Ottica fisiologica, ovvero perché funzionano i Google Glass

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Ottica fisiologica, ovvero perché funzionano i Google Glass"

Transcript

1 Ottica fisiologica, ovvero perché funzionano i Google Glass Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

2 Ovvero, perché funzionano i Google Glass L occhio che vede luce

3 L occhio che vede luce La fisica della riflettanza, che determina i valori di intensità dell immagine, dipende da caratteristiche intrinseche della radiazione elettromagnetica e dei materiali che l assorbono/riflettono geometria di sorgenti di luce, superfici e osservatori Le caratteristiche di interesse della radiazione elettromagnetiche possono essere definite in termini radiometrici L occhio che vede luce Diffrazione della luce nell atmosfera Generazione di radiazione elettromagnetica che include onde di l fra i 400 e 700 nm Assorbimento e riflessione da parte di oggetti Trasmissione e rifrazione Assorbimento e trasduzione

4 L occhio che vede luce Ottica FISICA: luce e sue caratteristiche GEOMETRICA: leggi elementari della riflessione e rifrazione FISIOLOGICA: fenomeni ottici che si verificano nel funzionamento dell occhio

5 Ottica fisica: cos è la luce //diversi livelli di spiegazione Ottica quantistica se si trascurano gli effetti quantistici Elettrodinamica di Maxwell se si trascurano le emissioni di radiazione Ottica ondulatoria per piccole lunghezze d onda può essere sostituita da Ottica geometrica Ottica fisica: cos è la luce //radiazione elettromagnetica Generazione di radiazione elettromagnetica che include onde di lunghezza d onda fra i 400 e 700 nm

6 Ottica fisica: cos è la luce //radiazione elettromagnetica Rappresentazione quantistica: un flusso di fotoni, piccolissime particelle che trasportano un QUANTO di energia l'energia e la quantità di moto dipendono esclusivamente dalla frequenza ν: dove k è il vettore d'onda di modulo k = 2π/λ, ω = 2πν la frequenza angolare e ħ = h/2π la costante di Planck ridotta Ottica fisica: cos è la luce //radiazione elettromagnetica: lo spettro visibile

7 Ottica fisica: cos è la luce //radiazione elettromagnetica Ottica quantistica se si trascurano gli effetti quantistici Elettrodinamica di Maxwell Ottica fisica: cos è la luce //radiazione elettromagnetica Il campo elettrico è tanto più intenso quanto maggiore è la densità di carica Non esistono cariche magnetiche Un campo magnetico variabile genera un campo elettrico Un campo elettrico variabile (corrente elettrica) genera un campo magnetico D (induzione elettrica) H (campo magnetico) P (polarizzazione) M (magnetizzazione)

8 Ottica fisica: cos è la luce //radiazione elettromagnetica: il raggio di luce Ottica fisica: cos è la luce //radiazione elettromagnetica: il raggio di luce

9 Ottica fisica: cos è la luce //radiazione elettromagnetica: il raggio di luce Ottica fisica: cos è la luce //il raggio di luce: fronti d onda piana Assumendo che l'onda: si propaghi nella direzione positiva delle x la fase ad un tempo fissato t è costante in ogni piano perpendicolare alla direzione di propagazione, si ottiene l'onda piana, una funzione armonica rispetto al tempo: In 3D k vettore d'onda,direzione di prop. ω frequenza angolare A ampiezza

10 Ottica fisica: cos è la luce //il raggio di luce: fronti d onda piana Descrizione dell onda sinusoidale (caso 1D) pulsazione numero d onda, k velocità di fase frequenza Ottica fisica: cos è la luce //Principio di Huygens Tutti i punti di un fronte e raggio F(t) possono essere considerati sorgenti puntiformi di onde sferiche secondarie aventi la stessa frequenza dell'onda principale. Dopo un tempo Δt la nuova posizione del fronte F(t + Δt) sarà la superficie di inviluppo di queste onde secondarie onda sferica onda piana spiega riflessione, rifrazione e diffrazione.html

11 Ottica fisica: radiometria //Grandezze radiometriche Energia radiante (radiant energy): è l'energia trasportata da un qualunque campo di radiazione elettromagnetica viene indicata con Qe l'unità di misura nel SI è il joule (J) Flusso radiante (radiant flux): è la potenza della radiazione (cioè l energia radiante per unità di tempo). È una grandezza associata alla posizione e alla direzione; è considerata la grandezza radiometrica fondamentale, sulla base della quale sono definite tutte le grandezze successive viene indicato con Pe o con Φ = l'unità di misura nel SI è il watt (W) Ottica fisica: radiometria //Grandezze radiometriche Densità di energia radiante spettrale (spectral radiant energy): l'energia radiante per unità di intervallo di lunghezza d onda l'unità di misura nel SI è il joule x nanometro Densità di flusso radiante spettrale (spectral radiant flux): è il flusso radiante per unità di intervallo di lunghezza d onda l'unità di misura nel SI è il watt x nanometro

12 Ottica fisica: radiometria //Grandezze radiometriche Distribuzione spettrale della luce del sole {Q(λ)d λ} Ottica fisica: radiometria //Grandezze radiometriche Corpo nero: un oggetto (ideale) che assorbe tutta la radiazione elettromagnetica incidente e quindi non ne riflette né trasmette alcuna energia apparendo in prima approssimazione nero Non riflettendo assorbe dunque tutta l'energia incidente e, per la conservazione dell'energia, re-irradia tutta la quantità di energia assorbita (coefficiente di emissività uguale a quello di assorbività e pari ad uno) Lo spettro (intensità o densità della radiazione emessa in funzione della lunghezza d'onda) di un corpo nero è uno spettro dalla caratteristica forma a 'campana' (più o meno asimmetrica e più o meno schiacciata) dipendente unicamente dalla sua temperatura T I temperatura di colore, di una certa radiazione luminosa, la temperatura che dovrebbe avere un corpo nero affinché la radiazione luminosa emessa da quest'ultimo appaia cromaticamente più vicina possibile alla radiazione considerata Distribuzione spettrale della luce del sole in termini di radiazione di corpo nero (5000 K circa)

13 Intensità radiante, irradiamento e radianza Intensità radiante Ottica fisica: radiometria //Un po di geometria Radiante (simbolo rad): è l'unità di misura degli angoli del Sistema Internazionale di unità di misura. Tale misura rappresenta il rapporto tra la lunghezza di un arco di circonferenza spezzato dall'angolo, e la lunghezza del raggio di tale circonferenza cerchio = 2π rad

14 Ottica fisica: radiometria //Un po di geometria steradiante (simbolo sr): l'unità di misura del Sistema Internazionale per l'angolo solido, il corrispondente tridimensionale del radiante. Lo steradiante è definito come l'angolo solido, con vertice al centro di una sfera di raggio R, che sottende una calotta sferica di area pari a quella di un quadrato di lato R. area di una sfera = 4πR 2, area della calotta sottesa dall'unità di angolo solido = R 2, l'intera sfera sarà sottesa da un angolo solido di misura 4π sr. sorgente (angolo solido sotteso da ) (areola ridotta) (areola) Intensità radiante, irradiamento e radianza Intensità radiante Irradiamento Legge dell inverso del quadrato per sorgenti puntiformi Radianza (sorgenti puntiformi )

