FILTRI ANALOGICI Scopo di un filtro analogico è l eliminazione di parte del contenuto armonico di un segnale, lasciandone inalterata la porzione restante. In funzione dell intervallo di frequenze del segnale che il filtro nominalmente non modifica (la cosiddetta banda passante del filtro), si distingue allora tra: o filtro passabasso o filtro passa-alto o filtro passa-banda L6/
FILTRI ANALOGICI (Cont.) Un filtro ideale dovrebbe essere caratterizzato da una funzione di trasferimento H ( ω ) unitaria all interno della banda passante, e identicamente nulla all esterno della banda passante. Esempio: Passa-Basso H ω 0 ω c Il filtro non dovrebbe attenuare le frequenze desiderate, mentre l attenuazione dovrebbe essere infinita per quelle indesiderate. E intuibile che una interazione di questo tipo è impossibile per un circuito elettronico reale (necessità di approssimazione). L6/
FILTRI ANALOGICI (Cont.) ωc ωc ω c ω ω c cωs ω ω s c ω c ω c ωc ω c L6/3
FILTRI ANALOGICI (Cont.) ωωω 0 ωωω 0 ωωω 0 ωωω 0 ωωω 0 ωωω 0 ωωω 0 ωωω 0 ωωω 0 L6/4
FUNZIONI MONOTONE IN STOP-BAND H ω = B H 0 ( ω) con B( ω ) polinomio di grado n: ZERI all infinito FUNZIONI EQUI-RIPPLE OVUNQUE (FUNZIONI ELLITTICHE) Si deve specificare ω s frequenza attenuazione minima H ω = H 0 i ( ω ω ) i B ( ω) L6/5
ESEMPIO DI FILTRO ANALOGICO: RC PASSA-BASSO Schema elettrico Risposta in frequenza in modulo: H( ω ) = A( ω ) A ω = ω C = R + ω R C ω + ( C) L6/6
ESEMPIO DI FILTRO ANALOGICO: RC PASSA-BASSO (Cont.) Andamento del modulo della risposta in frequenza La pendenza è di soli 6 db per ottava L6/7
PRESTAZIONE DEI FILTRI IN FREQUENZA RISPOSTA IN AMPIEZZA DI UN PASSA - BASSO: H ( f ) = A( f ) L6/8
PRESTAZIONE DEI FILTRI IN FREQUENZA (Cont.) RISPOSTA IN FASE DI UN FILTRO ( f ) Im H f ( f ) tan φ = Re H f L6/9
FILTRI A FASE LINEARE Le frequenze del segnale in ingresso sono ritardate della stessa entità. φ t Ritardo f f L6/0
PRESTAZIONI DEI FILTRI NEL TEMPO Risposta al gradino: Tempo di salita : t r Tempo di settling : t s Sovraelongazione (overshoot) Oscillazioni (ringing) L6/
FILTRO ANALOGICO COME SISTEMA LTI Un filtro può considerato un sistema LTI (Lineare Tempo Invariante), quindi vale la formula (nel dominio della frequenza): Y ( f ) = H( f ) X ( f ) Come dimostreremo in seguito, ogni tipo di filtro precedentemente elencato, ha una funzione di trasferimento che può essere ricavata attraverso una trasformazione biunivoca partendo dalla funzione di trasferimento di un filtro passa-basso. Nel seguito della trattazione faremo quindi riferimento in particolare ai filtri passa basso. L6/
FILTRO ANALOGICO COME SISTEMA LTI (Cont.) Si vuole utilizzare un filtro passa basso per ricostruire un segnale utile sovrapposto ad un segnale di rumore con spettro di frequenza separato (maggiore). Per ottenere un segnale fedele, cioè con la stessa forma nel tempo e nello spettro, le uniche operazioni ammesse sono: un GUADAGNO: k un RITARDO: δ y( t) = k x( t δ ) L6/3
H FILTRO ANALOGICO COME SISTEMA LTI (Cont.) Alle frequenze del segnale utile, ciò corrisponde ad una funzione di trasferimento: b( ω ) j ( ω) = ( ω) Y k X e ωδ ( ω) ( ω) b ( ω ) H = H e = k e ω = k per ω ω c e zero altrove = ω δ per ω ω c e indefinito altrove H ω b ω jωδ k δω c 0 ω c ω 0 ω c ω L6/4
ESEMPIO DI FILTRAGGIO PASSA-BASSO: MEDIA MOBILE V in Un filtro passa-basso RC (R = 00 kω C = 0 nf) opera una media mobile dell ingresso, addolcendone le brusche variazioni. V out t( ms ) V = 0.63 V out = + ( )=.49 V 0.63 0.63.37 V out.49 0.63 t( ms ) L6/5
FILTRI DI BUTTERWORTH Si tratta di filtri massimamente piatti nella banda passante, con risposta in frequenza, dove n indica l ordine del filtro: Vout = V n in f + f 3db V V out in n= n= 3 n= 8 n= 6 n= 4 n= f / f 3dB L6/6
FILTRI DI BUTTERWORTH (Cont.) I filtri di Butterworth hanno le limitazioni di: non essere a fase lineare richiedere un ordine elevato per garantire una regione di transizione sufficientemente ripida. Modulo della risposta in frequenza H n ( f ) oppure H ( ω ) con n f ω = π π f c = f + f c = + ω n n Frequenza normalizzata L6/7
FILTRI DI BUTTERWORTH (Cont.) Proprietà del filtro di Butterworth: Il range di frequenza (normalizzata) per cui 0 ω< è chiamata banda passante (pass band) Il range di frequenza (normalizzata) per ω > è chiamata banda eliminata (stop band) Per ω = : Hn = = indipendentemente da n. n + La funzione di trasferimento è monotona decrescente. Il filtro di Butterworth è detto massimamente piatto, poiché le derivate della funzione di trasferimento (pendenza) sino all ordine n, calcolate in ω = 0 sono tutte nulle. L6/8
FILTRI DI BUTTERWORTH (Cont.) Implementazione a componenti concentrati di un filtro del 3 ordine L6/9
(*) ( α) cos = cos α n POLINOMI DI CHEBYSHEV cos cos C ω = n arc ω 0 ω n cosh cosh C ω = n ω ω > Definendoli per ricorrenza (0 ω ): 0 ( ω ) C ω = C = ω C ω = ω (*) 3 3 C ω = 4ω 3ω ( ω ) = ω ( ω) ( ω ) C C C n+ n n L6/0
POLINOMI DI CHEBYSHEV (Cont.) n= n= 3 n= 6 n= L6/
FILTRI DI CHEBYSHEV Si tratta di filtri in cui è tollerata una certa oscillazione nella banda passante. Risposta in frequenza: Vout = Vin f +ε Cn f 3db Dove: C n è un polinomio che dipende dall ordine del filtro ε è una costante che determina l oscillazione in banda. L6/
FILTRI DI CHEBYSHEV (Cont.) Modulo della risposta in frequenza normalizzata V V out in f f 3dB H n V = = Vin f +ε Cn f 3dB out ( f ) L6/3
L ampiezza del ripple è: FILTRI DI CHEBYSHEV (Cont.) + ε per ε= 0.5 0.894 5 L6/4
FILTRO DI CHEBYSHEV INVERSO Modulo della risposta in frequenza: Cioè: = H n f H I n f H n ( ω ) I D ε Cn ω = + ε Cn ω L6/5
FILTRO DI CHEBYSHEV INVERSO ε 0. L ampiezza del ripple è: per ε= 0. 0. + ε + 0. L6/6
CONFRONTO TRA FILTRI DI BUTTERWORTH E DI CHEBYSHEV Per avere una piattezza nella banda passante di 0. db e un attenuazione di 0 db per f =.5 f, è sufficiente un filtro di Chebyshev di ordine 8, contro un filtro di Butterworth di ordine 9. 3dB I filtri di Chebyshev hanno, anch essi, una risposta in fase ben lontana dalla linearità. L6/7
FILTRI ELLITTICI (O DI CAUER) (Filtri equi-ripple ovunque) Risposta in frequenza normalizzata con U n H ω = f ω= : f n 3dB + ε U ω ω = funzione ellittica Jacobiana. I filtri ellittici hanno la risposta massimamente piatta per un dato ordine, ma risposta in fase estremamente non lineare. L6/8
FILTRI DI BESSEL E CONFRONTO A differenza dei precedenti, i filtri di Bessel hanno la massima linearità nella risposta in fase (nella banda passante). V V out in f f 3dB L6/9
TRASFORMAZIONE PASSA-BASSO PASSA-ALTO Metodo della Trasformazione della Frequenza Complessa Frequenza complessa originale: s = σ+ jω Frequenza complessa trasformata: p= u+ jv s = σ+ jω= u v σ+ jω= = j u+ jv u + v u + v p Riferendoci al comportamento sinusoidale a regime, si ha σ = 0. Uguagliando parti reali e parti immaginarie abbiamo: u = 0 ω= v L6/30
