Raffaele D. Facendola

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Raffaele D. Facendola"

Transcript

1 Analisi 2 Argomenti Curve in Parametrizzazione e sostegno Parametrizzazioni equivalenti Lunghezza di una curva Parametro arco Campi vettoriali Definizione Linea di flusso Gradiente Operatore di Laplace Divergenza Rotore Lavoro Campi vettoriali conservativi Potenziale Equazioni differenziali ordinarie Definizione Sistemi di equazioni differenziali lineari di 1 ordine Problema di Cauchy Funzione Lipschitziana Teorema di esistenza ed unicità locale (Teorema di Peano) Equazioni lineari di primo ordine Caso Caso Caso Equazioni lineari di secondo ordine Caso in cui i coefficienti sono costanti Caso in cui i coefficienti non sono costanti (Equazione di Eulero) Sistemi di equazioni lineari di ordine superiore al secondo Matrice esponenziale Serie di Fourier 1

2 Curve in Parametrizzazione e sostegno Una curva nel piano o nello spazio è definita tra due estremi a e b mediante una parametrizzazione del tipo: L immagine di nel piano (o nello spazio), ovvero la sua traiettoria, è detta sostegno. NB: In generale se due curve hanno lo stesso sostegno è possibile che non abbiano parametrizzazione equivalente. Parametrizzazioni equivalenti Sia data una funzione di classe e con (ovvero è sempre strettamente crescente o decrescente), le uniche parametrizzazioni di una curva equivalenti sono tutte quelle nella forma: ( ) Tutte le altre parametrizzazioni non sono equivalenti. Lunghezza di una curva Per calcolare la lunghezza di una curva possiamo immaginare di fissare alcuni punti sulla curva e calcolare la lunghezza della spezzata che interseca tutti quei punti: quella ottenuta, tuttavia, rappresenta solo un approssimazione della lunghezza della curva. Immaginiamo a questo punto di infittire sempre di più il numero di punti sulla curva: la spezzata sarà costituita da segmenti di dimensione infinitesima e la cui direzione non è altro che quella della tangente alla curva in quel punto, la quale è, per definizione, la sua derivata prima. Dal ragionamento di cui sopra possiamo quindi definire la lunghezza di una curva come: 2

3 Parametro arco Considerando una curva in un piano è possibile individuare ciascun punto appartenente ad essa mediante due coordinate, tuttavia studiare una curva usando due coordinate (o più) può risultare inutilmente complicato. Un altro sistema per individuare i punti su una curva può essere, ad esempio, quello di specificare solo la distanza del punto generico della curva da un altro punto fissato della stessa (che per noi sarà l origine della curva) sfruttando la definizione di lunghezza: Il parametro fornisce la distanza di un qualsiasi punto è detto parametro arco. Se è possibile invertire la relazione allora è possibile riscrivere la parametrizzazione della curva nella forma ( ): in questo caso la curva verrà percorsa sempre con velocità costante e pari ad 1. 3

4 Campi vettoriali Definizione Un campo vettoriale è definito come una funzione che manda un n-upla in uno spazio ad m dimensioni: Se m è uguale ad 1 allora il campo si dice scalare. Linea di flusso Una linea di flusso è una qualsiasi curva regolare tangente in ogni punto al campo vettoriale. NB: se è una parametrizzazione di una linea di flusso allora si ha che Gradiente Sia dato un campo vettoriale, il suo gradiente è dato da Operatore di Laplace (Laplaciano) Sia dato un campo vettoriale F, il suo laplaciano è definito come Divergenza La divergenza di un campo vettoriale descrive la tendenza di quest ultimo a convergere o divergere da un punto. Rotore ( ) Il rotore di un campo vettoriale descrive la rotazione del campo stesso. Se il rotore di un campo è 0 allora il campo si dice irrotazionale. NB: Il rotore è un concetto che esiste solo in, tuttavia in si può supporre che la coordinata z sia 0. 4

5 Lavoro Il lavoro compiuto da una forza lungo una retta non è altro che il prodotto della forza per lo spostamento. Se quest ultimo però non è rettilineo allora possiamo pensare al lavoro come la somma dei prodotti della forza per gli spostamenti infinitesimi (che si possono approssimare a delle rette) utilizzando la definizione di derivata prima: ( ) Campi vettoriali conservativi Un campo vettoriale si dice conservativo se il lavoro compiuto lungo una curva dipende solo dagli estremi a e b e non dalla curva stessa. In questo caso il lavoro può essere calcolato come differenza tra due valori numerici che dipendono solo dalle coordinate dei punti e che prendono il nome di potenziali (indicati con U). ( ) NB: Se un campo è conservativo allora esso è irrotazionale. Se il campo è sia irrotazionale che semplicemente connesso (ovvero in non esistono buchi nel dominio) allora il campo è conservativo. 5

6 Potenziale Sia dato un campo vettoriale nella forma campo vettoriale sappiamo che valgono le seguenti: dalla definizione di potenziale di un e Qualora fosse necessario calcolare il valore del potenziale del campo vettoriale bisognerebbe prima di tutto verificare che il campo sia conservativo (non ha senso parlare di potenziale di un campo non conservativo) verificando prima che sia semplicemente connesso e poi che il suo rotore valga zero (il campo è cioè irrotazionale). A questo punto sfruttando le definizioni di cui sopra sappiamo che: Nella serie di equazioni qui sopra abbiamo applicato la definizione di potenziale restringendo il nostro interesse alla sola componente x del campo. Il risultato ottenuto, pertanto, è la primitiva della componente x del campo più una certa costante che dipende da y. Per trovare il valore preciso di questa costante non ci resta che derivare il risultato e porre quanto ottenuto pari a sfruttando la definizione : Integrando membro a membro si ottiene il valore di per cui è effettivamente il potenziale di. E opportuno tener presente che nell integrazione compare una costante additiva numerica arbitraria: qualora fosse richiesto dal problema di individuare qual è il potenziale del campo vettoriale per il quale, allora per eliminare questa costante (e soddisfare la richiesta del esercizio) sarà sufficiente sostituire nell equazione del potenziale appena individuato i valori numerici del punto di riferimento al fine di individuare il corretto valore da assegnare alla costante numerica. Il procedimento presentato può altresì essere applicato valutando prima la componente y e quindi calcolando il valore della costante in x. 6