15 Ottica fisica: radiometria //Grandezze radiometriche: Intensità radiante Intensità radiante alla sorgente (radiant intensity): è il flusso radiante emesso da una sorgente puntiforme in una certa direzione per unità di angolo solido l'unità di misura nel SI è il watt per steradiante (W/sr) I ( watts / steradian ) sorgente (angolo solido sotteso da ) (areola ridotta) (areola) Intensità radiante, irradiamento e radianza Irradiamento

16 Ottica fisica: radiometria //Grandezze radiometriche: Irradiamento Irradianza o irradiamento o densità di flusso/potenza radiante (irradiance): è il flusso radiante incidente su una superficie per unità di area, ovvero la potenza di una radiazione ricevuta l'unità di misura nel SI è il watt al metro quadrato (W/m 2 ) ( watts / m 2 ) irradianza spettrale sorgente (angolo solido sotteso da ) (areola ridotta) (areola) Non dipende dalla direzione di provenienza del flusso Intensità radiante, irradiamento e radianza Intensità radiante Irradiamento Legge dell inverso del quadrato per sorgenti puntiformi Radianza (sorgenti puntiformi )

17 Intensità radiante, irradiamento e radianza Radianza Ottica fisica: radiometria //Grandezze radiometriche: Radianza Radianza (surface radiance): è il flusso radiante emesso da una sorgente estesa per unità di angolo solido e per unità di area proiettata su un piano normale alla direzione considerata l'unità di misura nel SI è il watt allo steradiante per metro quadrato (W/(sr m 2 )) (watts / m 2 steradian ) L è la radianza (W m -2 sr-1 ); Φ è la potenza (W); θ è l'angolo compreso tra la normale alla superficie e la direzione specificata; A è la superficie emittente (m 2 ); Ω è l'angolo solido (sr). Dipende dalla direzione e dalle proprietà di riflettanza della superficie

18 Intensità radiante, irradiamento e radianza Intensità radiante Irradiamento Legge dell inverso del quadrato per sorgenti puntiformi Radianza (sorgenti puntiformi ) Intensità radiante, irradiamento e radianza Intensità radiante Irradiamento Radianza

19 Intensità radiante, irradiamento e radianza Intensità radiante Irradiamento Legge dell inverso del quadrato per sorgenti puntiformi Radianza (sorgenti puntiformi ) Ottica fisica: radiometria //Grandezze radiometriche Per lo studio della percezione della luce e del colore, le grandezze radiometriche più importanti sono l'irradianza e la radianza. La radianza è importante per i seguenti motivi: viene conservata nella propagazione nei sistemi ottici, a meno di perdite per assorbimento; è indipendente dalla distanza; è correlata alle modalità di collezione della luce da parte dell'occhio umano, degli strumenti ottici (radiometri, esposimetri, luminanziometri) delle telecamere e delle fotocamere. Infatti Luminanza <- Irradiamento immagine Radianza scena

20 Ottica fisica: radiometria //Grandezze radiometriche in sintesi Ottica fisica: radiometria // Grandezze radiometriche spettrali Come visto sopra, ognuna di queste grandezze può essere considerata anche spettralmente, cioè lunghezza d'onda per lunghezza d'onda. Esempio: Radianza spettrale Le(λ) [Watt sr -1 m -3 ] Radianza [Watt sr -1 m -2 ] In tal caso all'unità di misura va aggiunta l'unità di misura della lunghezza d'onda. per esempio, se si sceglie come unità di lunghezza il nanometro (nm) l'irradianza spettrale ha unità di misura W/m 2 nm, oppure se si sceglie come unità il metro, W/m 3.

21 Ottica fisica: //Radiometria e fotometria Ad ogni grandezza radiometrica corrisponderà una grandezza fotometrica che è la rispettiva grandezza radiometrica valutata secondo la risposta del sistema visivo umano. Radiometria Energia radiante Flusso radiante Intensità radiante Irradiamento Radianza V(λ) La funzione di efficienza luminosa fotopica spettrale relativa Fotometria Energia luminosa (lumen/sec) Flusso luminoso (lumen) Intensità luminosa Illuminamento (lux = lumen m 2 ) Luminanza (candele m 2 ne discuteremo più avanti... Ottica fisica: //Radiometria e fotometria Energia radiante Flusso radiante Intensità radiante Irradiamento Radianza Grandezze Radiometriche Grandezze Fotometriche Energia luminosa (lumen/sec) Flusso luminoso (lumen) Intensità luminosa Illuminamento (lux = lumen m 2 ) Luminanza (candele m 2

22 Ottica fisica: radiometria //Grandezze radiometriche vs fotometriche Ottica fisica: luce e oggetti Luce incidente Luce rifratta Luce assorbita Luce riflessa Luce trasmessa

23 Ottica fisica: luce e oggetti //comportamento: assorbimento Assorbimento Assorbimento parte di oggetti Ottica fisica: luce e oggetti //comportamento: assorbimento L energia è trattenuta e per niente trasmessa Assorbimento significa riduzione dell'intensità radiante I ed è il risultato di molti differenti fenomeni Parte dell'energia radiante si trasforma in calore quando le onde elettromagnetiche interagiscono con le molecole del mezzo. La perdita di energia dipende dalla lunghezza del percorso della luce nel mezzo, dalle proprietà del materiale e dalla lunghezza d'onda della luce (e in minor misura dai fattori esterni come la temperatura). L'assorbimento è descritto dall'espressione empirica detta legge di Beer- Lambert per radiazione monocromatica che passa attraverso un materiale omogeneo, la perdita di intensità radiante è proporzionale al prodotto della lunghezza del percorso attraverso il materiale per l'intensità radiante iniziale

24 Ottica fisica: luce e oggetti //comportamento: diffrazione Diffrazione della luce nell atmosfera Ottica fisica: luce e oggetti //comportamento: diffrazione Deviazione della traiettoria delle onde quando queste incontrano un ostacolo sul loro cammino. Conseguenza del principio di Huygens. Gli effetti di diffrazione sono rilevanti quando la lunghezza d'onda è comparabile con la dimensione dell'ostacolo. In particolare per la luce visibile (lunghezza d'onda attorno a 0,5 µm) si hanno fenomeni di diffrazione quando essa interagisce con oggetti di dimensione sub-millimetrica

25 Ottica fisica: luce e oggetti //comportamento: diffrazione Ottica fisica: luce e oggetti //riflessione e rifrazione riflessione da parte di oggetti Rifrazione nel diottro oculare

26 Ottica fisica: cos è la luce //riflessione e rifrazione: ottica geometrica Ottica quantistica se si trascurano gli effetti quantistici Elettrodinamica di Maxwell se si trascurano le emissioni di radiazione Ottica ondulatoria per piccole lunghezze d onda può essere sostituita da Ottica geometrica Un po di fisica della luce //ottica geometrica: assunzioni Principio di Fermat un raggio luminoso per andare da un punto all altro segue sempre il percorso che richiede il minor tempo Propagazione rettilinea della luce in un mezzo omogeneo I raggi luminosi sono semplici rette. Si tratta di un'astrazione matematica, scelta per facilitare i ragionamenti e tale da permettere una chiara rappresentazione dei fenomeni e dei dispositivi sperimentali: le rette geometriche, a differenza dei raggi luminosi, non hanno spessore. Indipendenza dei raggi luminosi Quando due o più raggi vengono a contatto non si verifica alcuna alterazione della loro traiettoria o della loro intensità.

