esercizio. (a) Dimostrare che l equazione () (3 +

Dettagli

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova).

Esame di Calcolo delle Probabilità del 11 dicembre 2007 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Esame di Calcolo delle Probabilità del dicembre 27 (Corso di Laurea Triennale in Matematica, Università degli Studi di Padova). Cognome Nome Matricola Es. Es. 2 Es. Es. 4 Somma Voto finale Attenzione:

Dettagli

Risolvere il seguente sistema lineare ESERCIZIO 2

Risolvere il seguente sistema lineare ESERCIZIO 2 PROVA SCRITTA di MATEMATICA Laurea triennale in Sc. Geologiche e Sc. Naturali Facoltà di S.M.F.N. Prima sessione, appello invernale - A.A. 1/11-1 febb 11 Gli esercizi sono da risolvere in modo esplicito.

Dettagli

Geometria per Fisica e Astrofisica

Geometria per Fisica e Astrofisica Geometria per Fisica e Astrofisica Soluzione esercizi - Foglio 3 Esercizio. Risolvere i seguenti sistemi lineari al variare dei parametri reali α β e k < < (a) x + y z = αx + αy + βz = x + y z = β. (b)

Dettagli

b vettore(termine noto) y* proiezione ortogonale di b

b vettore(termine noto) y* proiezione ortogonale di b Carla Guerrini 1 Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi Esercizio. ( ) Data la matrice, determinare tutte le matrici X Mat( ) tali che AX = 0 e tutte le matrici Y Mat( ) tali che Y 0. ( ) ( ) ( ) x y x + z y + w Soluzione:

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 6 Abbiamo visto: Definizione di popolazione, di campione e di spazio campionario Distribuzione

Dettagli

Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 2010

Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 2010 Note sui sistemi lineari per il Corso di Geometria per Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 4 Maggio 21 Sistemi lineari. Un sistema lineare di n 1 equazioni in m incognite

Dettagli

Esercizi di statistica

Esercizi di statistica Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..

Dettagli

Approssimazione numerica

Approssimazione numerica Approssimazione numerica Laboratorio di programmazione e calcolo (Chimica e Tecnologie chimiche) Pierluigi Amodio Dipartimento di Matematica Università di Bari Approssimazione numerica p.1/10 Problema

Dettagli

1. variabili dicotomiche: 2 sole categorie A e B

1. variabili dicotomiche: 2 sole categorie A e B Variabile X su scala qualitativa (due categorie) modello di regressione: variabili quantitative misurate almeno su scala intervallo (meglio se Y è di questo tipo e preferibilmente anche le X i ) variabili

Dettagli

Il problema della migliore approssimazione. Teorema 3.2 Il problema 3.1 ammette sempre almeno una soluzione.

Il problema della migliore approssimazione. Teorema 3.2 Il problema 3.1 ammette sempre almeno una soluzione. 3. Spazi di Hilbert Wir müssen wissen. Wir werden wissen. Noi abbiamo il dovere di conoscere. Alla fine conosceremo.) David Hilbert 1862-1943) Il problema della migliore approssimazione Problema 3.1 Migliore

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI Lo studente ha forse già incontrato i sistemi di equazioni lineari alla scuola secondaria Con il termine equazione

Dettagli

CP210 Introduzione alla Probabilità: Esonero 2

CP210 Introduzione alla Probabilità: Esonero 2 Dipartimento di Matematica, Roma Tre Pietro Caputo 218-19, II semestre 4 giugno, 219 CP21 Introduzione alla Probabilità: Esonero 2 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si può usare durante

Dettagli

Funzioni di n variabili a valori vettoriali

Funzioni di n variabili a valori vettoriali Funzioni di n variabili a valori vettoriali Ultimo aggiornamento: 22 maggio 2018 1 Differenziale per funzioni da R n in R k Una funzione F : A R n R k può essere vista come una k-upla di funzioni scalari

Dettagli

Diario delle lezioni. 1. Analisi di Fourier discreta e applicazioni alla statistica e alla probabilità: Lezioni I IV