7 Equazioni differenziali ordinarie Definizione: Un equazione differenziale ordinaria (EDO) è un equazione nella forma: In cui compare un incognita ed alcune sue derivate (valutate nel medesimo punto) fino ad un ordine massimo pari ad n. L equazione differenziale si dice di ordine n per indicare il grado massimo delle derivate incognite presenti. Si definisce ordinaria un equazione in cui le incognite dipendono da un unica variabile (in questo caso x). Si definisce lineare un equazione differenziale in cui f è un polinomio di primo grado in. Un equazione differenziale si dice scritta in forma normale se la derivata di ordine massimo presente può essere esplicitata come: Si definisce soluzione o integrale di un equazione differenziale una funzione intervallo D e derivabile n volte tale che valga l uguaglianza definita in un certo Problema di Cauchy Risolvere un problema di Cauchy consiste nel risolvere un equazione differenziale di ordine n-esimo sapendo che la funzione e le sue n derivate in un certo punto valgono un certo valore numerico stabilito a priori: { Funzione Lipschitziana Una funzione si dice Lipschitziana su se il rapporto tra la variazione dell ascissa e la variazione dell ordinata non supera mai un certo valore K detto costante di Lipschitz: Una funzione Lipschitziana in I è anche continua in I, tuttavia non è detto che sia anche derivabile. 7

8 Teorema di esistenza ed unicità locale (Teorema di Peano) Dato un problema di Cauchy, il teorema di esistenza ed unicità locale asserisce che, sia dato un sistema della forma: { Esiste una soluzione unica che soddisfa il sistema di cui sopra per un certo intervallo purchè valgano le seguenti ipotesi: con deve essere definita in un intorno di deve essere di classe su tale intorno deve essere lipschitziana rispetto ad y deve essere uniforme continua rispetto ad x (ie: ) Equazioni lineari di primo ordine Le equazioni lineari di primo ordine sono tutte le equazioni differenziali della forma: Caso y =f(x) Il caso è molto semplice in quanto è possibile individuare la soluzione semplicemente integrando : Nel caso in cui ci trovassimo di fronte ad un problema di Cauchy in cui si ha che soluzione è la seguente: allora la 8

9 Caso y - a(x)y = 0 In questo caso è possibile trovare la soluzione usando la seguente formula: I problemi di Cauchy associati si risolvono usando la formula seguente: Dimostrazione: Caso y -a(x)y-b(x)=0 Per il teorema di struttura tutte le soluzioni dell equazione differenziale presentata sono nella forma Dove è la soluzione dell omogenea associata (ovvero la stessa equazione in cui però b(x) è uguale a 0) ed è una soluzione particolare trovata mediate la formula: Considerando che la soluzione dell omogenea associata rientra nella casistica precedente, la soluzione completa dell equazione differenziale di partenza è: Per i problemi di Cauchy nella forma: { La formula risolutiva è: 9

10 Equazioni lineari di secondo ordine Le equazioni differenziali lineari di secondo ordine sono tutte le equazioni differenziali della forma: Caso in cui i coefficienti sono costanti Un equazione differenziale del secondo ordine a coefficienti costanti è un equazione del tipo: Dove a e b sono due costanti appartenenti ad. Caso Le soluzioni all equazione precedente sono tutte le funzioni della forma. Sostituendo nell equazione la precedente, derivando e mettendo in evidenza il termine seguente equazione: otteniamo la Visto che l esponenziale non si annulla mai, l equazione vale zero solo se il fattore che equivale a risolvere una semplice equazione di secondo grado. vale zero, il Se le radici della precedente sono reali e distinte allora le funzioni che risolvono l equazione differenziale sono tutte le funzioni appartenente allo spazio vettoriale di funzioni generato da Se le radici sono reali e coincidenti le due radici generano funzioni linearmente dipendenti e quindi le soluzioni saranno rappresentate dalla funzioni appartenenti al seguente spazio vettoriale: Se le radici sono immaginarie allora le soluzioni sono della forma Caso Come per le equazioni differenziali del primo ordine, è possibile trovare le soluzioni della precedente sommando alla soluzione dell omogenea associata (caso precedente) una soluzione particolare dell equazione differenziale (teorema di struttura). Per individuare la soluzione particolare dell equazione differenziale possiamo ricorrere a due metodi diversi: il metodo di variazione delle costanti o il metodo di somiglianza. 10

