( ) TEORIA DELLE MATRICI. A. Scimone a.s pag 1

Documenti analoghi
Corso di Matematica Generale M-Z Dipartimento di Economia Universitá degli Studi di Foggia ALGEBRA LINEARE. Giovanni Villani

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

Le matrici. Sia K un campo con elemento neutro dell addizione 0 ed elemento neutro della moltiplicazione 1.

Corso di Matematica e Statistica 3 Algebra delle matrici. Una tabella rettangolare: la matrice. Una tabella rettangolare: la matrice

MATRICI E VETTORI APPROFONDIMENTO PER IL CORSO DI LABORATORIO DI INFORMATICA SARA POLTRONIERI

Esercitazioni di Algebra e Geometria

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Richiami di algebra delle matrici a valori reali

Determinanti. Definizione ed esempi. Definizione ed esempi. Proprietà dei determinanti Rango di matrici

MATRICI Vol.1. Pag. 1/24

Matrici quadrate particolari

MATRICI E SISTEMI LINEARI

Metodi Matematici per l Economia anno 2017/2018 Gruppo B

MATEMATICA. a.a. 2014/ Sistemi di equazioni lineari

Testi consigliati e contatti

Registro Lezioni di Algebra lineare del 15 e 16 novembre 2016.

SISTEMI LINEARI: APPROFONDIMENTI ED ESEMPI

ottenuta scambiando in A, le righe con le colonne, così, ad esempio, posto

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Anno 4 Matrice inversa

Il teorema di Rouché-Capelli

Introduzione soft alla matematica per l economia e la finanza. Marta Cardin, Paola Ferretti, Stefania Funari

Geometria BIAR Esercizi 2

TEMPUS PECUNIA EST COLLANA DI MATEMATICA PER LE SCIENZE ECONOMICHE FINANZIARIE E AZIENDALI

Sui determinanti e l indipendenza lineare di vettori

Il determinante. Calcolo del determinante di matrici particolari. matrici di ordine 2: sia. a11 a A = allora

SISTEMI LINEARI, METODO DI GAUSS

LEZIONE 1 C =

08 - Matrici, Determinante e Rango

Elementi di Algebra Lineare Applicazioni lineari

Terminiamo gli esercizi dell ultima lezione. (LUCIDI) Calcolare, se possibile, AC, CA, CH e HC. (LUCIDI)

LEZIONE i i 3

Si consideri il sistema a coefficienti reali di m equazioni lineari in n incognite

Sistemi II. Sistemi II. Elisabetta Colombo

2x 5y +4z = 3 x 2y + z =5 x 4y +6z = A =

Vettori e matrici. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Esercitazione di Matematica su matrici e sistemi lineari

Esercizi di Matematica di Base Scienze biologiche e Scienze e Tecnologie dell Ambiente

Corso di Calcolo Numerico

ALGEBRA LINEARE PARTE II

Appunti di Geometria e Algebra L-A Seconda Facoltà di Ingegneria - Cesena. Marco Alessandrini

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

misura. Adesso, ad un arbitrario punto P dello spazio associamo una terna di numeri reali x

LeLing12: Ancora sui determinanti.

Matematica II,

Sistemi lineari - Parte Seconda - Esercizi

Geometria analitica del piano pag 32 Adolfo Scimone

Richiami di algebra delle matrici

ESERCIZI SULLE MATRICI

1 Determinante di una matrice 1. 2 Calcolo della matrice inversa 7. 3 Calcolo del rango 8. 4 Soluzioni degli esercizi 12. n! = n.

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im

x 1 Fig.1 Il punto P = P =

SISTEMI LINEARI MATRICI E SISTEMI 1

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Esercitazione 6 - Soluzione

Applicazioni eliminazione di Gauss

4 Sistemi di equazioni.

RICHIAMI DI ALGEBRA LINEARE E NORME DI MATRICI E VETTORI. a 11 a 12 a 1n a 21 a 22 a 2n. a m1 a m2 a mn

Esercitazioni di Algebra e Geometria

Spazi vettoriali euclidei.