Diario delle lezioni. 1. Analisi di Fourier discreta e applicazioni alla statistica e alla probabilità: Lezioni I IV 1 Diario delle lezioni 1. Analisi di Fourier discreta e applicazioni alla statistica e alla probabilità: Lezioni I IV (a) Richiami sui numeri complessi. Spazi vettoriali con prodotto scalare. Teorema di

Dettagli

STATISTICA: esercizi svolti sulle VARIABILI CASUALI

STATISTICA: esercizi svolti sulle VARIABILI CASUALI STATISTICA: esercizi svolti sulle VARIABILI CASUALI VARIABILI CASUALI 2 VARIABILI CASUALI. Variabili casuali generiche. Si supponga che un dado truccato, formato da sei facce contrassegnate dai numeri

Dettagli

62 CAPITOLO 3. STATISTICA DESCRITTIVA

62 CAPITOLO 3. STATISTICA DESCRITTIVA 62 CAPITOLO 3. STATISTICA DESCRITTIVA Raccogliamo su una popolazione di n individui i dati relativi a m caratteri (variabili) e riportiamoli in una matrice, dove le righe (n) sono relative ad individui

Dettagli

Esonero di Analisi Matematica II (A)

Esonero di Analisi Matematica II (A) Esonero di Analisi Matematica II (A) Ingegneria Edile, 8 aprile 3. Studiare la convergenza del seguente integrale improprio: + x log 3 x (x ) 3 dx.. Studiare la convergenza puntuale ed uniforme della seguente

Dettagli

Sviluppi e derivate delle funzioni elementari

Sviluppi e derivate delle funzioni elementari Sviluppi e derivate delle funzioni elementari In queste pagine dimostriamo gli sviluppi del prim ordine e le formule di derivazioni delle principali funzioni elementari. Utilizzeremo le uguaglianze lim

Dettagli

Università degli Studi Roma Tre Anno Accademico 2017/2018 ST410 Statistica 1

Università degli Studi Roma Tre Anno Accademico 2017/2018 ST410 Statistica 1 Università degli Studi Roma Tre Anno Accademico 2017/2018 ST410 Statistica 1 Lezione 1 - Mercoledì 27 Settembre 2017 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17

I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2016/17 I Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 6/7 Martedì 3 gennaio 7 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

1. Funzioni implicite

1. Funzioni implicite 1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,

Dettagli

Modelli e Metodi Matematici della Fisica. Scritto 1

Modelli e Metodi Matematici della Fisica. Scritto 1 Modelli e Metodi Matematici della Fisica. Scritto 1 Cesi/Presilla A.A. 2 7 Canale 1 Cesi Presilla Nome Cognome Il voto dello scritto rimpiazza gli esoneri 1 2 3 penalità problema voto 1 2 3 4 5 7 8 penalità

Dettagli

Esperimentazioni di Fisica 1. Prova in itinere del 12 giugno 2018

Esperimentazioni di Fisica 1. Prova in itinere del 12 giugno 2018 Esperimentazioni di Fisica 1 Prova in itinere del 1 giugno 018 Esp-1 Prova in Itinere n. - - Page of 6 1/06/018 1. (1 Punti) Quesito L incertezza da associare alle misurazioni eseguite con un certo strumento

Dettagli

Matematica e Statistica

Matematica e Statistica Matematica e Statistica Prova d Esame (0/09/200) Università di Verona - Laurea in Biotecnologie - A.A. 2009/0 Matematica e Statistica Prova d Esame di MATEMATICA (0/09/200) Università di Verona - Laurea

Dettagli

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004

Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni. 12 luglio 2004 Esame di Teoria dei Segnali A Ing. Informatica, Elettronica e Telecomunicazioni luglio 4 Esercizio Un sacchetto A contiene caramelle ai gusti fragola, limone e lampone. Un sacchetto B contiene caramelle

Dettagli

05. Errore campionario e numerosità campionaria

05. Errore campionario e numerosità campionaria Statistica per le ricerche di mercato A.A. 01/13 05. Errore campionario e numerosità campionaria Gli schemi di campionamento condividono lo stesso principio di fondo: rappresentare il più fedelmente possibile,

Dettagli

Corso Matematica Discreta Anno accademico Lista domande per l orale breve.