11 Metodo di variazione delle costanti Cerchiamo una soluzione particolare dell EDO al fine di applicare il ben noto teorema di struttura. Tale soluzione è della forma: Dove e sono due soluzioni qualsiasi dell equazione omogenea associata, trovate considerando le soluzioni individuate con le metodologie trattate nel paragrafo Caso e ponendo C1 e C2 pari a due valori qualsiasi per due volte (una per ogni soluzione da individuare) Una volta individuate le due soluzioni qualsiasi dell omogenea associata è possibile determinare i valori di e di usando le seguenti formule: Integrando le due funzioni appena individuate è possibile trovare l equazione particolare e, tramite essa, individuare le soluzioni dell EDO di partenza. Metodo di somiglianza Il metodo presentato può essere applicato solo se la forzante è della forma: Dove è un polinomio in x di grado m. o In tal caso si considerano due numeri complessi coniugati definiti come e Se non risolve allora la soluzione particolare è definita come Dove e sono due polinomi di grado m completi (ovvero ammettono tutti i termini dal grado m al grado 0, ovvero ) Se risolve, invece la soluzione particolare è definita come Dove è la molteplicità di (1 o 2). A questo punto sostituiamo la soluzione particolare e le sue derivate (preventivamente calcolate) nell equazione di partenza al fine di eliminare i termini dei polinomi e e quindi utilizziamo il teorema di struttura per individuare le soluzioni dell EDO completa. 11

12 Caso in cui i coefficienti non sono costanti (Equazione di Eulero) Dicesi equazione di eulero un equazione differenziale di ordine m della forma: In sostanza si tratta di un equazione in cui i coefficienti non sono costanti in quanto dipendono da un coefficiente numerico ed uno non numerico elevato ad una potenza pari all ordine di derivazione della variabile y (ovvero la derivata seconda di y viene moltiplicata per un coefficiente in cui compare x al quadrato e così via). Il metodo di risoluzione di queste equazioni consiste inizialmente nell effettuare una sostituzione dipendente dal problema di Cauchy che si vuole risolvere: Se allora imporremo, in caso contrario, invece, imporremo. (*) A questo punto potremo effettuare la sostituzione (nel caso, ovviamente) Calcoliamo tutte le derivate necessarie:...e via dicendo... ( ) NB: Si ricorda di prestare attenzione nel derivare oltre il secondo ordine in quanto, effettuando le sostituzioni in funzione della derivata di ordine precedente, compaiono dei termini additivi in derivate che vanno sottratti (segnati in rosso) e sue A questo punto riscriviamo l equazione data imponendo la sostituzione di cui sopra (in questo caso ): Nell equazione di cui sopra è possibile effettuare le dovute sostituzioni dei termini della forma (con n numero tra 0 ed il grado dell equazione differenziale) utilizzando le derivate calcolate poco sopra. Effettuando questa sostituzione tutti i termini in scompaiono ed otteniamo un EDO lineare a coefficienti costanti (trattate nel paragrafo precedente o quello successivo) in. Una volta individuate le soluzioni è possibile riscrivere le stesse in funzione di inversa. effettuando la sostituzione Il meteodo risolutivo proposto da (*) è ugualmente valido (con i dovuti accorgimenti durante la derivazione) se la sostituzione fosse stata. 12

13 Sistemi di equazioni differenziali lineari di 1 ordine Un sistema di equazioni differenziali lineari di 1 ordine è un sistema scritto nella forma: { In cui tutte le funzione sono definite nel medesimo intervallo D e le funzioni rappresentano le funzioni incognite. E possibile riscrivere il sistema in forma compatta utilizzando la notazione vettoriale: Una qualsiasi equazione differenziale lineare di ordine n può essere scritta come un sistema di quazioni differenziali lineari ponendo Ed ottenendo un sistema nella forma { 13

14 Sistemi di equazioni lineari di ordine superiore al secondo Abbiamo visto in precedenza come trasformare una qualsiasi equazione lineare di ordine superiore al secondo in un sistema di equazioni ordinarie lineari di 1 ordine (paragrafo Sistemi di equazioni differenziali lineari di 1 ordine ). A partire da tale sistema è possibile costruire una matrice A in cui la cella rappresenta il coefficiente numerico del j-esimo termine della i-esima equazione. In altre parole la matrice A è sempre formata così come segue: [ ] Dove i termini sono i coefficienti dell ultima equazione differenziale del sistema. Si determinano gli autovalori e gli autovettori relativi alla matrice A e quindi le soluzioni del sistema omogeneo saranno tutte le soluzioni della forma: La soluzione particolare del sistema (necessaria per applicare il teorema di struttura) è data dalla seguente formula: Dove è il vettore colonna in cui l i-esima cella rappresenta il coefficiente noto (che non dipende cioè da y) dell i-esima equazione del sistema (dato che le prime n-1 equazioni non possiedono coefficiente noto, esse saranno tutte uguali a zero) e è la matrice esponenziale trattata nel paragrafo successivo. Le soluzioni a tal sistema saranno pertanto: 14

15 Matrice esponenziale Sia data una matrice A, si definisce matrice esponenziale di A e si indica con serie di potenze: la somma della seguente Dove è la produttoria della matrice A per k che va da 1 ad i: E possibile semplificare di molto il calcolo della matrice esponenziale se A è una matrice diagonalizzabile. In tal caso è possibile calcolare la matrice esponenziale utilizzando la seguente formula: Dove D rappresenta A diagonalizzata. Nel caso di un sistema di EDO, S è la matrice costruita per colonne mediante gli autovettori di A (paragrafo precedente), mentre D è una matrice diagonale in cui l i-esimo termine è rappresentato dall i-esimo autovalore di A. Nel paragrafo precedente, ove si chiede di calcolare, è sufficiente applicare pertanto: 15

16 Serie di Fourier Sia data una funzione, periodica di periodo (il cui intervallo sia e regolare a tratti (ovvero è possibile suddividere la funzione in un certo numero di intervalli entro i quali f(x) è continua, infinitamente derivabile e con derivate continue), è possibile dimostrare che essa può essere scritta come la somma di infiniti termini trigonometrici (sinusoidi e cosinusoidi) della forma: ( ) Dove e, detti coefficienti di Fourier, sono definiti come: ( ) ( ) NB: Vale la pena ricordare che se è una funzione pari il termine si annulla, questo perchè il tutto si riduce al dover calcolare un integrale tra T e T di una funzione dispari (una funzione pari moltiplicata per una funzione dispari (cos) restituisce una funzione dispari) che vale notoriamente 0. Se è dispari, invece, il termine si annulla per le stesse ragioni di cui sopra. 16

19 Marzo Equazioni differenziali.

19 Marzo Equazioni differenziali. 19 Marzo 2019 Equazioni differenziali. Definizione 1. Si chiama equazione differenziale una relazione che coinvolge una o più derivate di una funzione incognita y(x), la funzione stessa, funzioni di x

Dettagli

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale.

