L'equazione i continuità Una prima imostrazione. Consieriamo il volume occupato a una istribuzione i cariche ρ (t, x). È possibile esprimere la proprietà i conservazione ella carica nel seguente moo t ρ (t, x) 3 x 0 Risulta utile riformulare la preceente relazione calcolano la erivata temporale come limite el rapporto incrementale. ρ (t, x) 3 x lim t h 0 h Aggiungeno e sottraeno la quantità h ρ (t, x) 3 x t lim + h 0 { ρ (t + h, x) 3 x V (t+h) ρ (t + h, x) 3 x si ottiene ρ (t, x) 3 x { ρ (t + h, x) 3 x ρ (t + h, x) 3 x + h V (t+h) } ρ (t + h, x) 3 x ρ (t, x) 3 x In quest' ultima espressione si riconosce negli ultimi ue termini el membro estro la erivata parziale ella ensità i carica, mentre nei primi ue l'integrale ella ensità i carica eseguita sul ominio ato alla ierenza ei volumi V (t + h) \. ρ (t, x) 3 x lim h 0 t h \V (t+h) ρ (t + h, x) 3 x + t ρ (t, x) 3 x Nel limite i h 0 il ominio V (t + h) \ è ienticabile con la supercie boro i, e l'elemento i volume si può scrivere come 3 x v ˆn h S ove v ˆn h è lo spazio percorso alle particelle sulla supercie S ortogonalmente alla supercie stessa nel tempo h. Scriviamo unque ρ (t, x) 3 x lim t h 0 ρ (t + h, x) v ˆn h S + h ρ (t, x) v ˆn S + t ρ (t, x) 3 x } t ρ (t, x) 3 x
Utilizzano inne il teorema i Gauss si può trasformare il primo termine el secono membro in un integrale i volume t ρ (t, x) 3 x (ρ (t, x) v) 3 x + t ρ (t, x) 3 x Dato che la conservazione ella carica impone che t ρ (t, x) 3 x 0 e ato che il risultato eve valere per qualsiasi ominio i integrazione scelto, si ottiene l'equazione i continuità (ρv) x + t ρ 0 2 Una imostrazione un po' più formale. Una piccola premessa. Preniamo in esame un mezzo continuo, a esempio una istribuzione i carica, e ientichiamo la posizione i un punto o particella el continuo in un certo istante con la coorinata x. Al tempo t la particella si trova in posizione con velocità x x (t, x ) v t x (t, x ) v (t, x ) Supponiamo che la funzione x x (t, x ) sia invertibile (e ierenziabile), e inichiamo l'inversa come x x (t, x). Gli jacobiani i queste ue trasformazioni sono inicati con e ipenono ovviamente al tempo. Esplicitamente e J t ( x (t, x ) ) et x ( x Jt ) (t, x) et x Le escrizioni elueriana e lagrangiana. È possibile escrivere le granezze i interesse fonamentalmente secono ue approcci: in quello euleriano si ssa un punto x nello spazio e si osserva l'evoluzione ella granezza in questione, iciamo G, ovvero G E G E (t, x) Nell'approccio cosietto lagrangiano si ssa invece una particella, con coorinate iniziali x G L G L (t, x ) e si osserva l'evoluzione i G insegueno la particella nel suo cammino. Ovviamente, l'approccio lagrangiano - ssata la particella - corrispone a un approccio euleriano in cui il punto x si sposti segueno la particella stessa: G L (t, x ) G E (t, x (t, x )) () 2
Analogamente l'approccio euleriano - con un punto sso - corrispone a un approccio lagrangiano in cui istante per istante venga ispezionata una particella ierente, tale che in ogni istante la particella ispezionata sia nel punto x: G E (t, x) G L (t, x (t, x)) Dall' ientità () si ottiene inoltre una relazione importante t G L (t, x ) t G E (t, x (t, x )) t G E (t, x (t, x )) + x G E (t, x (t, x )) x (t, x ) t t G E (t, x (t, x )) + v x G E (t, x (t, x )) D Dt G E (t, x (t, x )) (2) La erivata D Dt G E viene etta erivata materiale o erivata lagrangiana. Nel seguito tutte le granezze i interesse (ρ,v, etc...) sono intese come euleriane. La conservazione ella carica. Ientichiamo al tempo iniziale un certo volume el continuo, che altro non è se non un insieme i punti all'istante iniziale {x }. Al tempo t i punti el volume saranno evoluti nelle posizioni {x (t, x )}: chiamiamo questo nuovo volume. Poiché la carica si conserva, si avrà, qualsiasi sia il volume, che ρ (t, x) 3 x 0 t Esegueno un cambio i variabili utilizzano la funzione x x (t, x ) si può scrivere 2 0 t ρ (t, x) 3 x t ρ (t, x (t, x )) 3 x Ora che il ominio i integrazione non ipene più al tempo iviene possibile erivare sotto il segno i integrale. 0 t ρ (t, x (t, x )) 3 x t {ρ (t, x (t, x )) } 3 x Utilizzano la (2) è possibile riscrivere la preceente come t ρ (t, x (t, x )) + ρ (t, x (t, x )) t 3 x Si ricora che in un cambio i variabili x f (y) il ominio i integrazione A iviene A f (A), e unque applicano la trasformazione inversa x x (t, x) al volume si ottiene il volume 2 Si può imostrare come > 0 t, e unque 3
D Dt ρ (t, x (t, x )) + ρ (t, x (t, x )) t 3 x 0 Come è possibile veere in appenice, la erivata temporale i vale t x v (t, x) e unque - sottointeneno gli argomenti elle funzioni - 0 D Dt ρ + ρ x v 3 x [ ] ρ + (v ) ρ + ρ x v (t, x) 3 x t ] [ t ρ + (ρv) Poiché il preceente risultato vale inipenentemente al volume scelto, si arriva irettamente all'espressione ell'equazione i continuità 3 x t ρ + (ρv) 0 Appenice: la erivata temporale el eterminante jacobiano. Calcolano esplicitamente il limite el rapporto incrementale si ottiene - ricorano che è possibile scrivere x(t+δt) x(t) x x x(t+δt) x(t) t J +δt t lim δt 0 { δt ( ) ( )} x (t + δt) x (t) x (t) lim et δt 0 x (t) x et x ( ) { ( ) } x (t) x (t + δt) et x lim et δt 0 x (t) { ( ) } x (t + δt) lim et δt 0 x (t) Ora, esplicitano le componeneti el vettore x, e sviluppanolo come funzione el tempo no al secono orine, si ha che x i (t + δt) x i (t) + δt v i (t) (3) x i (t + δt) x k (t) x i (t) x k (t) + δt v i (t) x k (t) δ ik + δt v i (t) x k (t) δ ik + δt v i (t) x i (t) δ ik ( + x v (t)) δ ik 4
Il eterminante ella preceente matrice vale ( ) xi (t + δt) et ( + x v (t)) x k (t) Sostitueno il risultato ottenuto nella (3) si ottiene il risultato cercato t x v (t, x) 5