UNIVERSITÀ DEGLI STUDI DI PISA

Documenti analoghi
UNIVERSITA DI PISA FACOLTA DI INGEGNERIA AEROSPAZIALE DIPARTIMENTO DI INGEGNERIA AEROSPAZIALE TESI DI LAUREA SPECIALISTICA

PIANO DI LAVORO DEI DOCENTI

Invito alla lettura. Simboli e notazioni

Università degli studi di Genova

Indice. Premessa alla prima edizione 15 Premessa alla seconda edizione 17 Premessa alla terza edizione 19. Introduzione 21

Controllo LQG/LTR di un Aereo. Corso di Controllo Multivariabile Prof. Francesco Amato

In memoria di mio padre. A mia madre, a tutti gli amici. A tutti voi grazie.

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Informatica per il Management: Analisi Numerica

Programma del Corso di Ricerca Operativa (Prof. A. Sforza) - A.A C.d.S. Ingegneria Gestionale N44-N45 C.d.S. Ingegneria Meccanica N47

Sommario. Prefazione... xi

POLITECNICO DI BARI I FACOLTÀ DI INGEGNERIA CORSO DI LAUREA IN INGEGNERIA MECCANICA DIPARTIMENTO DI INGEGNERIA MECCANICA E GESTIONALE

a.a. 2016/2017 Stefano Bifaretti Vincenzo Bonaiuto Dipartimento di Ingegneria Industriale

Contatti: Informatica per il Management: Analisi Numerica. Obiettivi del corso di Analisi Numerica. Informatica per il Management: Analisi Numerica 1

INGEGNERIA DELLE TELECOMUNICAZIONI

G. C. Barozzi - C. Corradi Matematica ( per le scienze economiche e statistiche. il Mulino

PRIMA PROVA PARZIALE DI CONTROLLO DIGITALE A.A. 2005/ aprile 2006 TESTO E SOLUZIONE

Presentazione dell'edizione italiana...xi

a.a. 2017/2018 Stefano Bifaretti Dipartimento di Ingegneria Industriale

SOLUZIONE della Prova TIPO E per:

TESI DI LAUREA SPECIALISTICA

MATLAB. Guida al laboratorio di automatica. Mariagrazia Dotoli, Maria Pia Fanti

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Sintesi ottima di diagrammi di radiazione sagomati mediante array di antenne

Teoria dei sistemi di controllo

Capitolo 2. Introduzione

Università di Pisa - Registro lezioni.

Figure 1: Modello di veicolo da controllare. τv m

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

Controllo in retroazione: Progetto in Frequenza. Prof. Laura Giarré

Controlli Automatici T Esempi di progetto

Gabriella Bretti Paolo Emi lio Ricci. Breve corso di Analisi numerica

Università degli studi di Pisa Facoltà di ingegneria

Programma del corso di: Laboratorio di Programmazione e Calcolo Corso di laurea in Matematica a.a Proff. B. Paternoster, D.

Teoria dei Sistemi

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

CONTROLLO NEL DOMINIO DELLA FREQUENZA

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione

Programma del corso di: Calcolo Numerico Corso di laurea in Matematica a.a Prof. B.Paternoster

Università degli Studi di Enna Kore Facoltà di Ingegneria ed Architettura

3.3 FORMULAZIONE DEL MODELLO E CONDIZIONI DI

Indice. Prefazione Ringraziamenti

Interpolazione polinomiale. Interpolazione polinomiale

INGEGNERIA DELLE TELECOMUNICAZIONI

FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015

METODO DEGLI ELEMENTI FINITI

Analisi Numerica: Introduzione

N90200 Analisi Matematica Anno Accademico 2017/18 - II semestre

Funzioni di trasferimento canoniche e risposte allo scalino

Università degli Studi di Enna Kore Facoltà di Ingegneria ed Architettura

REGOLATORI PID. Modello dei regolatori PID. Metodi di taratura automatica

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Dalla meccanica del continuo alle Equazioni di Lagrange g per i solidi elastici. Dinamica delle Strutture Aerospaziali

Sistema di controllo dei falsi allarmi per radar ad alta risoluzione

Implementazione degli algoritmi.