27 Un po di fisica della luce //ottica geometrica: riflessione La riflessione di onde elettromagnetiche è regolata da due leggi fondamentali, ricavabili dal principio di Fermat e dal principio di Huygens-Fresnel: Il raggio incidente, il raggio riflesso e la normale al piano nel punto di incidenza giacciono sullo stesso piano. L'angolo di incidenza e l'angolo di riflessione sono uguali θi θr La riflessione può avvenire: specularmente (riflessione speculare o regolare) cioè in una unica (o quasi) direzione diffusamente (riflessione diffusa) cioè in varie direzioni (non viene discussa nell ottica geometrica) raggio incidente θi α i α r raggio riflesso θr Un po di fisica della luce //ottica geometrica: rifrazione Ha luogo alla superficie di contatto fra due mezzi ottici con indici di rifrazione diversi Raggio incidente, raggio rifratto e normale nel punto d'incidenza alla superficie di separazione dei due mezzi giacciono sullo stesso piano Il rapporto tra i seni degli angoli che il raggio incidente ed il raggio rifratto formano con la normale è una costante che dipende dalla natura dei due mezzi, dalle loro condizioni fisiche (temperatura, pressione, stato di aggregazione, e dalla lunghezza d'onda della luce utilizzata). Tale costante è denominata indice di rifrazione del secondo mezzo rispetto al primo Legge di Snell: raggio incidente θi α I sinθ i / sinθ r = n ir = n r / n i α R θr raggio rifratto

28 Un po di fisica della luce //ottica geometrica: rifrazione Esempio: l acqua è più densa dell aria Utilizzando la legge di Snell: Rifrazione della luce attraverso vetro e acqua η 1 sin θ 1 = η 2 sin θ 2 1 sin (60) = 1.33 sin (40.5) Un po di fisica della luce //ottica fisica: dispersione Dispersione della luce: si può osservare quando una radiazione non monocromatica, come ad esempio quella bianca, incide su di un prisma di vetro con un angolo di incidenza i diverso da zero. La luce bianca è data dalla composizione dei vari colori: nel passaggio dal vetro all'aria, avendo velocità e lunghezze d onda differenti, ogni componente viene rifratta con un angolo di rifrazione diverso

29 Un po di fisica della luce //ottica geometrica: sistemi ottici semplici (x,y) Si forma un immagine? SI ma non è chiara. schermo/sensore scena Un po di fisica della luce //ottica geometrica: sistemi ottici semplici Proiezione prospettica mediante foro di spillo (pinhole, fotografia stenopeica)

30 Un po di fisica della luce //ottica geometrica: sistemi ottici semplici Proiezione prospettica mediante foro di spillo (pinhole, fotografia stenopeica) piano immagine y asse ottico lunghezza focale effettiva, f z x pinhole Un po di fisica della luce //ottica geometrica: sistemi ottici semplici Proiezione prospettica: ingrandimento y d B asse ottico piano immagine B d A f z x Pinhole A scena planare Dalla proiezione prospettica: Ingrandimento:

31 Un po di fisica della luce //ottica geometrica: sistemi ottici semplici Proiezione ortografica Ingrandimento: Quando m = 1, proiezione ortografica asse ottico z x y piano immagine Possibile solo quando Un po di fisica della luce //ottica geometrica: sistemi ottici semplici

32 Un po di fisica della luce //ottica geometrica: sistemi ottici semplici Problemi con il pinhole Un po di fisica della luce //ottica geometrica: sistemi ottici semplici Problemi con il pinhole Se l apertura (dimensione) del foro è dell ordine della lunghezza d onda della luce, si ha diffrazione Ottimalità: f = 50mm, lambda = 600nm (rosso), d = 0.36mm Meglio usare delle lenti (diottri)

33 Un po di fisica della luce //ottica geometrica: sistemi ottici semplici lente convergente lente divergente Meglio usare delle lenti (diottri) Un po di fisica della luce //Diottri successivi: le lenti Lente sferica: sistema ottico centrato costituito da una successione di due diottri Lente sottile: lente sferica con spessore trascurabile rispetto al raggio di curvatura e al diametro delle calotte sferiche che la delimitano LENTI semplici Convergenti : 1) biconvessa, 2) piano-convessa, 3) concavo-convessa Divergenti : 4) biconcava, 5) piano-concava, 6) convesso-concava LENTI composte

34 Un po di fisica della luce //Lenti sottili: costruzione dell immagine potere diottrico Un po di fisica della luce //Lenti sottili: formula dei punti coniugati Come per il diottro semplice: Il potere diottrico è misurato in diottrie potere diottrico Esempio: - una lente di + 5 diottrie è convergente con f=1/5 m = 20 cm - una lente di diottrie è divergente con f=1/2.5 m = 40 cm

35 Un po di fisica della luce //ottica geometrica: diottri e lenti sorgente sensore S normale elemento di superficie Scena Radianza L della scena Lente Irradianza E all immagine Dalla luce alle immagini Mettiamo insieme radiometria e geometria sorgente sensore normale Consideriamo la propagazione della luce in un cono elemento di superficie Intensità dell immagine = f (normale, riflettanza, illuminazione ) Scena Radianza L della scena Lente Irradianza E dell immagine Mapping Lineare

36 Dalla luce alle immagini: // relazione radiometrica fondamentale piano dell immagine areola superficie radianza della scena irradiamento all immagine areola immagine Conservazione del flusso: la radianza è costante lungo il raggio di propagazione Flusso ricevuto alla lente da = Flusso proiettato sull immagine in f }conservazione flusso E = z " 4 # 2 d cos 4 L = KL f L irradiamento all immagine è proporzionale alla radianza della scena Angoli visivi piccoli Gli effetti della 4 a potenza del coseno sono trascurabili. Riassumendo... sorgente sensore S normale elemento di superficie Scena Radianza L della scena Lente Irradianza E all immagine E = k L Mapping Lineare Risultato: Il sistema ottico agisce (approssimativamente ) come un sistema lineare

37 Ottica fisica: luce e oggetti //il passaggio per il diottro oculare ll diottro oculare Ottica fisica: luce e oggetti //il passaggio per il diottro oculare

38 Ottica fisica: luce e oggetti //il passaggio per il diottro oculare Ottica fisica: luce e oggetti //il passaggio per il diottro oculare

39 Dalla luce alle immagini Radianza L della scena Irradianza E dell immagine Realtà aumentata //come funzionano i Google Glass

40 Realtà aumentata //come funzionano i Google Glass Realtà aumentata //come funzionano i Google Glass

41 Realtà aumentata //come funzionano i Google Glass

Ottica fisiologica (2): sistemi ottici

Ottica fisiologica (2): sistemi ottici Ottica fisiologica (2): sistemi ottici Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it http://boccignone.di.unimi.it/pmp_2014.html

Dettagli

LA LUCE. Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione

LA LUCE. Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione LA LUCE Perché vediamo gli oggetti Che cos è la luce La propagazione della luce La riflessione La rifrazione Perché vediamo gli oggetti? Perché vediamo gli oggetti? Noi vediamo gli oggetti perché da essi

Dettagli

Grandezze fotometriche 1

Grandezze fotometriche 1 Grandezze fotometriche 1 Le grandezze fotometriche sono definite partendo dalle grandezze radiometriche ma tenendo conto della curva di risposta dell occhio umano, che agisce come un fattore di peso. In