LE EQUAZIONI DIFFERENZIALI. che, insieme alle loro derivate, soddisfano un equazione differenziale. LE EQUAZIONI DIFFERENZIALI I problemi incontrati fin ora nel corso di studi di matematica erano tutti di tipo numerico, cioè la loro risoluzione ha sempre portato alla determinazione di uno o più numeri

Dettagli

Argomenti delle singole lezioni del corso di Analisi Matematica 2 (Ingegneria Edile-Architettura, A.A )

Argomenti delle singole lezioni del corso di Analisi Matematica 2 (Ingegneria Edile-Architettura, A.A ) Argomenti delle singole lezioni del corso di Analisi Matematica 2 (Ingegneria Edile-Architettura, A.A. 2018-19) NB. Le indicazioni bibliografiche si riferiscono al libro di testo. Lezione nr. 1, 24/9/2018.

Dettagli

Curve e lunghezza di una curva

Curve e lunghezza di una curva Curve e lunghezza di una curva Definizione 1 Si chiama curva il luogo geometrico dello spazio di equazioni parametriche descritto da punto p, chiuso e limitato. Definizione 2 Si dice che il luogo C è una

Dettagli

Equazioni differenziali

Equazioni differenziali Capitolo 2 Equazioni differenziali I modelli matematici per lo studio di una popolazione isolata sono equazioni differenziali. Premettiamo dunque allo studio dei modelli di popolazioni isolate una breve

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Sistemi di equazioni differenziali

Sistemi di equazioni differenziali Capitolo 5 Sistemi di equazioni differenziali Molti problemi sono governati non da una singola equazione differenziale, ma da un sistema di più equazioni. Ad esempio questo succede se si vuole descrivere

Dettagli

Appendici Definizioni e formule notevoli Indice analitico

Appendici Definizioni e formule notevoli Indice analitico Indice 1 Serie numeriche... 1 1.1 Richiami sulle successioni................................. 1 1.2 Serie numeriche........................................ 4 1.3 Serie a termini positivi...................................

Dettagli

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare.

ossia può anche essere localizzato univocamente sul piano complesso con la sua forma polare. ALGEBRA COMPLESSA Nel corso dei secoli gli insiemi dei numeri sono andati man mano allargandosi per rispondere all esigenza di dare soluzione a equazioni e problemi sempre nuovi I numeri complessi sono

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Michela Procesi Analisi matematica II Programma svolto nel corso 2012, dal 27 febbraio all' 8 giugno, lezioni 1-25

Michela Procesi Analisi matematica II Programma svolto nel corso 2012, dal 27 febbraio all' 8 giugno, lezioni 1-25 Michela Procesi Analisi matematica II Programma svolto nel corso 2012, dal 27 febbraio all' 8 giugno, lezioni 1-25 Lezione 1 (27/02/2012) - Richiami sullo spazio euclideo Rn: operazioni di spazio vettoriale,

Dettagli

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola:

Analisi Matematica II - INGEGNERIA Gestionale - B 20 luglio 2017 Cognome: Nome: Matricola: Analisi Matematica II - INGEGNERIA Gestionale - B luglio 7 Cognome: Nome: Matricola: IMPORTANTE: Giustificare tutte le affermazioni e riportare i calcoli essenziali Esercizio [8 punti] Data la matrice

Dettagli

Analisi Matematica II

Analisi Matematica II Claudio Canuto, Anita Tabacco Analisi Matematica II Teoria ed esercizi con complementi in rete ^ Springer Indice 1 Serie numeriche 1 1.1 Richiami sulle successioni 1 1.2 Serie numeriche 4 1.3 Serie a termini

Dettagli

Equazioni differenziali lineari del secondo ordine a coefficienti costanti

Equazioni differenziali lineari del secondo ordine a coefficienti costanti Equazioni differenziali lineari del secondo ordine a coefficienti costanti 0.1 Introduzione Una equazione differenziale del secondo ordine è una relazione del tipo F (t, y(t), y (t), y (t)) = 0 (1) Definizione

Dettagli

ESERCITAZIONE 1 ELEMENTI DI MATEMATICA

ESERCITAZIONE 1 ELEMENTI DI MATEMATICA ESERCITAZIONE ELEMENTI DI MATEMATICA Potenze e radicali. Potenze: La potenza n-esima di un numero x, x n, si calcola moltiplicando x per se stesso n volte. Ad esempio, elevare alla quinta significa moltiplicare

Dettagli

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a

12 gennaio Commenti esame di geometria - Ing. gestionale - a.a Questo documento riporta commenti, approfondimenti o metodi di soluzione alternativi per alcuni esercizi dell esame Ovviamente alcuni esercizi potevano essere risolti utilizzando metodi ancora diversi

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

La formula di Taylor per funzioni di più variabili

La formula di Taylor per funzioni di più variabili La formula di Taylor per funzioni di più variabili Il polinomio di Taylor Due variabili. Sia A R 2 un aperto, f : A R una funzione sufficientemente regolare, (x, y) un punto di A. Sia (h, k) un vettore