SISTEMI LINEARI. x y + 2t = 0 2x + y + z t = 0 x z t = 0 ; S 3 : ; S 5x 2y z = 1 4x 7y = 3

RIDUZIONE E RANGO , C = 2 5 1

Risoluzione di sistemi lineari

Geometria analitica del piano pag 12 Adolfo Scimone

Giuseppe Accascina. Note del corso di Geometria e Algebra

Parte 8. Prodotto scalare, teorema spettrale

Appunti su Indipendenza Lineare di Vettori

Sistemi di equazioni lineari

Definizioni e operazioni fondamentali

La retta nel piano. Supponiamo che la retta r sia assegnata attraverso un suo punto P 0 (x 0, y 0 ) e un vettore v (l, m) che ne indichi la direzione.

A m n B n p = P m p. 0 1 a b c d. a b. 0 a 0 c Il risultato e lo stesso solo nel caso in cui c = 0 e a = d.

Inversa di una matrice

CAPITOLO II MATRICI E DETERMINANTI

08 - Matrici, Determinante e Rango

Ricordiamo brevemente come possono essere rappresentate le rette nel piano: 1) mediante un'equazione cartesiana. = ( p 1

Metodi per la risoluzione di sistemi lineari

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

4 Autovettori e autovalori

a + 2b + c 3d = 0, a + c d = 0 c d

LeLing9: Prodotto tra matrici.

Operazioni tra matrici e n-uple

ESERCIZI sui VETTORI

Pagine di Algebra lineare. di premessa al testo Pagine di Geometria di Sara Dragotti. Parte terza: SISTEMI LINEARI

2 Sistemi lineari. Metodo di riduzione a scala.

Lezione 4 - Esercitazioni di Algebra e Geometria - Anno accademico

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Matrici. Matrici.h Definizione dei tipi. Un po di esercizi sulle matrici Semplici. Media difficoltà. Difficili

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2

3. Vettori, Spazi Vettoriali e Matrici

Autovalori e autovettori, matrici simmetriche e forme quadratiche (cenni) (prof. M. Salvetti)

Appunti su matrici e autovalori

Operazioni elementari e riduzione

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Lezioni di Algebra Lineare. II. Aritmetica delle matrici e eliminazione di Gauss. versione ottobre 2008

Sistemi lineari. 2x 1 + x 2 x 3 = 2 x 1 x 2 + x 3 = 1 x 1 + 3x 2 2x 3 = 0. x 1 x 2 x 3

APPUNTI DI MATEMATICA

Intersezione e somma di sottospazi vettoriali

Lezione 9: Le matrici

ESERCITAZIONE SU CALCOLO MATRICIALE, APPLICAZIONI LINEARI E FORME QUADRATICHE

Transcript:

. Scimone a.s 1997 98 pag 1 TEORI DELLE MTRICI Dato un campo K, definiamo matrice ad elementi in K di tipo (m, n) un insieme di numeri ordinati secondo righe e colonne in una tabella rettangolare del tipo a11 a12... a1 n a21 a22... a2n =......... a a... a m1 m2 mn dove aij K i è l indice di riga tale che 1 i m j è l indice di colonna tale che 1 j n Una matrice del tipo (m, n) è composta da m n elementi disposti secondo m righe e secondo m colonne. Tutti gli elementi vengono indicati con doppio indice, il primo indica la riga, il secondo la colonna. In modo compatto una matrice si può indicare con = ( ) i= 1 m a ij,..., j = 1,..., n Se m n la matrice è rettangolare, se m = n la matrice è quadrata. In quest ultimo caso il numero delle righe (o colonne) prende il nome di ordine della matrice. Diamo adesso delle definizioni di uso frequente. Chiamasi linea della matrice indifferentemente una riga o una colonna, linee parallele più righe o più colonne. In due linee parallele si dicono corrispondenti gli elementi di egual posto, cioè l elemento p mo dell una con l elemento p mo dell altra, qualunque sia p. Una linea si dice identicamente nulla se tali sono tutti i suoi elementi. Due linee si dicono uguali o proporzionali quando gli elementi dell una sono uguali o proporzionali ai corrispondenti dell altra. Una matrice si dice nulla se ha nulli tutti i suoi elementi. Due matrici si dicono simili quando hanno lo stesso numero di righe e di colonne, in due matrici simili si dicono corrispondenti gli elementi di ugual posto. Due matrici di m n elementi: = ( aij ) e B = ( bij ) sono uguali se sono uguali tutti i corrispondenti elementi, cioè se a = b per ogni i e per ogni j. In una matrice quadrata ( a ij ) ij ij = di ordine n, gli elementi aij coni = j (cioè gli elementi a 11, a 22,..., a nn ) costituiscono la diagonale principale, mentre gli elementi a1 n, a2n 1,..., an 1 costituiscono la diagonale secondaria. In una matrice quadrata, due elementi aik, aki che hanno gli stessi indici, ma in ordine inverso, si dicono coniugati, i loro posti sono simmetrici rispetto alla diagonale principale.