Dettagli

Ottica geometrica. Propagazione per raggi luminosi (pennello di luce molto sottile)

Ottica geometrica. Propagazione per raggi luminosi (pennello di luce molto sottile) Ottica geometrica Propagazione per raggi luminosi (pennello di luce molto sottile) All interno di un mezzo omogeneo la propagazione e rettilinea: i raggi luminosi sono pertanto rappresentati da tratti

Dettagli

Ottica fisiologica (2)

Ottica fisiologica (2) Ottica fisiologica (2) Corso di Principi e Modelli della Percezione Prof. Giuseppe Boccignone Dipartimento di Scienze dell Informazione Università di Milano boccignone@dsi.unimi.it http://homes.dsi.unimi.it/~boccignone/giuseppeboccignone_webpage/modelli_percezione.html

Dettagli

5 Fondamenti di Ottica

5 Fondamenti di Ottica Laboratorio 2B A.A. 2012/2013 5 Fondamenti di Ottica Formazione immagini Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali Ottica geometrica In ottica geometrica si analizza la formazione

Dettagli

Laboratorio di Ottica e Spettroscopia

Laboratorio di Ottica e Spettroscopia Laboratorio di Ottica e Spettroscopia Quarta lezione Applicazione di tecniche di diffrazione (Laboratorio II) Antonio Maggio e Luigi Scelsi Istituto Nazionale di Astrofisica Osservatorio Astronomico di

Dettagli

DEFINIZIONE DI RADIANZA La radiazione è caratterizzata tramite la Radianza Spettrale, I (λ, θ, φ, T), definita come la densità di potenza per unità di

DEFINIZIONE DI RADIANZA La radiazione è caratterizzata tramite la Radianza Spettrale, I (λ, θ, φ, T), definita come la densità di potenza per unità di SISTEMI PASSIVI Ogni corpo a temperatura T diversa da 0 K irradia spontaneamente potenza elettromagnetica distribuita su tutto lo spettro Attraverso un elemento da della superficie del corpo, fluisce p

Dettagli

5 Lenti e Specchi. Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali

5 Lenti e Specchi. Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali Laboratorio di didattica della Fisica (III modulo): Metodologie di insegnamento del Laboratorio di Ottica Formazione immagini Specchi Superfici rifrangenti Lenti sottili Lenti spessi Punti cardinali 5

Dettagli

CON L EUROPA INVESTIAMO NEL VOSTRO FUTURO Fondi Strutturali Europei Programmazione FSE PON "Competenze per lo sviluppo" Bando 2373

CON L EUROPA INVESTIAMO NEL VOSTRO FUTURO Fondi Strutturali Europei Programmazione FSE PON Competenze per lo sviluppo Bando 2373 CON L EUROPA INVESTIAMO NEL VOSTRO FUTURO Fondi Strutturali Europei Programmazione 2007-2013 FSE PON "Competenze per lo sviluppo" Bando 2373 26/02/2013 Piano integrato 2013 Codice progetto: C-2-FSE-2013-313

Dettagli

Laboratorio di Ottica, Spettroscopia, Astrofisica

Laboratorio di Ottica, Spettroscopia, Astrofisica Università degli Studi di Palermo Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Progetto Lauree Scientifiche Laboratorio di Ottica, Spettroscopia, Astrofisica Antonio Maggio

Dettagli

Esperimento sull ottica

Esperimento sull ottica Esperimento sull ottica Gruppo: Valentina Sotgiu, Irene Sini, Giorgia Canetto, Federica Pitzalis, Federica Schirru, Jessica Atzeni, Martina Putzu, Veronica, Orgiu e Deborah Pilleri. Teoria di riferimento:

Dettagli

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA

ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA ESERCITAZIONI FISICA PER FARMACIA A.A. 2012/2013 ELETTROMAGNETISMO - OTTICA Esercizio 1 Due cariche q 1 e q 2 sono sull asse x, una nell origine e l altra nel punto x = 1 m. Si trovi il campo elettrico

Dettagli

La Polarizzazione della luce

La Polarizzazione della luce La Polarizzazione della luce Applet Java sulle OEM Le Onde Elettromagnetiche Sono onde trasversali costituite dalle vibrazioni del vuoto quantistico. Hanno velocità c=3.0 10 8 m/s. In ogni istante E è

Dettagli

LE LENTI E L OCCHIO UMANO Prof. Erasmo Modica erasmo@galois.it

LE LENTI E L OCCHIO UMANO Prof. Erasmo Modica erasmo@galois.it LE LENTI E L OCCHIO UMANO Prof. Erasmo Modica erasmo@galois.it LE LENTI E LE LORO PROPRIETÀ Una lente è uno strumento costituito da un mezzo trasparente delimitato da due superfici curve, oppure da una

Dettagli

OSCILLATORE ARMONICO SEMPLICE

OSCILLATORE ARMONICO SEMPLICE OSCILLATORE ARMONICO SEMPLICE Un oscillatore è costituito da una particella che si muove periodicamente attorno ad una posizione di equilibrio. Compiono moti oscillatori: il pendolo, un peso attaccato

Dettagli

multistudioformazione LUCE NECESSITA e RISORSA

multistudioformazione LUCE NECESSITA e RISORSA multistudioformazione LUCE NECESSITA e RISORSA liceo scientifico Giordano Bruno Mestre - Venezia 26 novembre 2009 COS E LA LUCE? La luce è una forma di energia costituita da onde elettromagnetiche che

Dettagli

5.4 Larghezza naturale di una riga

5.4 Larghezza naturale di una riga 5.4 Larghezza naturale di una riga Un modello classico più soddisfacente del processo di emissione è il seguente. Si considera una carica elettrica puntiforme in moto armonico di pulsazione ω 0 ; la carica,

Dettagli

Esercizi selezionati per l esame scritto del corso di Fotonica. Laser

Esercizi selezionati per l esame scritto del corso di Fotonica. Laser Esercizi selezionati per l esame scritto del corso di Fotonica Laser Si consideri un laser Nd-YAG con cavità ad anello (vedi figura). Il cristallo Nd-YAG ha lunghezza L = 2.5 cm e R A = R C = 100%. Supponendo

Dettagli

OTTICA DELLA VISIONE. Disegno schematico dell occhio umano

OTTICA DELLA VISIONE. Disegno schematico dell occhio umano OTTICA DELLA VISIONE Disegno schematico dell occhio umano OTTICA DELLA VISIONE Parametri fisici Raggio di curvatura (cm) Cornea 0.8 Anteriore del cristallino Posteriore del cristallino.0 0.6 Indice di

Dettagli

LUCE E OSSERVAZIONE DEL COSMO

LUCE E OSSERVAZIONE DEL COSMO LUCE E OSSERVAZIONE DEL COSMO ALUNNI CLASSI QUINTE SAN BERARDO Ins. DE REMIGIS OSVALDO Ins.SANTONE M. RITA CHE COS E LA LUCE? Perché vediamo gli oggetti? Che cos è la luce? La propagazione della luce

Dettagli

L analisi della luce degli astri: fotometria e spettrometria

L analisi della luce degli astri: fotometria e spettrometria Università del Salento Progetto Lauree Scientifiche Attività formativa Modulo 1 L analisi della luce degli astri: fotometria e spettrometria Vincenzo Orofino Gruppo di Astrofisica LA LUCE Natura della

Dettagli

L intensità è uguale alla potenza per unità di superficie per cui l intensità media è data da:

L intensità è uguale alla potenza per unità di superficie per cui l intensità media è data da: SIMULAZIONE II PROVA DI FISICA ESAME DI STATO LICEI SCIENTIFICI. SOLUZIONI QUESITI Soluzione quesito Detta la potenza media assorbita, la potenza elettrica media emessa sarà:,,,, L intensità è uguale alla

Dettagli

S P E T T R O S C O P I A. Dispense di Chimica Fisica per Biotecnologie Dr.ssa Rosa Terracciano

S P E T T R O S C O P I A. Dispense di Chimica Fisica per Biotecnologie Dr.ssa Rosa Terracciano S P E T T R O S C O P I A SPETTROSCOPIA I PARTE Cenni generali di spettroscopia: La radiazione elettromagnetica e i parametri che la caratterizzano Le regioni dello spettro elettromagnetico Interazioni

Dettagli

Introduzione ai fenomeni di polarizzazione. Lezioni d'autore di Claudio Cigognetti

Introduzione ai fenomeni di polarizzazione. Lezioni d'autore di Claudio Cigognetti Introduzione ai fenomeni di polarizzazione Lezioni d'autore di Claudio Cigognetti VIDEO POLARIZZAZIONE IN UN IPAD, RICAPITOLANDO Impiegando occhiali aventi lenti polaroid e un display a cristalli liquidi

Dettagli

Fenomeni quantistici

Fenomeni quantistici Fenomeni quantistici 1. Radiazione di corpo nero Leggi di Wien e di Stefan-Boltzman Equipartizione dell energia classica Correzione quantistica di Planck 2. Effetto fotoelettrico XIII - 0 Radiazione da

Dettagli

KEY WORDS LA LUCE. Zumtobel. Dario Bettiol Settembre 2012 1 LANGEN FOUNDATION, NEUSS DE ARCHITETTURA: TADAO ANDO JP RENDIMENTO COSTI DI ESERCIZIO

KEY WORDS LA LUCE. Zumtobel. Dario Bettiol Settembre 2012 1 LANGEN FOUNDATION, NEUSS DE ARCHITETTURA: TADAO ANDO JP RENDIMENTO COSTI DI ESERCIZIO LA LUCE. Zumtobel. Dario Bettiol Settembre 2012 1 LANGEN FOUNDATION, NEUSS DE ARCHITETTURA: TADAO ANDO JP SERVICE COSTI DI ESERCIZIO BENESSERE SOSTENIBILITÀ RENDIMENTO SICUREZZA IDENTITÀ SALUTE KEY WORDS

Dettagli

MICHELSON. Interferometro. A.Guarrera, Liceo Galilei CT

MICHELSON. Interferometro. A.Guarrera, Liceo Galilei CT L INTERFEROMETRO DI MICHELSON 1 A.Guarrera, Liceo Galilei CT L interferometria è un metodo di misura molto preciso e molto sensibile che permette di determinare, ad esempio, variazioni di lunghezza, densità

Dettagli

Alessandro Farini: Dispense di Illuminotecnica per le scienze della visione

Alessandro Farini: Dispense di Illuminotecnica per le scienze della visione Capitolo 1 Radiazione elettromagnetica e occhio In questo capitolo prendiamo in considerazione alcune grandezze fondamentali riguardanti l illuminazione e alcuni concetti legati alla visione umana che

Dettagli

1.11.3 Distribuzione di carica piana ed uniforme... 32

1.11.3 Distribuzione di carica piana ed uniforme... 32 Indice 1 Campo elettrico nel vuoto 1 1.1 Forza elettromagnetica............ 2 1.2 Carica elettrica................ 3 1.3 Fenomeni elettrostatici............ 6 1.4 Legge di Coulomb.............. 9 1.5 Campo

Dettagli

Telescopi ed aberrazioni ottiche

Telescopi ed aberrazioni ottiche Centro Osservazione e Divulgazione Astronomica Siracusa Emanuele Schembri Telescopi ed aberrazioni ottiche Siracusa,, 30 aprile 2010 Definizione Le aberrazioni ottiche sono difetti apparenti del comportamento

Dettagli

a) compressione adiabatica fino alla pressione p 2 = kg/cm 2 ;

a) compressione adiabatica fino alla pressione p 2 = kg/cm 2 ; PROBLEMI I primi tre problemi sono tratti dal libro P. Fleury, J.P. Mathieu, Esercizi di Fisica, Zanichelli (Bologna, 1970) che contiene i testi e le relative soluzioni, indicati dal loro numero e pagina

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

La corrente alternata

La corrente alternata La corrente alternata Corrente continua e corrente alternata Le correnti continue sono dovute ad un generatore i cui poli hanno sempre lo stesso segno e pertanto esse percorrono un circuito sempre nello

Dettagli

Radiazione elettromagnetica

Radiazione elettromagnetica Radiazione elettromagnetica Un onda e.m. e un onda trasversa cioe si propaga in direzione ortogonale alle perturbazioni ( campo elettrico e magnetico) che l hanno generata. Nel vuoto la velocita di propagazione

Dettagli

CONOSCERE LA LUCE. Propagazione nello spazio di un onda elettromagnetica.

CONOSCERE LA LUCE. Propagazione nello spazio di un onda elettromagnetica. FOTODIDATTICA CONOSCERE LA LUCE Le caratteristiche fisiche, l analisi dei fenomeni luminosi, la temperatura di colore. Iniziamo in questo fascicolo una nuova serie di articoli che riteniamo possano essere

Dettagli

Ottica geometrica. L ottica geometrica tratta i. propagazione in linea retta e dei. rifrazione della luce.

Ottica geometrica. L ottica geometrica tratta i. propagazione in linea retta e dei. rifrazione della luce. Ottica geometrica L ottica geometrica tratta i fenomeni che si possono descrivere per mezzo della propagazione in linea retta e dei fenomeni di riflessione e la rifrazione della luce. L ottica geometrica

Dettagli

Strumenti ottici Gli strumenti ottici sono sistemi ottici progettati allo scopo di aumentare il potere risolutivo dell'occhio. Trattiamo per primo,

Strumenti ottici Gli strumenti ottici sono sistemi ottici progettati allo scopo di aumentare il potere risolutivo dell'occhio. Trattiamo per primo, Strumenti ottici Gli strumenti ottici sono sistemi ottici progettati allo scopo di aumentare il potere risolutivo dell'occhio. Trattiamo per primo, come strumento ottico proprio l occhio. Schema dell occhio

Dettagli

Master Class di Ottica. Interferenza

Master Class di Ottica. Interferenza Master Class di Ottica 6 marzo 2012 Interferenza Dr. Eleonora Nagali La luce 1/2 Sir Isaac Newton 1642-1727 Augustin-Jean Fresnel Christiaan Huygens 1629-1695 1788-1827 Christiaan Huygens: in analogia

Dettagli

Corso di Fisica Volume II. Propagazione periodica di impulsi

Corso di Fisica Volume II. Propagazione periodica di impulsi Corso di Fisica Volume II Propagazione periodica di impulsi Moti oscillatori periodici Analisi quantitativa del moto del pendolo Oscillatore armonico massa - molla Conservazione dell'energia nei moti oscillanti

Dettagli

INTERPRETAZIONE CINEMATICA DELLA DERIVATA

INTERPRETAZIONE CINEMATICA DELLA DERIVATA INTERPRETAZIONE CINEMATICA DELLA DERIVATA Consideriamo un punto mobile sopra una qualsiasi linea Fissiamo su tale linea un punto O, come origine degli archi, e un verso di percorrenza come verso positivo;

Dettagli

Laboratorio di Ottica, Spettroscopia, Astrofisica

Laboratorio di Ottica, Spettroscopia, Astrofisica Università degli Studi di Palermo Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Progetto Lauree Scientifiche Laboratorio di Ottica, Spettroscopia, Astrofisica Antonio Maggio

Dettagli

I seguenti grafici rappresentano istantanee dell onda di equazione:

I seguenti grafici rappresentano istantanee dell onda di equazione: Descrizione matematica di un onda armonica La descrizione matematica di un onda è data dalla seguente formula : Y ; t) A cos( k ω t + ϕ ) () ( ove ω e k, dette rispettivamente pulsazione e numero d onda,

Dettagli

Unità Didattica n 1: Onde, oscillazioni e suono. Prerequisiti. Forze e moto. Moto circolare uniforme.

Unità Didattica n 1: Onde, oscillazioni e suono. Prerequisiti. Forze e moto. Moto circolare uniforme. PROGRAMMA PREVISTO Testo di riferimento: Fisica Percorsi e metodi Vol. 2 (J. D. Wilson, A. J. Buffa) Le unità didattiche a fondo chiaro sono irrinunciabili, le unità didattiche a fondo scuro potranno essere

Dettagli

Applicazioni del teorema di Gauss

Applicazioni del teorema di Gauss prof. Alessandro ALTERIO (FISICA) 5ªD (P.N.I.) liceo scientifico Marconi di Grosseto pagina 1 di 8 Applicazioni del teorema di Gauss Campo elettrostatico di una distribuzione di carica uniforme e filiforme

Dettagli

Ottica Geometrica. Cos è la luce?

Ottica Geometrica. Cos è la luce? Ottica Geometrica La luce è un fenomeno fisico Cos è la luce? Per studiare la luce, non c è bisogno di sapere cos è (come per il calore, l'elettricità, ecc.) Quello che dobbiamo fare è osservare la realtà

Dettagli

I.I.S MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO A.S. 2009-2010

I.I.S MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO A.S. 2009-2010 IIS MASCALUCIA PROGRAMMAZIONE DI FISICA LICEO CLASSICO AS 2009-2010 Modulo A Grandezze fisiche e misure Le basi dell algebra e dei numeri relativi Proporzionalità tra grandezze Calcolo di equivalenze tra

Dettagli

Corso di Fotografia Centro Iniziative Sociali Roberto Borgheresi

Corso di Fotografia Centro Iniziative Sociali Roberto Borgheresi Corso di Fotografia Centro Iniziative Sociali Roberto Borgheresi 2 Principi Generali della Fotografia LE MISURAZIONI DELLA LUCE 3 LA LUCE QUALE ENERGIA MISURABILE Abbiamo visto che la luce è una forma

Dettagli

CORSO DI LAUREA IN OTTICA E OPTOMETRIA

CORSO DI LAUREA IN OTTICA E OPTOMETRIA CORSO DI LAUREA IN OTTICA E OPTOMETRIA Anno Accademico 007-008 CORSO di FISCA ED APPLICAZIONE DEI LASERS Questionario del Primo appello della Sessione Estiva NOME: COGNOME: MATRICOLA: VOTO: /30 COSTANTI

Dettagli

7 Cenni di ottica per la fotografia

7 Cenni di ottica per la fotografia 7 Cenni di ottica per la fotografia 7.1 Schematizzazione di un obiettivo fotografico Gli obiettivi fotografici sono generalmente composti da un numero elevato di lenti. Tuttavia per semplicità possiamo

Dettagli

LE LENTI GLI ELEMENTI CARATTERISTICI DI UNA LENTE

LE LENTI GLI ELEMENTI CARATTERISTICI DI UNA LENTE LE LENTI Le lenti sono corpi omogenei trasparenti costituiti da due superfici curve oppure una curva e una piana; di solito si utilizzano sistemi di lenti con superfici sferiche, attraverso cui la luce

Dettagli

OTTICA. Ottica geometrica. Riflessione e rifrazione

OTTICA. Ottica geometrica. Riflessione e rifrazione Ottica geometrica OTTICA Sappiamo che la luce è un onda elettromagnetica. Essa perciò può non propagarsi in linea retta, analogamente alle altre onde (p. es. quelle sonore). Però, come avviene per tutte

Dettagli

OTTICA E LABORATORIO

OTTICA E LABORATORIO Programma di OTTICA E LABORATORIO Anno Scolastico 2014-2015 Classe V P indirizzo OTTICO Prof. GIUSEPPE CORSINO Programma di OTTICA E LABORATORIO Anno Scolastico 2014-2015 Classe V P indirizzo OTTICO Prof.

Dettagli

IIS Moro Dipartimento di matematica e fisica

IIS Moro Dipartimento di matematica e fisica IIS Moro Dipartimento di matematica e fisica Obiettivi minimi per le classi prime - Fisica Poiché la disciplina Fisica è parte dell Asse Scientifico Tecnologico, essa concorre, attraverso lo studio dei

Dettagli

Le 7 grandezze fondamentali e le relative unità di misura sono riportate nella tabella sottostante:

Le 7 grandezze fondamentali e le relative unità di misura sono riportate nella tabella sottostante: Le unità di misura L attuale sistema di unità di misura è stato stabilito dall 11 Conferenza Generale dei Pesi e delle Misure nel 1960 che ha costituito il Sistema Internazionale delle Unità di misura

Dettagli

Valutazione mediante calcoli

Valutazione mediante calcoli Valutazione mediante calcoli Esposizione radiante: integrale nel tempo della Radianza, espressa in Joule per unità di area irradiata (J/m 2 ) Definizioni delle grandezze radiometriche Potenza radiante:

Dettagli

OTTICA TORNA ALL'INDICE

OTTICA TORNA ALL'INDICE OTTICA TORNA ALL'INDICE La luce è energia che si propaga in linea retta da un corpo, sorgente, in tutto lo spazio ad esso circostante. Le direzioni di propagazione sono dei raggi che partono dal corpo

Dettagli

FERRARI LUCI MARIANI PELISSETTO FISICA ELETTROMAGNETISMO E OTTICA IDELSON-GNOCCHI

FERRARI LUCI MARIANI PELISSETTO FISICA ELETTROMAGNETISMO E OTTICA IDELSON-GNOCCHI FISICA FERRARI LUCI MARIANI PELISSETTO FISICA Volume Secondo ELETTROMAGNETISMO E OTTICA IDELSON-GNOCCHI c 2009 CASA EDITRICE IDELSON-GNOCCHI srl - Editori dal 1908 Sorbona Grasso Morelli Liviana Medicina

Dettagli

Ottica fisica e ottica ondulatoria Lezione 12

Ottica fisica e ottica ondulatoria Lezione 12 Ottica fisica e ottica ondulatoria Lezione La luce è un onda elettromagnetica; ne studiamo le proprietà principali, tra cui quelle non dipendenti direttamente dalla natura ondulatoria (ottica geometrica

Dettagli

La struttura della materia

La struttura della materia La struttura della materia IL CORPO NERO In fisica, i corpi solidi o liquidi emettono radiazioni elettromagnetiche, a qualsiasi temperatura. Il corpo nero, invece, è un oggetto ideale che assorbe tutta

Dettagli

PROGRAMMA OPERATIVO NAZIONALE

PROGRAMMA OPERATIVO NAZIONALE PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio Ottica geometrica Sommario 1) Cos è la luce

Dettagli

1.Visione_01 Ottica geometrica. Prof. Carlo Capelli Fisiologia Corso di Laurea in Scienze delle Attività Motorie e Sportive Università di Verona

1.Visione_01 Ottica geometrica. Prof. Carlo Capelli Fisiologia Corso di Laurea in Scienze delle Attività Motorie e Sportive Università di Verona 1.Visione_01 Ottica geometrica Prof. Carlo Capelli Fisiologia Corso di Laurea in Scienze delle Attività Motorie e Sportive Università di Verona Obiettivi Principi di refrazione delle lenti, indice di refrazione

Dettagli

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15

Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Università del Salento Corso di Laurea Triennale in Ingegneria Industriale Secondo esonero di FISICA GENERALE 2 del 16/01/15 Esercizio 1 (7 punti): Nella regione di spazio compresa tra due cilindri coassiali

Dettagli

LA SENSAZIONE DI CALORE E IL BENESSERE TERMICO. Acqua, Luce, Calore: uso e risparmio

LA SENSAZIONE DI CALORE E IL BENESSERE TERMICO. Acqua, Luce, Calore: uso e risparmio A LA SENSAZIONE DI CALORE E IL BENESSERE TERMICO 1. IL NOSTRO ORGANISMO E CAPACE DI AUTOREGOLAZIONE TERMICA PER LA SOPRAVVIVENZA, IL NOSTRO ORGANISMO MANTIENE LA SUA TEMPERATURA INTERNA COSTANTE (A CIRCA

Dettagli

Laboratorio di Ottica, Spettroscopia, Astrofisica

Laboratorio di Ottica, Spettroscopia, Astrofisica Università degli Studi di Palermo Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Fisica Progetto Lauree Scientifiche Laboratorio di Ottica, Spettroscopia, Astrofisica Antonio Maggio

Dettagli

SPETTROFOTOMETRIA UV/VIS

SPETTROFOTOMETRIA UV/VIS SPETTROFOTOMETRIA UV/VIS TECNICHE SPETTROSCOPICHE Le tecniche spettroscopiche sono tutte quelle tecniche basate sull interazione tra la materia e le radiazioni elettromagnetiche. La luce, il calore ed

Dettagli

LE ONDE nella Fisica classica

LE ONDE nella Fisica classica LE ONDE nella Fisica classica Le onde costituiscono un trasporto di energia da un punto a un altro, senza spostamento di materia. Caratteri principali: Lunghezza d onda: Distanza percorsa dall onda durante

Dettagli

Si intende la risposta di un materiale all esposizione alle radiazioni elettromagnetiche ed in particolare alla luce visibile.

Si intende la risposta di un materiale all esposizione alle radiazioni elettromagnetiche ed in particolare alla luce visibile. PROPRIETA OTTICHE DEI MATERIALI Si intende la risposta di un materiale all esposizione alle radiazioni elettromagnetiche ed in particolare alla luce visibile. Tratteremo inizialmente i concetti ed i principi

Dettagli

Radiazioni Ottiche Artificiali (ROA) Concetti Generali e Limiti di Esposizione

Radiazioni Ottiche Artificiali (ROA) Concetti Generali e Limiti di Esposizione Dr. Massimo BORRA INAIL - Dipartimento Igiene del Lavoro Portale Nazionale per la Protezione dagli Agenti Fisici nei luoghi di lavoro Radiazioni Ottiche Artificiali (ROA) Concetti Generali e Limiti di

Dettagli

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche

Fisica II - CdL Chimica. La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Ottica geometrica Velocità della luce Dispersione Fibre ottiche La natura della luce Teoria corpuscolare (Newton) Teoria ondulatoria: proposta già al tempo di Newton, ma scartata perchè

Dettagli

Un percorso di ottica

Un percorso di ottica Un percorso di ottica Isabella Soletta Liceo Fermi Alghero Documento riadattato da MyZanichelli.it Questo simbolo significa che l esperimento si può realizzare anche a casa con materiali di facile reperibilità

Dettagli

2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ

2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ 2.1 CAPITOLO 2 I RAGGI E LE LORO PROPRIETÀ 2.2 Riflettendo sulla sensazione di calore che proviamo quando siamo esposti ad un intensa sorgente luminosa, ad esempio il Sole, è naturale pensare alla luce

Dettagli

Corso di Laboratorio di Fisica prof. Mauro Casalboni dott. Giovanni Casini

Corso di Laboratorio di Fisica prof. Mauro Casalboni dott. Giovanni Casini SSIS indirizzo Fisico - Informatico - Matematico 2 anno - a.a.. 2006/2007 Corso di Laboratorio di Fisica prof. Mauro Casalboni dott. Giovanni Casini LA LUCE La luce è un onda elettromagnetica Il principio

Dettagli

LA NATURA ELETTROMAGNETICA DELLA LUCE

LA NATURA ELETTROMAGNETICA DELLA LUCE LA NATURA ELETTROMAGNETICA DELLA LUCE LA TEORIA DI MAXWELL La definizione della natura della luce ha sempre rappresentato un problema fondamentale per la fisica. Il matematico e fisico britannico Isaac

Dettagli

Cenni di colorimetria Leggi di Grassman. Prof. Ing. Cesare Boffa

Cenni di colorimetria Leggi di Grassman. Prof. Ing. Cesare Boffa Cenni di colorimetria Leggi di Grassman 1 a Legge di Grassman In un colore l occhio umano distingue ed apprezza tre tipi di sensazione Tinta Saturazione Splendore 1 a Legge di Grassman Un colore, quindi,

Dettagli

Corso di Fisica. Onde Interferenza e Diffrazione. Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni a.a.08-09

Corso di Fisica. Onde Interferenza e Diffrazione. Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni a.a.08-09 Corso di Fisica Onde Interferenza e Diffrazione Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni a.a.08-09 1 SOMMARIO 1. Esercizi sulle onde 2. Diffrazione 3. Interferenza 4. Diffrazione

Dettagli

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2015/2016 CLASSE IV SEZ. CL INDIRIZZO LICEO LINGUISTICO PROGRAMMA DI MATEMATICA

I.I.S. MARGHERITA DI SAVOIA NAPOLI ANNO SCOLASTICO 2015/2016 CLASSE IV SEZ. CL INDIRIZZO LICEO LINGUISTICO PROGRAMMA DI MATEMATICA CLASSE IV SEZ. CL INDIRIZZO LICEO LINGUISTICO PROGRAMMA DI MATEMATICA ALGEBRA RICHIAMI SU EQUAZIONI DI II GRADO (COMPLETE ED INCOMPLETE) E SULLE PRINCIPALI OPERAZIONI CON I RADICALI RICHIAMI SU DISEQUAZIONI

Dettagli

Richiami. Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza

Richiami. Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza Parte I Problemi Richiami Esercizio 1.1. La radiazione elettromagnetica del corpo nero ha la seguente densità di energia per unità di frequenza u ν = 8π hν c 3 ν e βhν 1, dove c è la velocità della luce

Dettagli

RADIAZIONE SOLARE PRODUCIBILITA DI UN IMPIANTO FOTOVOLTAICO

RADIAZIONE SOLARE PRODUCIBILITA DI UN IMPIANTO FOTOVOLTAICO DIPARTIMENTO DI INGEGNERIA E ARCHITETTURA RADIAZIONE SOLARE PRODUCIBILITA DI UN IMPIANTO FOTOVOLTAICO Alessandro Massi Pavan Energia per il futuro dal 2013 al 2020... e oltre! Sesto Val Pusteria 24-28

Dettagli

Onde Le onde luminose

Onde Le onde luminose www.liceoinweb.135.it FISICA Onde Le onde luminose Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica MODELLO CORPUSCOLARE E ONDULATORIO Già gli antichi filosofi greci si erano posti il problema

Dettagli

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata

LASER. Light Amplification by Stimulated Emission of Radiation. Introduzione. Assorbimento, emissione spontanea, emissione stimolata LASER Light Amplification by Stimulated Emission of Radiation Introduzione. Assorbimento, emissione spontanea, emissione stimolata Cenni storici 1900 Max Planck introduce la teoria dei quanti (la versione

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

ONDE ELETTROMAGNETICHE. E = c. ω =

ONDE ELETTROMAGNETICHE. E = c. ω = ONDE ELETTROMAGNETICHE E B ( x, t) E0sen( kx ωt) ( x, t) B0sen( kx ωt) E B c ν T λ c λν T k 2π λ ω 2π T h E ωhω 2 π LO SPETTRO ELETTROMAGNETICO 7.5 0 4 Hz Sensibilità occhio umano 3.7 0 4 Hz λν c 3 0 8

Dettagli

TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO

TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO TRASMISSIONE DEL CALORE PER IRRAGGIAMENTO Scambio termico per irraggiamento L irraggiamento, dopo la conduzione e la convezione, è il terzo modo in cui i corpi possono scambiare calore. Tale fenomeno non

Dettagli

Teoria dell immagine

Teoria dell immagine Archivi fotografici: gestione e conservazione Teoria dell immagine Elementi di base: la luce, l interazione tra luce e materia, il colore Mauro Missori Cos è la fotografia? La fotografia classica è un

Dettagli

1 Le equazioni di Maxwell e le relazioni costitutive 1 1.1 Introduzione... 1 1.2 Richiami sugli operatori differenziali...... 4 1.2.1 Il gradiente di uno scalare... 4 1.2.2 La divergenza di un vettore...

Dettagli

28/05/2009. La luce e le sue illusioni ottiche

28/05/2009. La luce e le sue illusioni ottiche La luce e le sue illusioni ottiche Cosa si intende per raggio luminoso? Immagina di osservare ad una distanza abbastanza elevata una sorgente di luce... il fronte d onda potrà esser approssimato ad un

Dettagli

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro.

I vertici e i lati di ogni poligono vengono detti rispettivamente vertici e spigoli del poliedro. 1 I poliedri diagonale DEFINIZIONE. Un poliedro è la parte di spazio delimitata da poligoni posti su piani diversi in modo tale che ogni lato sia comune a due di essi. I poligoni che delimitano il poliedro

Dettagli

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI

Conoscenze FISICA LES CLASSE TERZA SAPERI MINIMI FISICA LES SAPERI MINIMI CLASSE TERZA LE GRANDEZZE FISICHE E LA LORO MISURA Nuovi principi per indagare la natura. Il concetto di grandezza fisica. Misurare una grandezza fisica. L impossibilità di ottenere

Dettagli

Strumenti e tecniche di misura per grandezze fotometriche e caratteristiche delle superfici. prof. ing. Luigi Maffei

Strumenti e tecniche di misura per grandezze fotometriche e caratteristiche delle superfici. prof. ing. Luigi Maffei Strumenti e tecniche di misura per grandezze fotometriche e caratteristiche delle superfici prof. ing. Luigi Maffei Le grandezze fotometriche Sono definite per valutare in termini quantitativi le caratteristiche

Dettagli

Rendering ed illuminazione

Rendering ed illuminazione Rendering ed illuminazione Dove si introduce un metodo per ottenere una immagine a partire da una descrizione degli oggetti tridimensionali e si presenta la legge fondamentale che governa l illuminazione.

Dettagli

Unità Didattica N 32 Propagazione e riflessione della luce

Unità Didattica N 32 Propagazione e riflessione della luce Unità Didattica N 32 Propagazione e riflessione della luce 1 Unità Didattica N 32 Propagazione e riflessione della luce 01) La natura duale della luce Parodi Pag. 121 02) I primi elementi di ottica geometrica

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA LA CORRENTE ELETTRICA Giuseppe Frangiamore con la collaborazione di Antonino Palumbo Definizione di corrente elettrica La corrente elettrica è un qualsiasi moto ordinato di cariche elettriche, definita

Dettagli

Energia dalla Luce II. Il Sole La luce solare Misurazione della luce Il calore Trasformazione della luce in calore

Energia dalla Luce II. Il Sole La luce solare Misurazione della luce Il calore Trasformazione della luce in calore Energia dalla Luce II Il Sole La luce solare Misurazione della luce Il calore Trasformazione della luce in calore classificazione delle onde elettromagnetiche FREQUENZA (Hertz) LUNGHEZZA D'ONDA (metri)

Dettagli

1 I solidi a superficie curva

1 I solidi a superficie curva 1 I solidi a superficie curva PROPRIETÀ. Un punto che ruota attorno ad un asse determina una circonferenza. PROPRIETÀ. Una linea, un segmento o una retta che ruotano attorno ad un asse determinano una

Dettagli

Spettroscopia. Reticolo di diffrazione Spettrometro a reticolo Spettroscopia Raman

Spettroscopia. Reticolo di diffrazione Spettrometro a reticolo Spettroscopia Raman Spettroscopia Reticolo di diffrazione Spettrometro a reticolo Spettroscopia Raman Di nuovo l'esperimento di Young delle due fenditure Onda piana incidente Se la larghezza d delle fenditure tende a zero:

Dettagli

Guadagno d antenna Come misurarlo?

Guadagno d antenna Come misurarlo? A.R.I. - Sezione di Parma Conversazioni del 1 venerdì del mese Guadagno d antenna Come misurarlo? Venerdi, 6 dicembre 2013, ore 21 - Carlo, I4VIL DIRETTIVITA E GUADAGNO La direttività D è il rapporto tra

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT1. Ottica geometrica e polarizzazione

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT1. Ottica geometrica e polarizzazione Scopo dell'esperienza: Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA OTT Ottica geometrica e polarizzazione. Misura della distanza focale di una lente sottile; 2. misura

Dettagli

Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci

Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci Corso di Laurea Magistrale in Ingegneria per l Ambiente e il Territorio A.A. 2012-2013 Telerilevamento e SIT Prof. Ing. Giuseppe Mussumeci Telerilevamento: principi fisici Principi fisici del telerilevamento

Dettagli

Scienze integrate (Biologia con elem.di biologia marina) Prof.ssa Rosa Domestico Lavoro degli alunni della classe IIG a.s.

Scienze integrate (Biologia con elem.di biologia marina) Prof.ssa Rosa Domestico Lavoro degli alunni della classe IIG a.s. LA LUCE Scienze integrate (Biologia con elem.di biologia marina) Prof.ssa Rosa Domestico Lavoro degli alunni della classe IIG a.s. 2012_2013 La luce è una forma di energia che ci fa vedere le forme, i

Dettagli