Dettagli

Equazioni differenziali

Equazioni differenziali 1 Equazioni differenziali Definizioni introduttive Una equazione differenziale è una uguaglianza che contiene come incognita una funzione f x, insieme con le sue derivate rispetto alla variabile indipendente

Dettagli

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a

Analisi Matematica 2. Michele Campiti. Prove scritte di. Ingegneria Industriale a.a Michele Campiti Prove scritte di Analisi Matematica 2 Ingegneria Industriale a.a. 20 202 Grafico della funzione f(x, y) := sin(2x 2 y) cos(x 2y 2 ) in [ π/2, π/2] 2 Raccolta delle tracce di Analisi Matematica

Dettagli

Analisi Matematica T_2 (prof.g.cupini) A.A CdL Ingegneria Amb.Terr./Automazione - Univ.Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T_2 (prof.g.cupini) A.A CdL Ingegneria Amb.Terr./Automazione - Univ.Bologna REGISTRO DELLE LEZIONI Analisi Matematica T_2 (prof.g.cupini) A.A.2010-2011 - CdL Ingegneria Amb.Terr./Automazione - Univ.Bologna REGISTRO DELLE LEZIONI Lu, 28 febbraio 2011 (Amb.Terr./Automazione) Presentazione del corso. Curve

Dettagli

Analisi Matematica T_2 (prof.g.cupini) A.A CdL Ingegneria Amb.Terr./Elettronica - Univ.Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T_2 (prof.g.cupini) A.A CdL Ingegneria Amb.Terr./Elettronica - Univ.Bologna REGISTRO DELLE LEZIONI Analisi Matematica T_2 (prof.g.cupini) A.A.2011-2012 - CdL Ingegneria Amb.Terr./Elettronica - Univ.Bologna REGISTRO DELLE LEZIONI Lu, 20 febbraio 2012 Presentazione del corso. Curve parametriche: definizione.

Dettagli

Istituzioni di Matematiche II AA Registro delle lezioni

Istituzioni di Matematiche II AA Registro delle lezioni Istituzioni di Matematiche II AA 2010-2011 Registro delle lezioni Riferimenti: [1] M.Bramanti, C.D. Pagani, S. Salsa: Analisi Matematica 2. Zanichelli [2] M.Bramanti, C.D. Pagani, S. Salsa: Analisi Matematica

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Funzioni di più variabili a valori vettoriali n t m

Funzioni di più variabili a valori vettoriali n t m Funzioni di più variabili a valori vettoriali n t m Definizione f(x 1, x 2,...x n )=[f 1 (x 1, x 2,...x n ), f 2 (x 1, x 2,...x n ),...f m (x 1, x 2,...x n )] Funzione definita n d m Dove: n = dominio

Dettagli

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0

Analisi Vettoriale - A.A Foglio di Esercizi n Esercizio. y [17] + y [15] = 0. z + z = 0 Analisi Vettoriale - A.A. 23-24 Foglio di Esercizi n. 5 Determinare l integrale generale di 1. Esercizio y [17] + y [15] = Posto y [15] = z l equazione proposta diventa Il cui integrale generale é z +

Dettagli

Definizione: Due equazioni si dicono equivalenti se ammettono le stesse soluzioni.

Definizione: Due equazioni si dicono equivalenti se ammettono le stesse soluzioni. Facoltà di Medicina e Chirurgia Corso Zero di Matematica Gruppi: MC-MF3 / PS-MF3 II Lezione EQUAZIONI E SISTEMI Dr. E. Modica erasmo@galois.it www.galois.it IDENTITÀ ED EQUAZIONI Si consideri un uguaglianza

Dettagli

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof FPodestà, aa 003-004 Sia V uno spazio vettoriale e sia f : V V una applicazione lineare una tale applicazione da uno spazio vettoriale in se stesso è chiamata

Dettagli

Applicazioni lineari e diagonalizzazione. Esercizi svolti

Applicazioni lineari e diagonalizzazione. Esercizi svolti . Applicazioni lineari Esercizi svolti. Si consideri l applicazione f : K -> K definita da f(x,y) = x + y e si stabilisca se è lineare. Non è lineare. Possibile verifica: f(,) = 4; f(,4) = 6; quindi f(,4)

Dettagli

Analisi Matematica 2 (prof.g.cupini) A.A CdL Astronomia - Univ. Bologna REGISTRO DELLE LEZIONI

Analisi Matematica 2 (prof.g.cupini) A.A CdL Astronomia - Univ. Bologna REGISTRO DELLE LEZIONI Analisi Matematica 2 (prof.g.cupini) A.A.2016-2017 - CdL Astronomia - Univ. Bologna REGISTRO DELLE LEZIONI GLI ARGOMENTI IN GIALLO SARANNO OGGETTO DI VERIFICA SOLO NELL'ESAME DI TEORIA. Lu, 26 settembre

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

Equazioni Differenziali

Equazioni Differenziali Università degli Studi di Udine Anno Accademico 2012/2013 Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Matematica Equazioni Differenziali Appello del 5 febbraio 2013 N.B.: scrivere

Dettagli

Registro delle lezioni

Registro delle lezioni 2 Registro delle lezioni Lezione 1 17 gennaio 2006, 2 ore Notazione dell o piccolo. Polinomio di Taylor di ordine n con resto in forma di Peano per funzioni di classe C n. Polinomio di Taylor di ordine

Dettagli

PARTE 4: Equazioni differenziali

PARTE 4: Equazioni differenziali PROGRAMMA di Fond. di Analisi Mat. 2 - sett. 1-11 A.A. 2011-2012, canali 1 e 2, proff.: Francesca Albertini e Monica Motta Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi

Dettagli

PROGRAMMA PROVVISORIO DI ANALISI MATEMATICA 2 INGEGNERIA EDILE -ARCHITETTURA, A.A. 2018/2019 DOCENTE MICHIEL BERTSCH

PROGRAMMA PROVVISORIO DI ANALISI MATEMATICA 2 INGEGNERIA EDILE -ARCHITETTURA, A.A. 2018/2019 DOCENTE MICHIEL BERTSCH PROGRAMMA PROVVISORIO DI ANALISI MATEMATICA 2 INGEGNERIA EDILE -ARCHITETTURA, A.A. 2018/2019 DOCENTE MICHIEL BERTSCH Libro di testo di riferimento: M. Bertsch, R. Dal Passo, L. Giacomelli, Analisi Matematica,

Dettagli

Equazioni differenziali

Equazioni differenziali Equazioni differenziali Generalità sulle equazioni differenziali ordinarie del primo ordine Si chiama equazione differenziale ordinaria[ ] del primo ordine un equazione nella quale compare y = y e la sua

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Identità ed equazioni

Identità ed equazioni Matematica e-learning - Identità ed equazioni Prof. erasmo@galois.it A.A. 2009/2010 1 Generalità sulle equazioni Si consideri un uguaglianza tra due espressioni algebriche A = B Se si sostituiscono al

Dettagli

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI

CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI CORSO DI ALGEBRA LINEARE Anno Accademico 2004/2005 Appunti su SISTEMI di EQUAZIONI LINEARI Lo studente ha forse già incontrato i sistemi di equazioni lineari alla scuola secondaria Con il termine equazione

Dettagli

Analisi Matematica B Soluzioni prova scritta parziale n. 4

Analisi Matematica B Soluzioni prova scritta parziale n. 4 Analisi Matematica B Soluzioni prova scritta parziale n. 4 Corso di laurea in Fisica, 017-018 4 maggio 018 1. Risolvere il problema di Cauchy { u u sin x = sin(x), u(0) = 1. Svolgimento. Si tratta di una

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate

Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate Indice breve I PARTE I Elementi di base Capitolo 1 Introduzione 1 Capitolo 2 Funzioni 34 PARTE II Funzioni di una variabile Capitolo 3 Introduzione alle proprietà locali e al concetto di limite 73 Capitolo

Dettagli

CENNI SUL CONCETTO DI FUNZIONE

CENNI SUL CONCETTO DI FUNZIONE CENNI SUL CONCETTO DI FUNZIONE Dati due insiemi A e B, una funzione f è una relazione tra gli elementi dell insieme A e gli elementi dell insieme B tale che ad ogni elemento di A corrisponde uno ed un

Dettagli

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE

ESERCIZI SVOLTI SUL CALCOLO INTEGRALE ESERCIZI SVOLTI SUL CALCOLO INTEGRALE * Tratti dagli appunti delle lezioni del corso di Matematica Generale Dipartimento di Economia - Università degli Studi di Foggia Prof. Luca Grilli Dott. Michele Bisceglia

Dettagli

Argomenti delle lezioni. Presentazione del corso. Generalità sulle equazioni differenziali ordinarie. Integrale generale.

Argomenti delle lezioni. Presentazione del corso. Generalità sulle equazioni differenziali ordinarie. Integrale generale. Argomenti delle lezioni. 1 settimana Lunedì 4 marzo 1 ora Martedì 5 marzo 2 Presentazione del corso. Generalità sulle equazioni differenziali ordinarie. Integrale generale. Equazioni differenziali del

Dettagli

Statistica ARGOMENTI. Calcolo combinatorio

Statistica ARGOMENTI. Calcolo combinatorio Statistica ARGOMENTI Calcolo combinatorio Probabilità Disposizioni semplici Disposizioni con ripetizione Permutazioni semplici Permutazioni con ripetizioni Combinazioni semplici Assiomi di probabilità

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 05/06 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 0/0/06 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

AUTOVALORI, AUTOVETTORI, AUTOSPAZI

AUTOVALORI, AUTOVETTORI, AUTOSPAZI AUTOVALORI, AUTOVETTORI, AUTOSPAZI. Esercizi Esercizio. Sia f : R 3 R 3 l endomorfismo definito da f(x, y, z) = (x+y, y +z, x+z). Calcolare gli autovalori ed una base per ogni autospazio di f. Dire se

Dettagli

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1.

LEZIONE 16 A = Verifichiamo se qualcuna fra le entrate a di A è suo autovalore. determinare per quale entrata a di A risulta rk(a ai 2 ) 1. LEZIONE 16 16.1. Autovalori, autovettori ed autospazi di matrici. Introduciamo la seguente definizione. Definizione 16.1.1. Siano k = R, C e A k n,n. Un numero λ k si dice autovalore di A su k) se rka

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di derivata di una funzione in un punto. Sia A R N ; sia a A; sia f : A R M ; sia f differenziabile in a; allora la derivata di f in a è...