. Scimone a.s 1997 98 pag 2 Gli elementi che stanno sulla diagonale principale sono coniugati di se stessi. Nel caso particolare che gli elementi siano tra loro uguali, cioè sia aik = aki,la matrice quadrata si dice simmetrica. L insieme di tutte le matrici m n a coefficienti in K si indica conk mn,. Definiamo vettore riga una matrice formata da una sola riga. Es: ( 3 4 1) Definiamo vettore colonna una matrice formata da una sola colonna Es. 3 4 1 nn, Data una matrice quadrata K definiamo diagonale principale l insieme degli elementi di che hanno uguale indice a11, a22,..., a nn mentre definiamo matrice identica una matrice quadrata nella quale gli elementi che costituiscono la diagonale principale sono tutti uguali a 1 e tutti gli altri sono nulli. Una matrice identica si indica con I n Es. 1 0 0 I3 = 0 1 0 0 0 1 nn, Una matrice quadrata K si dice simmetrica se aij = a ji dove i j Una matrice quadrata si dice triangolare inferiore se gli elementi che stanno al disopra della diagonale principale sono tutti nulli a11 0... 0 a21 a22... 0 ove aij = 0 se i < j......... 0 a11 n an2... a nn Si dice triangolare superiore se gli elementi che stanno al di sotto della diagonale principale sono tutti nulli a11 a12... a1 n 0 a22... a2n ove aij = 0 se i > j 0......... 0 0... a nn Una matrice quadrata si dice diagonale se aij = 0 i, j con i j, cioè se tutti gli elementi sono nulli eccetto gli elementi che costituiscono la diagonale principale.

. Scimone a.s 1997 98 pag 3 Data una matrice K mn,, la trasposta di è la matrice che si indica con t, ottenuta da scambiando fra loro le righe con le colonne. Es. - = 1 4 K 1 2 3 23, t = 2 5 K 4 5 6 3 6 mn, t nm, In generale, se K, K. Si ha t t t ( + B) = + B L insieme K mn, si può dotare di una struttura algebrica. Cominciamo infatti a definire un operazione di somma tale che K mn, sia un gruppo abeliano (cioè gode della proprietà commutativa). Somma di matrici Siano = ( a i, j ) e B ( b i j ) B è una matrice C ( c i j ) =, due matrici m n a coefficienti in K. La matrice somma + =, definita da ci, j= ai, j+ bi, j coni, j N : 1 i m 1 j n Quindi la matrice C è la matrice ottenuta sommando gli elementi corrispondenti di e di B. Es. = B 1 2 3 0 1 5 = 4 5 6 2 3 4 + B = C = Per cui otteniamo C = 1 1 8 2 2 10 1+ 0 2 1 3+ 5 4 2 5 3 6+ 4 32, La somma di due matrici e B è definita solo quando e B hanno lo stesso numero di righe e lo stesso numero di colonne. L operazione somma di matrici soddisfa le proprietà dei gruppi abeliani : a1) + (B +C) = ( + B) + C BC,, K mn,

. Scimone a.s 1997 98 pag 4 a2) + B = B + mn, a3) 0 K : + 0= 0+ = a4) K mn, mn, B K : + B= B+ = 0 Per quanto riguarda il prodotto nell insieme K mn, delle matrici m n è possibile introdurre due tipi di prodotto : prodotto esterno matrice per scalare prodotto interno righe per colonne. Prodotto di una matrice per uno scalare mn = a K, una matrice m n a coefficienti nel campo K e λ uno scalare, cioè un Sia ( ij ) elemento del campo su cui si opera. Chiamiamo prodotto di λ per la matrice mn, C = ( aij ) K dove aij = λ aij i = 1,..., m e j = 1,..., n In altre parole, la matrice C = λ è la matrice ottenuta moltiplicando ogni elemento di per il numero λ. a11... a1 n a21... a2n =... a... a m1 mn a11... a1 n a21... a2n λ = λ =... a... a m1 mn λa11... λa1 λa21... λa2... λa... λa m1 n n mn Il prodotto matrice per scalare gode di quattro fondamentali proprietà : 1) ( λµ ) = λ ( µ ) mn, K λ, µ K 2) (λ+µ) = λ Α +µ Α mn, K λ K 3) λ ( + B) = λ + λ B mn, B, K λ K 4) λ = Consideriamo l insieme K mn, con le operazioni di somma e di prodotto per uno scalare così definita. K mn, rispetto alla somma è un gruppo abeliano, mentre rispetto al prodotto, che è un prodotto esterno, gode delle quattro proposizioni sopra elencate. Per cui, l insieme K mn, delle matrici m n a coefficienti in K è un esempio di spazio vettoriale, una struttura su cui sono definite due operazioni una interna (somma) e l altra esterna (prodotto per uno scalare) Prodotto interno righe per colonne Per quanto riguarda il prodotto interno, il più importante è il prodotto righe per colonne. Per definire questo prodotto dobbiamo definire le condizioni di moltiplicabilità.

. Scimone a.s 1997 98 pag 5 Siano K mn, e B K pq, rispettivamente due matrici del tipo rispettivamente (m, n) e (p, q). Tali matrici sono moltiplicabili per colonne se n = p. In definitiva, il prodotto righe per colonne tra matrici è definito solo se il numero delle colonne della prima matrice è uguale al numero delle righe della seconda matrice. mn, pq, Quindi, se = ( aij ) K e B = ( bij ) K il prodotto B è definito solo se n = p. Se le matrici e B soddisfano a questa condizione, si dicono compatibili per la moltiplicazione. Con questa condizione, si definisce il prodotto tra le matrici e B. mq B = C = ( cij ) K, La matrice C del tipo (m, q) il cui elemento generico c ij è dato da n cij = ail blj = a 1b1 + a 2b2 +... + a b l= 1 i j i j in nj La relazione precedente afferma che per ottenere l elemento c ij di C si considera la riga i - esima di e la colonna j - esima di B, si eseguono i prodotti dei termini corrispondenti e si sommano i prodotti così ottenuti. a11 a12... a1 j... a1 a21 a22... a2 j... a2n............... B = ai1 ai2...... ain............ a 1 a 2...... a m m mn n b11 b12... b1 j... b1 q b21 b22... b2 j... b2q............ = bi1 bi2...... biq............ bn1 bn2... bnj... b nq c11 c12..... c1 q c21 c22... c2q............... =......... cij.............. cm1 cm2... cmq Per questo il prodotto di matrici prende il nome di prodotto righe per colonne. Si vede facilmente che il prodotto B = C è del tipo (m, q). Infatti, poiché il generico elemento c ij si ottiene dalla i - esima riga di e dalla j - esima colonna di B, e poiché K mn, pq, e B K conn = p, allora i può assumere soltanto i valori 1,...,m mentre j può assumere solo i valori 1,...,q, per cui la matrice B = C ha tante righe quante ne ha e tante colonne quante ne ha B.

. Scimone a.s 1997 98 pag 6 Esempio 1. 1 1 2 0 1 = K B = 0 3 K 1 1 3 2 1 32, 32, ( ) 2 1+ 0 0+ 1 2 2 ( 1) + 0 1+ 1 ( 1) 22, B = C K C = c ij = 1 1+ ( 1) 0+ 3 2 1 ( 1) + ( 1) 3+ 3 ( 1) vremo pertanto 4 3 C = 7 7 Esempio 2 = B B 1 2 = 1 = 1+ 4 = + 5 0 3 2 0 6 6 Proprietà del prodotto di matrici Il prodotto di matrici gode delle seguenti proprietà Sia K mn,, B K np,, C K pq, allora risulta ( B C) = ( B) C Se e B sono matrici del tipo (m, n) e C è una matrice del tipo (n, p) allora ( + B) C = C + BC (proprietà distributiva a sinistra) Se invece è una matrice m n e B e C sono matrici n p allora ( B + C) = B + C (proprietà distributiva a destra) Dunque, il prodotto righe per colonne gode della proprietà associativa ( 1 ) e della proprietà distributiva rispettivamente a sinistra e a destra rispetto alla somma. Si ha inoltre se K mn, e B K np, ed è α R allora α ( B) = ( α ) B = ( α B) Il prodotto di matrici non è commutativo, per cui se K mn, e B K nm, sono definite entrambe le matrici prodotto B = C K mm, e B = C' K nn,, in generale risulta C = B B = C'. Ciò è valido se si considerano matrici quadrate.

. Scimone a.s 1997 98 pag 7 Esempio = K B K 1 2 0 1 = 0 1 3 4 22, 22, B = 6 7 3 4 B = 0 1 3 10 quindi B B ltre proprietà algebriche delle operazioni matriciali Se è una matrice e c è un elemento del campo K su cui si opera, cioè mn, nm, tk K K mn, t t : e c K ( c) = c t Se e B sono matrici m n allora t t t ( + B) = + B Se K mn, allora t ( t )) = Se è una matrice m n e B è una matrice n p allora risulta t t t ( B) = B Quindi avremo : La trasposta del prodotto di due matrici si ottiene moltiplicando le trasposte delle matrici in ordine inverso. Determinanti Sia data la matrice quadrata a11... a1 n a21... a2n =... a... a n1 nn Chiamiamo determinante di il numero det o che ad essa viene associato. det = a11... a1 n a21... a2n... a... a n1 nn Un generico elemento a ij del determinante si dice di classe pari o dispari a seconda che i + j è un numero pari o dispari. Si chiama minore complementare dell'elemento a ij il determinante che si ottiene da, sopprimendo la i - esima riga e la j - esima colonna.

. Scimone a.s 1997 98 pag 8 Si definisce complemento algebrico dell'elemento a ij e si indica con ij il minore complementare di a ij preceduto dal segno + o dal segno - a seconda che tale elemento è di classe pari o dispari. 1 teorema di Laplace Il valore di si ottiene facendo la somma dei prodotti degli elementi di una linea per i rispettivi complementi algebrici. Esempio : det = 1 2 3 1 3 2 5 0 1 Se la linea scelta è la prima riga si avrà det =+ ( + 1) 3 2 1 2 ( + ) + ( + ) 1 3 2 3 = 3 2( 1 10) + 3( 15) = 20 0 1 5 1 5 0 Poiché la matrice è del terzo ordine, possiamo giungere allo stesso risultato mediante la regola di Sarrus che prevede la ripetizione delle prime due colonne accanto a quelle date; ossia : 1 2 3 1 det = 1 3 2 1 5 0 1 5 2 3 0 Sottraendo poi alla somma dei prodotti dei termini della diagonale principale e delle sue parallele la somma dei prodotti dei termini della diagonale secondaria e delle sue parallele si ha : ( 1 3 1) + ( 2 2 5) + ( 3 ( 1) 0) ( 3 3 5) ( 1 2 0) ( 2 ( 1) 1) = 20 Proprietà dei determinanti Se gli elementi di una linea sono tutti nulli, il determinante è nullo. Se scambiamo tra loro due linee parallele il determinante cambia segno. Se gli elementi di due linee parallele sono uguali o proporzionali, il determinante è nullo. Se gli elementi di una linea vengono moltiplicati per uno stesso numero k, il determinante viene moltiplicato per k. Due matrici quadrate trasposte hanno lo stesso determinante. Se si moltiplicano gli elementi di una linea per i complementi algebrici di una linea parallela, il determinante è nullo(2 teorema di Laplace)

. Scimone a.s 1997 98 pag 9 Se gli elementi di una linea sono la somma di due o più addendi, il determinante è uguale alla somma dei due o più determinanti che si ottengono disponendo in essi i vari addendi. Il determinante non cambia se si aggiunge agli elementi di una linea gli elementi corrispondenti di un'altra linea ad essa parallela moltiplicati per un numero k. Date due matrici quadrate dello stesso ordine, il determinante della matrice prodotto è uguale al prodotto dei determinanti delle matrici date. 1 0 2 2 3 1 2 1 3 = 3 1 0 B = 1 2 2 B = 5 7 5 2 3 1 0 1 1 1 1 9 det = 15 det B = 4 det( B) = 60 det( B) = det det B Matrice inversa Data la matrice, non singolare (det 0) a a a = a a a a a a 11 12 13 21 22 23 31 32 33 consideriamo la sua trasposta t a a a = a a a a a a 11 21 31 12 22 32 13 23 33 Dopo aver calcolato i complementi algebrici degli elementi a ij di tale matrice, potremo scrivere la matrice inversa 1 data da : 1 = 1 det 11 21 31 12 22 32 13 23 33 Esempio Data la matrice quadrata

. Scimone a.s 1997 98 pag 10 2 3 = 1 5 Essendo det = 13 0 la matrice è invertibile. Per determinare la sua inversa scambiamo dapprima le righe con le colonne 2 1 t = 3 5 e calcoliamo poi i complementi algebrici degli elementi di t 11 = 5 12 = 3 21 = 1 22 = 2. vremo quindi 1 1 5 3 = 13 1 2 Volendo scrivere la matrice inversa, possiamo anche considerare la matrice aggiunta, che ha come elementi della colonna i - esima i complementi algebrici della riga i - esima. Esempio 2 1 3 = 5 7 5 1 1 9 la matrice aggiunta sarà : 68 15 16 agg = 40 15 5 12 3 9 La matrice inversa di è data anche da : = agg con det 0 det 1 1 Se det = 0 la matrice si dice singolare e non è invertibile. Equazioni matriciali Siano e B due matrici quadrate dello stesso ordine. Se è invertibile, le equazioni X = B Z = B

. Scimone a.s 1997 98 pag 11 avranno rispettivamente come soluzioni X = 1 1 B Z = B Esempio Ricavare la matrice incognita X, nella seguente equazione, facendo poi la verifica 2 3 1 2 = 1 5 X 0 3 Essendo det 0 e 1 1 5 3 = 13 1 2 la matrice incognita sarà : 1 5 3 X = 1 2 13 1 2 0 3 1 5 1 X = 13 1 8 Verifica : 5 2 3 13 1 5 1 13 1 13 1 2 8 = 0 3 13 L'introduzione della matrice inversa si rende necessaria per poter dividere due matrici e risolvere i sistemi lineari di n equazioni in n incognite con il metodo della matrice inversa Si perviene così alla regola di Cramer di cui si discuterà in seguito. Definizione - Una matrice quadrata di ordine n si dice ortogonale se la sua inversa coincide con la sua trasposta, cioè se risulta 1 = t.

. Scimone a.s 1997 98 pag 12 Rango o caratteristica di una matrice Consideriamo una matrice di m righe ed n colonne a11 a12... a1 n a21 a22... a2n =......... am1 am2... amn Sia p con p< n, m e fissiamo p righe e p colonne. Gli elementi che stanno all incrocio delle p righe e p colonne individuano una matrice quadrata di ordine p che prende il nome di sottomatrice di. Chiamiamo minore di ordine p il determinante di questa sottomatrice. Definizione Dicesi minore di ordine p estratto dalla matrice un qualsiasi determinante di ordine p che si ottiene con gli elementi comuni a p righe ed a p colonne della matrice. Sia una matrice di m righe ed n colonne, si definisce rango o caratteristica di l'ordine massimo dei minori non nulli che si possono estrarre da essa. Esempio 1 1 3 = 2 2 5 1 1 9 det = 0 1 1 = 0 2 2 1 3 2 5 = 11 0 poiché l'ordine del minore non nullo è 2, il rango di è 2. Osservazioni Se ad una linea di una matrice si aggiunge una combinazione lineare delle altre linee parallele, la nuova matrice B ha lo stesso rango di Se la matrice B si ottiene da sopprimendo o aggiungendo in questa una linea che sia combinazione lineare delle altre linee parallele le due matrici hanno lo stesso rango. Teorema - Le righe di una matrice sono tra loro linearmente dipendenti se e solo se il loro numero è maggiore del rango della matrice. Teorema fondamentale - Il rango di una matrice rappresenta il massimo numero di linee parallele linearmente indipendenti della matrice. Teorema di Kronecher Se una matrice possiede un minore M,non nullo, di ordine k e se sono nulli tutti i minori di ordine k+1, ottenuti orlando M con una riga e una colonna qualsiasi di, allora il rango della matrice è uguale a k. Esercizi

. Scimone a.s 1997 98 pag 13 Determinare il rango della matrice per ogni valore del parametro k 1 3 = 1 0 1 2 k 2 Calcoliamo innanzitutto i valori del parametro che annullano il determinante della matrice : k 1 3 det = 1 0 1 2 k + 3k 4 = 0 da cui k = 1, k = 4 2 k 2 Per k 1e k 4 la matrice ha rango 3. Per k = 1 si ha 1 1 3 = 1 0 1 2 1 2 ed essendo 1 1 0 1 0 la matrice ha rango 2. llo stesso modo, si dimostra che per k = - 4 la matrice ha rango 2.