TRASFORMAZIONE PASSA-BASSO PASSA-ALTO (Cont.) Funzione di trasferimento passa-basso (per funzioni monotone tutti gli zeri sono a infinito): H 0 ( s) = Applicando la trasformazione denominatore per H LP n n b0 + bs + bs +... + bn s + bns n p, si ha: H s = e moltiplicando numeratore e p H p n 0 HP ( p) = n n n b0p + bp + bp +... + bn p + bn Gli n zeri a infinito si sono trasformati in n zeri nell origine. o In generale i poli della funzione trasformata sono i reciproci di quelli della funzione originaria. L6/3
TRASFORMAZIONE PASSA-BASSO PASSA-ALTO (Cont.) o Per filtri di Butterworth la posizione dei poli non varia Butterworth n = H LP ω = ω= ν +ω 4 H HP ν = = 4 +ν ν ν + ν 4 L6/3
TRASFORMAZIONE PASSA-BASSO PASSA-ALTO (Cont.) L6/33
TRASFORMAZIONE PASSA-BASSO PASSA-BANDA s = σ+ jω p = u+ jv p + s = p+ = p p p sp+ = 0 s s p = ± ( σ + jω) ( σ + jω) u+ jv = ± 4 a regime σ= u = 0 jω ω jv = ± j + 4 ω ω v= ± + 4 L6/34
TRASFORMAZIONE PASSA-BASSO PASSA-BANDA (Cont.) ω = - Denormalizzazione per ottenere una larghezza di banda diversa dall unità L6/35
TRASFORMAZIONE PASSA-BASSO PASSA-BANDA (Cont.) Calcolo delle frequenze di taglio del filtro passa-banda: Per ω = ω ω v 06. v= ± + = ± + = 05. ± 5. = 4 4 v + 6. Per ω = ω ω v. 6 v= ± + = ± + = 05. ± 5. = 4 4 v + 0. 6 Per ω = 0 ω ω v= ± + = ± = 4 + L6/36
TRASFORMAZIONE PASSA-BASSO PASSA-BANDA o Ogni frequenza ω per cui frequenze ν e ν che determinano: H jω è trasformata in due LP ( ω ) = ( ν ) = ( ν ) H j H j H j LP BP BP o ν e ν sono tali che la larghezza di banda del filtro passa-banda è pari alla larghezza di banda del filtro passa-passo o ν e ν sono tali che ν ν = L6/37
Esempio di filtro di Butterworth di ordine 6 Frequenza di taglio di 500 Hz. Passa Basso Passa Alto Generated by: http://www-users.cs.york.ac.uk/~fisher/lcfilter R 50 L 0.0083786 C 9.008e -06 L 0.0307487 C.995e -05 L 3 0.05045 C 3 3.954e -06 R 50 R 50 C.995e -05 L 0.0557 C 3.953e -06 L 0.0083783 C 3 4.506e -06 L 3 0.0307486 R 50 L6/38
Passa Basso Passa Alto In rosso lo spettro di ampiezza, in blu spettro di fase 0 x 0 4 0 x 0 4 Times delay (s) 3 4 5 6 7 0 00 400 600 800 000 Frequency (Hz) Times delay (s) 3 4 5 6 7 0 00 400 600 800 000 Frequency (Hz) L6/39
Esempio di filtro Passa Basso: Usando un filtro analogico RC di ordine 4: cascata di 4 filtri RC con Frequenza di taglio Hz. 0 0 H(f) 0 5 0 0 angle(h(f)) Time delay (s) 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 4 0 0 0 0 0 0 Frequency (Hz) Nota: il tempo di ritardo è costante solo al di sotto di 0. Hz. L6/40
Si consideri: Segnale Gaussiano (a) + Rumore Gaussiano (b) (SNR = db) + Interferenza Sinusoidale (c) In basso a destra è mostrata la trasformata di Fourier. In verde la risposta in frequenza del filtro. In nero il segnale utile (a). Esempio di un buon filtraggio analogico 0.5 0 5 0 tempo 5 0 5 0 tempo 5 0 (a) (b) (c) 0 tempo 3 0 5 0 tempo 5 0 4 0 (a)+(b)+(c) 0 0 0 0 frequenza 0 L6/4
Risultato dopo il filtraggio 0 0 0 0 0 5 0 5 0 frequenza 0.5 0 0 5 0 5 tempo 0 L6/4
x(t) and x f (t) Spectrum Time delay 0 00 00 Esempio di un cattivo filtraggio 0 0 0 40 60 0.5 0.5 0 0.5.5 0.5 0.5 0 0.5.5 Filtro di Butterworth di ordine 6 su una somma sinusoidi di frequenze 0, 0., 0.4, e 0.6 Hz. Si osservi come il segnale di uscita (filtrato in blu) sia totalmente distorto. L6/43