Dettagli

Funzioni implicite - Esercizi svolti

Funzioni implicite - Esercizi svolti Funzioni implicite - Esercizi svolti Esercizio. È data la funzione di due variabili F (x, y) = y(e y + x) log x. Verificare che esiste un intorno I in R del punto di ascissa x 0 = sul quale è definita

Dettagli

CALCOLO INTEGRALE: L INTEGRALE DEFINITO

CALCOLO INTEGRALE: L INTEGRALE DEFINITO ISTITUZIONI DI MATEMATICHE E FONDAMENTI DI BIOSTATISTICA CALCOLO INTEGRALE: L INTEGRALE DEFINITO A. A. 2013-2014 1 IL PROBLEMA DELL AREA Determinare l area della regione S di piano compresa tra il grafico

Dettagli

25 - Funzioni di più Variabili Introduzione

25 - Funzioni di più Variabili Introduzione Università degli Studi di Palermo Facoltà di Economia CdS Statistica per l Analisi dei Dati Appunti del corso di Matematica 25 - Funzioni di più Variabili Introduzione Anno Accademico 2013/2014 M. Tumminello

Dettagli

LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a

LE EQUAZIONI LINEARI LE IDENTITA ( )( ) 5. a Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a LE EQUAZIONI LINEARI 1 LE IDENTITA a b = ( a + b)( a b) () 1 a = a + a ( ) ( a + b) = a + ab + b () 3 Cosa hanno in comune le seguenti uguaglianze? Uguaglianza (1) a b = ( a+ b)( a b) È sempre vera qualunque

Dettagli

2 Introduzione ai numeri reali e alle funzioni

2 Introduzione ai numeri reali e alle funzioni 1 CORSO DI LAUREA in Fisica Canale A-CO (canale 4) docente P. Vernole Il programma d esame comprende tutti gli argomenti svolti durante il corso. Dopo ogni sezione sono indicate le parti delle Dispense

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

ESEMPIO DI SISTEMA LINEARE CON SOLUZIONE. Esercizio Si consideri il sistema di equazioni lineari dipendente da un parametro λ R:

ESEMPIO DI SISTEMA LINEARE CON SOLUZIONE. Esercizio Si consideri il sistema di equazioni lineari dipendente da un parametro λ R: ESEMPIO DI SISTEMA LINEARE CON SOLUZIONE Esercizio Si consideri il sistema di equazioni lineari dipendente da un parametro λ R: x 1 + x = 0 6x 1 + (λ + )x + x 3 + x 4 = 1 x 1 4x + (λ + 1)x 3 + 6x 4 = 3

Dettagli

0 Richiami di algebra lineare e geometria analitica Distanza, coordinate e vettori Sistemi lineari e matrici...

0 Richiami di algebra lineare e geometria analitica Distanza, coordinate e vettori Sistemi lineari e matrici... Indice 0 Richiami di algebra lineare e geometria analitica........... 9 0.1 Distanza, coordinate e vettori............................. 9 0.2 Sistemi lineari e matrici..................................

Dettagli

Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana

Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana Argomenti da studiare sui testi di riferimento: Adams, Calcolo Differenziale I, Casa Editrice Ambrosiana P - Preliminari 1 Limiti e continuità 1.1 Velocità, rapidità di crescita, area: alcuni esempi Velocità

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 19 GIUGNO 2012 MATTEO LONGO Esercizio 1. Al variare del parametro a R, si consideri l applicazione lineare L a : R R definita dalle

Dettagli

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti

Equazioni differenziali del 2 ordine Prof. Ettore Limoli. Sommario. Equazione differenziale omogenea a coefficienti costanti Equazioni differenziali del 2 ordine Prof. Ettore Limoli Sommario Equazione differenziale omogenea a coefficienti costanti... 1 Equazione omogenea di esempio... 2 Equazione differenziale non omogenea a

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di forma differenziale chiusa. Sia A R N ; sia A aperto; sia ω = N i=1 ω i dx i una forma differenziale su A; sia ω di classe C 1 ; si dice

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T1 - A.A prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI Analisi Matematica T1 - A.A.2011-2012 - prof.g.cupini CdL Ingegneria Edile Università di Bologna REGISTRO DELLE LEZIONI (Grazie agli studenti del corso che comunicheranno omissioni o errori) 27 SETTEMBRE

Dettagli

REGISTRO DELLE LEZIONI 2004/2005. Lezione Insiemistica. Tipologia. Insiemistica. Addì Tipologia. Addì

REGISTRO DELLE LEZIONI 2004/2005. Lezione Insiemistica. Tipologia. Insiemistica. Addì Tipologia. Addì Insiemistica. Insiemistica. Gli insiemi e le operazioni tra insiemi. Le formule di De Morgan. Gli insiemi N, Q, R. L unione, l intersezion, la differenza tra insiemi, il complementare di un insieme. Addì

Dettagli

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.:

Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA COGNOME: NOME: MATR.: Prima prova in Itinere Ist. Mat. 1, Prima parte, Tema ALFA 1) L applicazione lineare f : R 3 R 2 data da f(x, y, z) = (3x + 2y + z, kx + 2y + kz) è suriettiva A: sempre; B: mai; C: per k 1 D: per k 2;

Dettagli

Quick calculus Capitolo 1 Il problema della tangente

Quick calculus Capitolo 1 Il problema della tangente Quick calculus Capitolo 1 Il problema della tangente Introduzione Ricavare una retta tangente ad una curva di secondo grado come un circonferenza o una parabola, è un problema che si risolve facilmente.

Dettagli

Autovalori e autovettori di una matrice quadrata

Autovalori e autovettori di una matrice quadrata Autovalori e autovettori di una matrice quadrata Data la matrice A M n (K, vogliamo stabilire se esistono valori di λ K tali che il sistema AX = λx ammetta soluzioni non nulle. Questo risulta evidentemente

Dettagli

Massimi e minimi relativi in R n

Massimi e minimi relativi in R n Massimi e minimi relativi in R n Si consideri una funzione f : A R, con A R n, e sia x A un punto interno ad A. Definizione: si dice che x è un punto di massimo relativo per f se B(x, r) A tale che f(y)

Dettagli

N90200 Analisi Matematica Anno Accademico 2017/18 - II semestre

N90200 Analisi Matematica Anno Accademico 2017/18 - II semestre N90200 Analisi Matematica Anno Accademico 2017/18 - II semestre Lezione 5/02 Numeri complessi: definizione, forma algebrica, rappresentazione geometrica : piano di Gauss. Operazioni con i numeri complessi.