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (Prof. S. Bittanti) Ingegneria Informatica 10 CFU. Appello 11 Settembre 2014 Cognome Nome Matricola

Sistemi di Controllo Multivariabile

Regolazione e Controllo dei Sistemi Meccanici 9 Giugno 2005

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 10 settembre 2008: testo e soluzione. y = x 2. x 1 = 1 x 2 = 1

In memoria di mio padre Dino In memoria dei miei nonni A chi mi vuole bene

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

Corso di Laurea in Ingegneria Meccatronica PROGETTO DEL CONTROLLORE. CA 9 - LuogoDelleRadici

Ottimizzazione di manovre per velivoli ad ala rotante

Implementazione in linguaggio C del metodo delle potenze

INGEGNERIA INFORMATICA

Esercizi 3, 1. Prof. Thomas Parisini. Esercizi 3, 3 Regola:

Stabilità per sistemi a tempo continuo

Esercitazione sulla sintesi con reazione dallo stato. (bozza da rivedere a cura degli studenti, comunicando errori al docente)

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Analisi Numerica (2 moduli, 12 crediti, 96 ore, a.a )

UNIVERSITÀ DEGLI STUDI DI NAPOLI FEDERICO II

Teorema di Thevenin generalizzato

CONTROLLI AUTOMATICI Ingegneria Meccatronica. Prof. Cesare Fantuzzi. Cristian Secchi

Prefazione 3. Ringraziamenti 5

Analisi di stabilità (L & NL) Prof. Laura Giarré

La notazione usata è quella usuale nel caso scalare, ed è estesa al caso generale. Consideriamo una forma quadratica:

Corso di Calcolo Numerico

Esame di FONDAMENTI DI AUTOMATICA (9 CFU)

0 Richiami di algebra lineare e geometria analitica Distanza, coordinate e vettori Sistemi lineari e matrici...

LABORATORIO DI AUTOMAZIONE Progetto 1 Registratore digitale

Controllo Digitale - A.A. 2013/2014 Elaborato 6: metodi nello spazio degli stati, stima dello stato, sintesi del regolatore

Corso di laurea in Matematica Laboratorio di Programmazione e Calcolo Prof. A. Murli. Esercizi di riepilogo - LABORATORIO

INGEGNERIA INFORMATICA

Fisica 1 per studenti di chimica - Anno accademico Primo Semestre - Anna Nobili

25 - Funzioni di più Variabili Introduzione

Progetto del controllore

4 Analisi nel dominio del tempo delle rappresentazioni in

ISTRUZIONI PER LA CONSEGNA DEI FILE MATLAB

Esercitazione Scritta di Controlli Automatici

Prova Scritta di Robotica II. 5 Aprile 2005

Regolatori standard LT-Cap. 11/ Appendice B

MATEMATICA GENERALE - Canale III

Indice. 5 Basi di Gröbner Ideali monomiali Basi di Gröbner... 22

Controllo Digitale - A. Bemporad - A.a. 2007/08

Ingegneria e Tecnologie dei sistemi di Controllo

Calcolo Numerico Informatica Manolo Venturin A.A Guida all esame

Transcript:

UNIVERSITÀ DEGLI STUDI DI PISA Facoltà di ingegneria Corso di Laurea in Ingegneria Aerospaziale Tesi di Laurea PROGETTO DI CONTROLLORI DI VOLO MEDIANTE L USO DELLE GUARDIAN MAPS RELATORE PROF. GIOVANNI MENGALI CANDIDATO MATTEO PACINI Anno Accademico 2010-2011 URN: etd-02132012-100148

A Lara, per il continuo supporto, la fiducia e l Amore. Alla mia famiglia per il sostegno da sempre dimostrato.

Sommario Questo lavoro di tesi utilizza il metodo delle Guardian Maps per trattare la stabilità robusta di famiglie di sistemi lineari dipendenti da parametri. Si tratta di una tecnica di sintesi che affronta il problema in due passi successivi. Il primo consiste nel tradurre i requisiti richiesti da un dato sistema dinamico in vincoli sulla posizione dei poli in ciclo chiuso; il secondo consente di selezionare i guadagni del controllore affinché questi requisiti siano soddisfatti. La metodologia si basa sull utilizzo di polinomi reali a coefficienti reali, costruiti con particolari tecniche, a partire dalla matrice di stato del sistema. La procedura illustrata permette anche di ottenere uno scheduling del controllore secondo un parametro, estendendo le prestazioni determinate in un certo punto di progetto ad un opportuno intervallo, il quale viene determinato sfruttando ancora le Maps. Gli algoritmi descritti nella prima parte del lavoro ed implementati in Matlab, sono corredati da semplici esempi e da applicazioni tratte dalla dinamica del volo, con riferimento a due velivoli per i quali vengono descritti dettagliatamente i modelli utilizzati. Partendo dalla configurazione base, determinata tramite l uso delle Guardian Maps, nella seconda parte della tesi si propone un procedimento che mira ad ottimizzarla, minimizzando una funzione obiettivo scalare legata all energia dei comandi richiesta per soddisfare i requisiti di progetto. Sono impostati e confrontati diversi metodi di ottimizzazione, che sfruttano sia semplici strumenti di ricerca del minimo, che i più complessi algoritmi genetici. Questa condizione di ottimo è il punto di partenza per la sintesi del controllore di volo, i cui risultati sono presentati ed analizzati nella parte finale del lavoro. II

Indice generale Sommario Introduzione II VII Capitolo 1: Guardian Maps 1 1.1 Guardian maps 1 1.1.1 Definizioni 1 1.1.2 Esempi 2 1.2 Tecniche per determinare le guardian maps 2 1.3 Stabilità robusta 3 1.3.1 Esempio 3 1.4 Famiglie di matrici dipendenti da un parametro 4 Capitolo 2: Sintesi di un controllore con il metodo delle guardian maps 6 2.1 Introduzione 6 2.2 La Target Region 6 2.3 La regione degli autovalori 7 2.4 L algoritmo di sintesi 8 2.4.1 Iterazione di confinamento dei poli in una Target Region 8 2.4.2 Calcolo di un vettore dei guadagni all interno di un componente. 10 attivo 2.5 Esempio: controllore proporzionale integrale (P.I.) 11 2.5.1 Iterazione 1 13 2.5.2 Iterazione 2 13 2.5.3 Iterazione 3 14 2.5.4 Iterazione 4 15 Capitolo 3: Scheduling secondo un parametro 16 3.1 Introduzione 16 3.2 Algoritmo di scheduling secondo un parametro 16 3.3 Esempio: controllore proporzionale derivativo (P.D.) 17 Capitolo 4: Le qualità di volo ed i controllori scelti per il velivolo 22 4.1 Sommario 22 4.2 Le qualità di volo 22 4.2.1 Introduzione 22 4.2.1.1 Classe di velivolo 23 4.2.1.2 Fasi di volo 23 4.2.1.3 Livelli di qualità di volo 24 4.2.2 Qualità di volo longitudinali 24 4.2.3 Qualità di volo laterodirezionali 25 4.3 I controllori 26 III

4.3.1 Introduzione 26 4.3.2 L Attitude Hold Control System 26 4.3.2.1 L architettura 26 4.3.2.2 Le matrici in ciclo chiuso 27 4.3.2.3 Il Dropback di Gibson 28 4.3.3 Lo Yaw Damper con Wash-out e Roll Damper 29 4.3.3.1 L architettura 29 4.3.3.2 Le matrici in ciclo chiuso 30 Capitolo 5: Modello della dinamica 32 5.1 Introduzione 32 5.2 Il modello linearizzato e disaccoppiato 32 5.2.1 I sistemi di riferimento 32 5.2.2 Le equazioni del moto linearizzate 33 5.2.3 Relazioni complementari 35 5.2.4 Derivate con apice 35 5.3 Derivate aerodinamiche di stabilità 35 5.4 Trasformazione da assi corpo ad assi stabilità 37 5.4.1 Trasformazione delle derivate aerodinamiche 37 5.4.2 Trasformazione dei momenti d inerzia 38 5.5 Forma canonica in variabili di stato 38 5.6 Dinamica longitudinale 39 5.6.1 L approssimazione di corto periodo 39 5.6.2 Espressione di poli e zeri 40 5.7 Dinamica laterodirezionale 41 5.7.1 L approssimazione di alta frequenza 41 5.7.2 Le matrici in variabili di stato approssimate 41 5.7.3 Il modello completo 42 Capitolo 6: Modello del Boeing 747 44 6.1 Dai geometrici del velivolo 44 6.2 Calcolo delle derivate aerodinamiche longitudinali 45 6.2.1 Esempio per una data condizione di volo 47 6.3 Calcolo delle derivate aerodinamiche laterodirezionali 47 6.3.1 Esempio per una data condizione di volo 48 6.4 Sistemi di attuazione 48 6.5 Inviluppo di volo 49 Capitolo 7: Modello dell F16 50 7.1 Dai geometrici del velivolo 50 7.2 Calcolo delle condizioni di trim 51 7.3 Coefficienti aerodinamici 51 7.3.1 Premessa 51 7.3.2 Calcolo delle derivate aerodinamiche longitudinali 52 7.3.3 Calcolo delle derivate aerodinamiche laterodirezionali 54 7.3.4 Esempio per una data condizione di volo 55 7.4 Sistemi di attuazione 56 IV

7.5 Inviluppo di volo 56 Capitolo 8: Progetto del controllore in una condizione di volo 58 8.1 Introduzione 58 8.2 Sintesi dell Attitude Hold Control System 58 8.2.1 Calcolo delle matrici di ciclo aperto tramite Simulink 58 8.2.2 Risultati della sintesi 60 8.2.2.1 Sistema in ciclo chiuso 60 8.2.2.2 Risposte temporali in ciclo chiuso 61 8.2.3 Esempio per il Boeing 747 61 8.3 Sintesi dello Yaw Damper con Wash-out e Roll Damper 62 8.3.1 Blocco attuatori 62 8.3.2 Calcolo delle matrici di ciclo aperto 63 8.3.3 Risultati della sintesi 64 8.3.3.1 Sistema in ciclo chiuso e risposte temporali 64 8.3.4 Esempio per il Boeing 747 64 Capitolo 9: Gain Scheduling per una quota 66 9.1 Introduzione 66 9.2 Gain scheduling con calcolo simbolico 66 9.3 Algoritmo di verifica 67 9.4 Esempi di scheduling 68 9.4.1 Controllore longitudinale 68 9.4.2 Controllore laterodirezionale 68 Capitolo 10: Ottimizzazione del controllo 69 10.1 La dipendenza da 69 10.1.1 La funzione obiettivo 69 10.1.2 L esempio LQR 70 10.2 L energia dei comandi 72 10.2.1 Introduzione 72 10.2.2 Calcolo dell energia per il modello longitudinale 72 10.2.3 Calcolo dell energia per il modello laterodirezionale 73 10.3 La function di ottimizzazione 75 10.3.1 Impostazioni per fminsearch 75 10.3.2 Ottimizzazione per una data condizione di volo 76 10.3.3 Ottimizzazione di un controllore con scheduling per una quota 76 10.4 Verifica tramite gli algoritmi genetici 77 10.4.1 Algoritmi genetici 77 10.4.2 Confronto tra i metodi 78 10.5 Scelta del procedimento di ottimizzazione 85 Capitolo 11: Postprocessing dei risultati della sintesi 86 11.1 Sommario 86 11.2 Condizioni di ottimo per il Boeing 747 86 11.2.1 Controllore longitudinale 86 11.2.2 Controllore laterodirezionale 87 V

11.3 Condizioni di ottimo per l F16 88 11.3.1 Controllore longitudinale 88 11.3.2 Controllore laterodirezionale 88 11.4 Interpolazione dei guadagni 89 11.5 Funzioni di trasferimento in ciclo aperto ed in ciclo chiuso 90 11.6 Posizione dei poli in ciclo aperto ed in ciclo chiuso 90 11.7 Risposte temporali 90 11.8 Energia 91 11.9 Indice dei risultati 91 Progetto del controllore longitudinale per il Boeing 747: risultati 92 Progetto del controllore longitudinale per l F16: risultati 151 Progetto del controllore laterodirezionale per il Boeing 747: risultati 193 Progetto del controllore laterodirezionale per l F16: risultati 218 Conclusioni 246 Bibliografia 248 Appendice A: Prodotto bialterno 249 Appendice B: Atmosfera standard 250 VI

Introduzione Nell ambito del progetto dei sistemi di controllo, in particolare in quello aeronautico, i metodi classici di sintesi risultano spesso inefficaci o molto complessi per ottenere controllori robusti che rispettino i vincoli dettati dalle Qualità di Volo, sull intero inviluppo di volo. Stabilire questi requisiti porta spesso ad utilizzare tecniche di progetto che procedono per tentativi, correggendo progressivamente la struttura del sistema di controllo fino al soddisfacimento completo dei vincoli imposti. Tale sintesi genera sistemi di controllo con architettura variabile che, a causa della loro complessità, necessitano di una riduzione. Questo complica il lavoro del progettista, in quanto risulta più difficile sfruttare architetture standard che, grazie all esperienza acquisita dal loro utilizzo nei controlli del volo, funzionano molto bene in situazioni diverse. Esistono inoltre strumenti che realizzano lo scheduling per punti, progettando il controllore in numerose condizioni di trim e interpolando i risultati a posteriori senza garantire una continuità nelle prestazioni ottenute. I problemi presentati possono essere risolti grazie all uso della teoria delle Guardian Maps. In pratica si tratta di sfruttare polinomi scalari che si annullano quando il relativo argomento matriciale o polinomiale perde la stabilità. La tesi fa riferimento agli studi di D. Saussié et. al. presentati in [8], [9] e [10]: gli autori hanno presentato questo strumento di calcolo, corredato da esempi e applicazioni aeronautiche, che saranno ripresi ed analizzati nel presente lavoro. Questo rappresenta il punto di partenza per introdurre le guardian maps e per effettuare le prime prove sull algoritmo, confrontando i risultati ottenuti con quelli riportati negli studi di cui sopra. Mentre negli articoli citati in precedenza si propone come esempio un sistema di controllo per la dinamica longitudinale, l analisi di questo procedimento viene ampliato considerando un applicazione alla dinamica laterodirezionale, sfruttando un architettura di controllore nota. In questo modo si cerca di analizzare il modo di lavorare dell algoritmo in condizioni progettuali differenti, tendendo il più possibile ad una estensione del metodo a molteplici ambiti. Questo strumento è infatti presentato come un modo di trattare la stabilità generalizzata di matrici o polinomi, quindi può essere adattato a situazioni diverse, avendo noto il modello del sistema da controllare. Dopo aver sviluppato in ambiente Matlab il codice di calcolo che, sfruttando la teoria delle guardian maps, permette di progettare un controllore robusto, il secondo obiettivo della tesi è quello ottimizzare la configurazione ottenuta. Dal punto di vista delle prestazioni del controllo, infatti, l attenzione del progettista deve essere posta anche sull aspetto energetico, in quanto la ricerca di un minimo per l energia porta sicuramente ad un miglioramento dell efficienza dell intero progetto. Il lavoro è articolato nel seguente modo: i primi tre capitoli presentano definizioni, teoremi ed esempi riguardanti le Guardian Maps, seguiti dalla spiegazione degli algoritmi per la sintesi e lo scheduling di un sistema di controllo. VII

Nel capitolo 4 saranno poi descritte le Qualità di Volo, con le quali stabilire i vincoli per i poli in ciclo chiuso, e le architetture dei controllori scelti. I successivi capitoli 5, 6 e 7 illustreranno poi i modelli della dinamica del volo utilizzati, prima in generale e poi in modo specifico per i due velivoli scelti: il Boeing 747 e l F16. Nel capitolo 8 sarà descritto in dettaglio come l algoritmo di sintesi può essere applicato ad un sistema di controllo di volo, mentre il successivo capitolo 9 è dedicato allo scheduling di questo secondo un parametro. Il capitolo 10 presenterà la procedura di ottimizzazione, introducendo la funzione obiettivo scelta, l energia del controllo, e il modo di calcolarla; seguirà poi l impostazione vera e propria del problema di ricerca del minimo, illustrando gli algoritmi utilizzati, i relativi risultati ottenuti e, infine, un confronto tra essi. Nel capitolo 11 saranno riportati i risultati dell ottimizzazione, illustrando poi il modo di presentare i dati ottenuti dal progetto dei controllori di volo, per i due aerei scelti e in diverse condizioni di volo. Questi risultati saranno riportati infine nelle ultime quattro parti, con grafici e tabelle. VIII