Corso Matematica Discreta Anno accademico Lista domande per l orale breve. Corso Matematica Discreta Anno accademico 2014-2015 Lista domande per l orale breve. 1. Dimostrare una delle leggi che coinvolgono l intersezione, l unione, il complementare (associativa, distributiva

Dettagli

Alcuni complementi di teoria dell integrazione.

Alcuni complementi di teoria dell integrazione. Alcuni complementi di teoria dell integrazione. In ciò che segue si suppone di avere uno spazio di misura (,, µ) 1 Sia f una funzione misurabile su un insieme di misura positiva tale che f 0. Se fdµ =

Dettagli

Significato probabilistico di σ: su 100 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo

Significato probabilistico di σ: su 100 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo Significato probabilistico di σ: su 1 misure, 68.3 hanno probabilità di cadere nell intervallo x σ, x +σ, 95.5 nell intervallo x σ, x + σ e 99.7 nell intervallo x 3 σ, x + 3 Se si considerano campioni

Dettagli

Istituzioni di Probabilità - A.A

Istituzioni di Probabilità - A.A Istituzioni di Probabilità - A.A. 25-26 Prima prova di verifica intermedia - 29 aprile 25 Esercizio. Sia (X n ) n una successione di v.a. i.i.d. centrate con < X P-q.c., sia λ R ed F una v.a. integrabile

Dettagli

Matematica con elementi di Informatica

Matematica con elementi di Informatica Variabili aleatorie Matematica con elementi di Informatica Tiziano Vargiolu Dipartimento di Matematica vargiolu@math.unipd.it Corso di Laurea Magistrale in Chimica e Tecnologie Farmaceutiche Anno Accademico

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Modelli lineari generalizzati

Modelli lineari generalizzati Modelli lineari generalizzati Estensione del modello lineare generale Servono allo studio della dipendenza in media di una variabile risposta da una o più variabili antecedenti Vengono attenuate alcune

Dettagli

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano Geometria e Algebra (II), 11.12.12 1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano P O i vettori ortogonali ad un dato vettore non nullo descrivono una retta per O, e nello

Dettagli

La regressione lineare. Rappresentazione analitica delle distribuzioni

La regressione lineare. Rappresentazione analitica delle distribuzioni La regressione lineare Rappresentazione analitica delle distribuzioni Richiamiamo il concetto di dipendenza tra le distribuzioni di due caratteri X e Y. Ricordiamo che abbiamo definito dipendenza perfetta

Dettagli

Teoria dei Fenomeni Aleatori AA 2012/13. Il Concetto di Distribuzione Condizionata ( )

Teoria dei Fenomeni Aleatori AA 2012/13. Il Concetto di Distribuzione Condizionata ( ) Il Concetto di Distribuzione Condizionata Se B è un evento, la probabilità di un evento A condizionata a B vale: ponendo: P A B = ( ) P A B P B A = { x} si giunge al concetto di distribuzione condizionata

Dettagli

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016

Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Esercizi di Complementi di Matematica (L-Z) a.a. 2015/2016 Prodotti scalari e forme bilineari simmetriche (1) Sia F : R 2 R 2 R un applicazione definita da F (x, y) = x 1 y 1 + 3x 1 y 2 5x 2 y 1 + 2x 2

Dettagli

Università di Pavia Econometria. Richiami di Statistica. Eduardo Rossi

Università di Pavia Econometria. Richiami di Statistica. Eduardo Rossi Università di Pavia Econometria Richiami di Statistica Eduardo Rossi Università di Pavia Campione casuale Siano (Y 1, Y 2,..., Y N ) variabili casuali tali che le y i siano realizzazioni mutuamente indipendenti

Dettagli

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea)

P ( X n X > ɛ) = 0. ovvero (se come distanza consideriamo quella euclidea) 10.4 Convergenze 166 10.4.3. Convergenza in Probabilità. Definizione 10.2. Data una successione X 1, X 2,...,,... di vettori aleatori e un vettore aleatorio X aventi tutti la stessa dimensione k diremo

Dettagli

Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie.

Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie. Sessione Live 4 V.a. n-dimensionali. Funzioni di variabili aleatorie. 9 e 11 Dicembre 2008 Richiami di teoria Come si calcolano le densità marginali Esercizi Una v.a. n-dimensionale (o vettore aleatorio

Dettagli

Università degli Studi Roma Tre Anno Accademico 2014/2015 ST410 Statistica 1

Università degli Studi Roma Tre Anno Accademico 2014/2015 ST410 Statistica 1 Università degli Studi Roma Tre Anno Accademico 2014/2015 ST410 Statistica 1 Lezione 1 - Martedì 23 Settembre 2014 Introduzione al corso. Richiami di probabilità: spazi di probabilità, variabili aleatorie,

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva

Probabilità classica. Distribuzioni e leggi di probabilità. Probabilità frequentista. Probabilità soggettiva Probabilità classica Distribuzioni e leggi di probabilità La probabilità di un evento casuale è il rapporto tra il numero dei casi favorevoli ed il numero dei casi possibili, purchè siano tutti equiprobabili.

Dettagli

REGRESSIONE E CORRELAZIONE

REGRESSIONE E CORRELAZIONE REGRESSIONE E CORRELAZIONE Nella Statistica, per studio della connessione si intende la ricerca di eventuali relazioni, di dipendenza ed interdipendenza, intercorrenti tra due variabili statistiche 1.

Dettagli

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 2 settembre 2008 Tema A

Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti) 2 settembre 2008 Tema A Università degli Studi di Bergamo Matematica II (5 e 7,5 crediti 2 settembre 28 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio va iniziato all inizio

Dettagli

Università di Siena. Corso di STATISTICA. Parte seconda: Teoria della stima. Andrea Garulli, Antonello Giannitrapani, Simone Paoletti

Università di Siena. Corso di STATISTICA. Parte seconda: Teoria della stima. Andrea Garulli, Antonello Giannitrapani, Simone Paoletti Università di Siena Corso di STATISTICA Parte seconda: Teoria della stima Andrea Garulli, Antonello Giannitrapani, Simone Paoletti Master E 2 C Centro per lo Studio dei Sistemi Complessi Università di

Dettagli

8 Derivati dell entropia

8 Derivati dell entropia (F1X) Teoria dell Informazione e della Trasmissione 8 Derivati dell entropia Docente: Nicolò Cesa-Bianchi versione 23 marzo 2016 Siano X e Y due variabili casuali con valori in insiemi finiti X e Y. Detta

Dettagli

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia

Variabili aleatorie discrete. Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia Variabili aleatorie discrete Giovanni M. Marchetti Statistica Capitolo 5 Corso di Laurea in Economia 2015-16 1 / 45 Variabili aleatorie Una variabile aleatoria è simile a una variabile statistica Una variabile

Dettagli

Regressione lineare. Lucio Demeio Dipartimento di Ingegneria Industriale e Scienze Matematiche Università Politecnica delle Marche.

Regressione lineare. Lucio Demeio Dipartimento di Ingegneria Industriale e Scienze Matematiche Università Politecnica delle Marche. Regressione lineare Lucio Demeio Dipartimento di Ingegneria Industriale e Scienze Matematiche Università Politecnica delle Marche Siano x ed y due variabili legate tra loro da una forma funzionale del

Dettagli

X n = αx n 1 + Y n. Si dimostri che. Usando la precedente relazione si dimostri che. e che. e si determini il limite di media e varianza quando n +.

X n = αx n 1 + Y n. Si dimostri che. Usando la precedente relazione si dimostri che. e che. e si determini il limite di media e varianza quando n +. Problema 1. Siano X, Y 1, Y,... variabili aleatorie indipendenti. Si supponga che X abbia media m e varianza σ e che le Y i abbiano distribuzione gaussiana con media µ e varianza σ. Dato α in (, 1, si

Dettagli