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

Registro di Meccanica /13 - F. Demontis 2

Registro di Meccanica /13 - F. Demontis 2 Registro delle lezioni di ISTITUZIONI ED ESERCITAZIONI DI MATEMATICA 1 Corso di Laurea in Chimica 8 CFU - A.A. 2015/2016 docente: Francesco Demontis ultimo aggiornamento: 17 dicembre 2015 1. Lunedì 05/10/2015,

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007

ESERCIZI DI ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 2006/2007 ESERCIZI I ANALISI II Ingegneria Civile e dei Trasporti (M-Z) a.a. 006/007 1 FUNZIONI IN UE VARIABILI (I parte) Insiemi di definizione eterminare gli insiemi di definizione delle seguenti funzioni in due

Dettagli

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1.

EQUAZIONI DIFFERENZIALI Esercizi svolti. y = xy. y(2) = 1. EQUAZIONI DIFFERENZIALI Esercizi svolti 1. Determinare la soluzione dell equazione differenziale (x 2 + 1)y + y 2 =. y + x tan y = 2. Risolvere il problema di Cauchy y() = 1 2 π. 3. Risolvere il problema

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3. Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi

Dettagli

Funzione derivabile. La derivata.

Funzione derivabile. La derivata. Funzione derivabile. La derivata. Dati: f I R funzione; I R intervallo aperto ; x 0 I. Definizione (Derivata come limite del rapporto incrementale) Se esiste finito (cioè, non + o ) il limite del rapporto

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Funzioni di R n a R m e la matrice Jacobiana

Funzioni di R n a R m e la matrice Jacobiana 0.1 Funzioni di R n a R m. Politecnico di Torino. Funzioni di R n a R m e la matrice Jacobiana Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto 0.1 Funzioni di R n

Dettagli

1 Primitive e integrali indefiniti

1 Primitive e integrali indefiniti Analisi Matematica 2 CORSO DI STUDI IN SMID CORSO DI ANALISI MATEMATICA 2 CAPITOLO 2 CALCOLO INTEGRALE Primitive e integrali indefiniti. Definizione di primitiva e di integrale indefinito Data una funzione

Dettagli

Equazioni differenziali

Equazioni differenziali 4 Equazioni differenziali Determinare le primitive di una funzione f(x) significa risolvere y (x) = f(x) dove l incognita è la funzione y(x). Questa equazione è un semplice esempio di equazione differenziale.

Dettagli

Analisi Matematica T2 (prof.g.cupini) A.A CdL Ingegneria Amb. e Terr. - Univ.Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T2 (prof.g.cupini) A.A CdL Ingegneria Amb. e Terr. - Univ.Bologna REGISTRO DELLE LEZIONI Analisi Matematica T2 (prof.g.cupini) A.A.2009-2010 - CdL Ingegneria Amb. e Terr. - Univ.Bologna REGISTRO DELLE LEZIONI Lu, 22 febbraio 2010 Elementi di topologia di R^2: punti interni, di accumulazione,

Dettagli

15 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

15 luglio Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Corso di laurea in Matematica, a.a. 2005-2006 27 aprile 2006 1. Disegnare approssimativamente nel piano (x, y) l insieme x 4 6xy 2

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

SERIE NUMERICHE E SERIE DI POTENZE:

SERIE NUMERICHE E SERIE DI POTENZE: PROGRAMMA DI ANALISI MATEMATICA II Corso di Laurea in Ingegenria Gestionale - Sapienza Universit Roma Canale MZ - Anno Accademico 2017/2018 Docenti: Dott: Salvatore Fragapane Docente Canale AL: Prof. Daniele

Dettagli

5 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI

5 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Equazioni. Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche.

Equazioni. Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche. Equazioni Le equazioni sono relazioni di uguaglianza tra due espressioni algebriche. Nelle espressioni compare una lettera, chiamata incognita. Possiamo attribuire un valore a questa incognita, e vedere

Dettagli

Analisi Matematica T_2 (prof.g.cupini) A.A CdL Ingegneria Automaz./Energ.Elettrica - Univ.Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T_2 (prof.g.cupini) A.A CdL Ingegneria Automaz./Energ.Elettrica - Univ.Bologna REGISTRO DELLE LEZIONI Analisi Matematica T_2 (prof.g.cupini) A.A.2014-2015 - CdL Ingegneria Automaz./Energ.Elettrica - Univ.Bologna REGISTRO DELLE LEZIONI Lu, 23 febbraio 2015 Presentazione del corso. Curve parametriche: definizione.

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A MODELLI e METODI MATEMATICI della FISICA Programma dettagliato del corso - A.A. 2018-19 Lezione 1, 25 febbraio 2019: Organizzazione del corso. Introduzione ai numeri complessi. Rappresentazione cartesiana

Dettagli

2. Si esponga il problema della migliore approssimazione in norma, e si dica in quali spazi esso ha certamente soluzione, e quale è questa soluzione.

2. Si esponga il problema della migliore approssimazione in norma, e si dica in quali spazi esso ha certamente soluzione, e quale è questa soluzione. COMPLEMENTI DI MATEMATICA Corso di Laurea Magistrale in Ingegneria Elettrotecnica CM98sett.tex 6..2009 - lunedì (2 ore) Esercitazione del 6..2009 Risolvere tre esercizi per pagina, a scelta.. Si definisca

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli