Fisica della Materia Condensata

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Fisica della Materia Condensata"

Transcript

1 Fisica della Materia Condensata Prof. Paola Gallo Soluzioni della prova di esame del II appello - 13 Febbraio 2017 Esercizio 1 Considerare un cristallo con reticolo monoclino semplice con base monoatomica. La cella primitiva è mostrata in figura. 1. Determinare i vettori di base del reticolo reciproco. 2. Calcolare l angolo al quale viene osservato il primo ed il secondo ordine di diffrazione, sapendo che β = 60, a = 1.2 Å, b = 1.5 Å, c = 1.6 Å e che nell esperimento si usano raggi X di lunghezza d onda λ = 1.8 Å. 3. Trovare le intensità dei picchi di diffrazione trovati nel punto precedente. Soluzione punto 1 Per un reticolo infinito tridimensionale definito dai suoi vettori primitivi (a, b, c), i vettori primitivi (A, B, C) dello spazio reciproco si ricavano tramite le relazioni: A = 2π b c a b c B = 2π c a a b c C = 2π a b a b c Per il reticolo monoclino semplice prendiamo come base nello spazio diretto i tre vettori che coincidono con i lati della cella primitiva mostrata in figura: a = a ˆx = a(1, 0, 0) (4) b = b ŷ = b(0, 1, 0) (5) c = c (cos βˆx + sin βẑ) = c(cos β, 0, sin β) (6) (1) (2) (3) 1

2 Dove le coordinate tra parentesi sono espresse nella usuale terna cartesiana (xyz). Calcoliamo i prodotti: Da cui: b c = bc (sin β, 0, cos β) (7) c a = ac (0, sin β, 0) (8) a b = ab (0, 0, 1) (9) V = a b c = abc sin β (10) A = 2π (sin β, 0, cos β) (11) a sin β B = 2π (0, 1, 0) b (12) C = 2π (0, 0, 1) c sin β (13) Pertanto il reticolo reciproco è monoclino semplice, in cui l angolo β tra i vettori A e C vale: [ ] A C β = arccos = arccos [ cos β] = arccos [cos(π β)] = π β A C punto 2 I moduli dei vettori di base sono: A = 2π a sin β = Å B = 2π b = Å C = 2π c sin β = Å Nel cristallo monoatomico descritto tramite la cella primitiva non ci sono estinzioni, dunque i primi due anelli si osservano ordinatamente per i due più corti vettori di reticolo reciproco: Θ 1 G 1 = B e Θ 2 G 2 = C. La posizione θ i dell anello di diffrazione è legata al modulo del vettore di reticolo reciproco tramite la relazione: dalla quale risulta: ( ) ( ) λg1 λb θ 1 = 2 arcsin = 2 arcsin = π 4π ( ) ( ) λg2 λc θ 2 = 2 arcsin = 2 arcsin = 81 4π 4π G i = 2k sin(θ i /2) = 4π λ sin(θ i/2) 2

3 punto 3 Per un reticolo monoatomico ( d 1 = (0, 0, 0)) descritto nella base primitiva non ci possono essere né estinzioni né modulazioni di intensità dei picchi di diffrazione: F ( G) = N i f i e i G d i = Nf 1 Per cui le intensità di tutti i picchi sono proporzionali a (Nf 1 ) 2. 3

4 Esercizio 2 Si consideri una catena lineare di lunghezza L, formata da N= atomi uguali, separati da a = 2.5 Å. La massima frequenza della catena è rad/s. 1. Calcolare la velocità del suono; 2. Calcolare la frequenza di Debye della catena; 3. Calcolare la capacità termica reticolare della catena a T = 800 K. 4. Ricavare l espressione della capacità termica reticolare della catena nel modello di Debye nel limite k B T << ω. Si ricorda che l energia interna della catena lineare secondo il modello di Debye si scrive come: U = D(ω) ω dω, dove D(ω) è la densità degli stati nel modello di Debye. Inoltre: b 0 e ω/(k b T ) 1 Soluzione x e x dx = 1 (1 b) e b punto 1 C La velocità del suono nella catena monoatomica è: v s = M a. Il rapporto tra la costante elastica C e la massa dell atomo M si ricava dalla frequenza massima della catena, che viene raggiunta a bordo zona e vale: ω(π/a) = 4C/M = ω max da cui: C v s = M a = a ω max = 3000 m/s 2 punto 2 C M = ω max 2 La frequenza di Debye della catena lineare è data da: ω D = π a v s = rad/s La temperatura di Debye è: Θ D = k B ω D = 288 K punto 3 A T = 800 K (>> Θ D ) vale il limite classico. Con un solo atomo per cella si ha un unica branca acustica in 1D, quindi la capacità termica considerando gli N modi vibrazionali è: c v (800K) = Nk B = 13.8 J/K punto 4 L energia nel modello di Debye si scrive come: U = ωd 0 ω D(ω) e ω/(k bt ) 1 dω 4

5 Dove D(ω) = L 1 π v s è la densità degli stati di una catena lineare. Effettuando il cambio di variabile x = ω/(k b T ), si ha nel limite x >> 1 (come richiesto): ωd xd U = L 1 ω π v s 0 e ω/(k bt ) 1 dω = L (k B T ) 2 π v s 0 = L (k B T ) 2 [ 1 (1 xd )e x ] D L (k B T ) 2 π v s π v s e il calore specifico: c v (T ) = du dt = 2L π (k B ) 2 v s T = 2Nk B T Θ D x e x 1 dx L (k B T ) 2 xd xe x dx = π v s 0 Il calore specifico della catena lineare dipende linearmente dalla temperatura nel modello di Debye, a differenza del solido 3D ( T 3 ). 5

6 Esercizio 3 Si consideri un elemento di valenza 2 con reticolo tetragonale semplice. La cella primitiva è mostrata in figura. Le costanti reticolari valgono a = 0.16 nm e c = 0.22 nm. 1. Scrivere l espressione delle bande derivanti da orbitali di tipo p z e di tipo d (mostrato in figura), assumendo il modello tight-binding a primi vicini: E i ( k) = E 0i R γ i e i k R i = p z, d dove: E 0pz = 5.2 ev, γ pz,x = γ pz,y = 0.2 ev, γ pz,z = 0.4 ev, E 0d = 9 ev, γ d,x = γ d,y = 0.4 ev, γ d,z = 0.2 ev. 2. Indicare gli stati occupati su ciascuna delle bande. Come si comporta il cristallo a temperatura nulla (isolante/metallo)? Calcolare il vettore d onda di Fermi e dare una stima dell energia di Fermi del cristallo. 3. Supponendo di poter variare con continuità il valore di E 0d, quale deve essere il minimo valore di E 0d affinché ci sia una transizione metallo-isolante/isolante-metallo nella struttura a bande del cristallo? 4. Nel caso in cui l elemento costituente il cristallo abbia valenza 3, come risultano essere occupate le bande e quanto vale il vettore d onda di Fermi? 5. Calcolare la velocità degli elettroni in banda E pz nel punto k = ( π 2a, 0, π 2c) della zona di Brillouin. Soluzione punto 1 Nel reticolo i primi vicini sono individuati dai vettori: R = (±a, 0, 0), (0, ±a, 0), (0, 0, ±c). Le due bande risultano essere: E pz ( k) = E 0pz 2γ pz,x cos(k x a) 2γ pz,y cos(k y a) 2γ pz,z cos(k z c) E d ( k) = E 0d 2γ d,x cos(k x a) 2γ d,y cos(k y a) 2γ d,z cos(k z c) (14) Il segno degli integrali di sovrapposizione è: γ pz,x = γ pz,y > 0, γ pz,z < 0 γ d,x = γ d,y > 0, γ d,z > 0 Esplicitando i segni nell eq. 14, le bande diventano: E pz ( k) = E 0pz 2 γ pz,x cos(k x a) 2 γ pz,y cos(k y a) + 2 γ pz,z cos(k z c) E d ( k) = E 0d 2 γ d,x cos(k x a) 2 γ d,y cos(k y a) 2 γ d,z cos(k z c) in ev: E pz ( k) = [cos(k x a) + cos(k y a)] cos(k z c) E d ( k) = [cos(k x a) + cos(k y a)] 0.4 cos(k z c) (ev) (15) (ev) 6

7 punto 2 Le bande non si sovrappongono infatti: E pz E d minimo (ev) massimo (ev) Per cui 2N elettroni riempiranno completamente la banda più bassa in energia, la banda E pz, separata dalla banda E d da un energia di gap E g = 6.8 ev. Risulta pertanto che il comportamento a temperatura nulla del cristallo è di tipo isolante. Il vettore d onda di Fermi si trova dal conteggio degli stati nello spazio reciproco e vale: 4 3 2N = 2 πk3 F k (2π) 3 F = 3 6π 2 N V = 3 6π 2 1 a 2 = 21.9 nm 1 c V Considerando che la banda E pz è tutta piena, possiamo stimare l energia di Fermi del sistema con il massimo di tale banda: E F = 6.8 ev punto 3 Per avere un comportamento metallico deve annullarsi la gap, per cui E 0d deve variare almeno dell energia di gap, E 0d = E 0d E g = 8.8 ev. In questo modo le bande risultano sovrapposte. punto 4 Per cui 2N elettroni riempiranno completamente la banda più bassa in energia, la banda E pz. I restanti N elettroni andranno a riempire per metà la banda E d. Risulta pertanto che il comportamento a temperatura nulla del cristallo è di tipo metallico. Il vettore d onda di Fermi si trova dal conteggio degli stati nello spazio reciproco e vale: 4 3 N = 2 πk3 F k (2π) 3 F = 3 3π 2 N V = 3 3π 2 1 a 2 = 17.4 nm 1 c V punto 5 La velocità degli elettroni in banda E pz è: v( k) = 1 ( δepz, δe p z, δe ) p z = 2 δk x δk y δk z (a γ p z,x sin(k x a), a γ pz,y sin(k y a), c γ pz,z sin(k z c)) che in ( π 2a, 0, π 2c) vale: v ( π 2a, 0, ) π 2 2c = v ( π 2a, 0, π 2c (a γ p z,x, 0, c γ pz,z ) a 2 γ pz,x 2 + c 2 γ pz,z 2 = m/s ) = 2 7

8 Esercizio 4 Un ipotetico semiconduttore drogato n ha costante dielettrica relativa ɛ r = 12. Le densità degli elettroni alle temperature T = 300 K e T = 370 K, entrambe in regime intrinseco, sono n(300 K) = cm 3 ed n(370 K) = cm 3. A T = 300 K una misura della costante di Hall e della conducibilità elettrica forniscono i valori: R H = m 3 /C e σ = Ω 1 m 1. E inoltre noto che n(280 K) = cm 3. La temperatura di crossover tra il regime di medie temperature e di basse temperature è 120 K. Le masse e le mobilità dei portatori sono indipendenti dalla temperatura. La massa delle lacune è 4 volte quella degli elettroni. 1. Trovare l energia di gap. 2. Calcolare la conducibilità a T = 280 K. 3. Calcolare l energia di legame delle impurezze. 4. Calcolare il raggio dell orbita dell impurezza nel modello idrogenoide. Avviene la transizione di Mott? Soluzione punto 1 [ n i (T ) T 3/2 exp E ] g 2k B T n i (300) n i (370) = ( ) 3/2 [ 300 exp E g ( ) ] 370 2k B E g = 2k b ( ) 1 ln ( n i (370) n i (300) punto 2 ( ) ) 3/2 300 K = k b K = 575 mev 370 A 280 K bisogna capire in quale regime si trova il semiconduttore. La densità degli elettroni è data e vale n(280 K) = cm 3. Alla stessa temperatura la densità dei portatori intrinseci vale: ( m n m ) 3/4 ( ) 3/2 p T n i (T ) = exp [ E g /(2k B T )] cm m 2 o ( m ) 3/4 n Il termine m p m si può ricavare dalla concentrazione 2 ni a 300 K o 370 K, le masse infatti non o dipendono dalla temperatura. ( m n m ) 3/4 p = (16) m 2 o E la concentrazione dei portatori intrinseci a 280 K vale dunque: n i (280 K) = cm 3 Poichè la densità di elettroni effettiva (misurata) è maggiore del corrispettivo semiconduttore intrinseco, ovvero n(280 K) > n i (280 K), a 280 K si è in regime estrinseco e di temperature intermedie (poiché tale temperatura è maggiore di quella che segna il crossover al regime delle basse temperature). Quindi la conducibilità è: σ(280 K) = n(280 K)eµ n 8

9 La mobilità degli elettroni si può ricavare dal valore di costante di Hall e conducibilità a 300 K, perché non dipendono da T: { { 1 µ RH (300 K) = p µ n n i(300 K)e µ n+µ p µ p = m 2 /(V s) σ(300 K) = n i (300 K)e(µ n + µ p ) µ n = m 2 /(V s) La conducibilità è pertanto: σ(280 K) = 0.52 Ω 1 m 1 punto 3 A T = 120 K, che segna il crossover dal regime di medie temperature a quello di basse temperature, deve essere: [ NC N D N D = exp ɛ ] D (17) 2 2k B T dove N D = n(280 K) ed N C si ricava dal prodotto in Eq.(16) e dal dato m p = 4m n. (m n) = ( ) 4/3 /4 = m o ( ) m 3/2 N C (120 K) = n cm 3 = cm 3 m Invertendo la (17), si trova l energia di legame dei donori: ( ) NC (120 K) ɛ D = k B (120 K) ln = k B = 94 mev punto 4 N D Nel modello idrogenoide, il raggio dell orbita a D dell impurezza è: a D = R ya B = nm = 0.6 nm ɛ D ɛ r La transizione di Mott avviene ad una concentrazione di impurezze pari a: N Mott = ( ) πa3 D = cm 3 La transizione di Mott non è avvenuta perchè N D < N Mott. 9

Scritto Appello II, Materia Condensata. AA 2017/2018

Scritto Appello II, Materia Condensata. AA 2017/2018 Scritto Appello II, Materia Condensata. AA 017/018 19/0/018 Coloro che hanno superato il primo esonero dovranno svolgere gli esercizi 3 e 4 in un tempo massimo di due ore (il punteggio sarà riportato in

Dettagli

Scritto Appello IV, Materia Condensata. AA 2017/2018

Scritto Appello IV, Materia Condensata. AA 2017/2018 Scritto Appello IV, Materia Condensata AA 017/018 17/07/018 1 Esercizio 1 Un metallo monovalente cristallizza nella struttura cubica a corpo centrato La densità degli elettroni del metallo è n el = 65

Dettagli

Trasporto in Semiconduttori e Metalli - Esercizi con soluzioni

Trasporto in Semiconduttori e Metalli - Esercizi con soluzioni Trasporto in Semiconduttori e Metalli - Esercizi con soluzioni Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 2016/2017 Trasporto in Semiconduttori

Dettagli

Raccolta Esami Scritti - Testi con soluzioni

Raccolta Esami Scritti - Testi con soluzioni Raccolta Esami Scritti - Testi con soluzioni Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 2016/2017 Raccolta Esami Scritti - Testi con soluzioni

Dettagli

Fononi e calori reticolari - Soluzioni degli esercizi

Fononi e calori reticolari - Soluzioni degli esercizi Fononi e calori reticolari - Soluzioni degli esercizi Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 2016/2017 Fononi e calori reticolari Esercizio

Dettagli

Fononi e calori reticolari - Testi degli esercizi. Fisica della Materia Condensata

Fononi e calori reticolari - Testi degli esercizi. Fisica della Materia Condensata Fononi e calori reticolari - Testi degli esercizi Fisica della Materia Condensata A.A. 015/016 Fononi e calori reticolari Esercizio 1 Si consideri una catena lineare biatomica. Calcolare le relazioni di

Dettagli

Bande elettroniche nei cristalli - Esercizi con soluzioni

Bande elettroniche nei cristalli - Esercizi con soluzioni Bande elettroniche nei cristalli - Esercizi con soluzioni Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 2016/2017 Bande elettroniche nei cristalli

Dettagli

Reticoli e Diffrazione - Testi degli esercizi. Fisica della Materia Condensata

Reticoli e Diffrazione - Testi degli esercizi. Fisica della Materia Condensata Reticoli e Diffrazione - Testi degli esercizi Fisica della Materia Condensata A.A. 2015/2016 Reticoli e Diffrazione Esercizio 1 Calcolare il fattore di struttura cristallino F( G) per il reticolo cubico

Dettagli

Bande elettroniche nei cristalli - Esercizi con soluzioni. Fisica della Materia Condensata

Bande elettroniche nei cristalli - Esercizi con soluzioni. Fisica della Materia Condensata Bande elettroniche nei cristalli - Esercizi con soluzioni Fisica della Materia Condensata A.A. 2015/2016 Esercizio 10 - Prova di esonero 2014/2015 Un elemento cristallizza nella

Dettagli

Fisica dello Stato Solido

Fisica dello Stato Solido Corso di Fisica dello Stato Solido A.A. 2001/2002 Prof. Andrea Di Cicco INFM, Dipartimento di Fisica, via Madonna delle Carceri 62032 Camerino (MC), Italy http://www.unicam.it, http://gnxas.unicam.it LaTeX

Dettagli

Sistemi cristallini 1

Sistemi cristallini 1 Sistemi cristallini Esercizio Calcolare la densità atomica definita come il rapporto tra il numero di atomi e il volume unitario per ) il litio sapendo che la distanza tra i centri dei primi vicini è R

Dettagli

Sistemi cristallini - Soluzioni degli esercizi. Fisica della Materia Condensata

Sistemi cristallini - Soluzioni degli esercizi. Fisica della Materia Condensata Sistemi cristallini - Soluzioni degli esercizi Fisica della Materia Condensata A.A. 05/06 Indice Esercizio Esercizio Esercizio 6 Esercizio 9 Esercizio 5 Esercizio 6 Esercizio 7 Esercizio 8 6 Esercizio

Dettagli

Il semiconduttore è irradiato con fotoni a λ=620 nm, che vengono assorbiti in un processo a due particelle (elettroni e fotoni).

Il semiconduttore è irradiato con fotoni a λ=620 nm, che vengono assorbiti in un processo a due particelle (elettroni e fotoni). Fotogenerazione -1 Si consideri un semiconduttore con banda di valenza (BV) e banda di conduzione (BC) date da E v =-A k 2 E c =E g +B k 2 Con A =10-19 ev m 2, B=5, Eg=1 ev. Il semiconduttore è irradiato

Dettagli

4πε. h m. Eq. di Schrödinger per un atomo di idrogeno:

4πε. h m. Eq. di Schrödinger per un atomo di idrogeno: Eq. di Schrödinger per un atomo di idrogeno: h m e 1 ψ 4πε r 0 ( r) = Eψ ( r) Questa equazione è esattamente risolubile ed il risultato sono degli orbitali di energia definita E n = m e 1 α 1 1 e mc n

Dettagli

Materiale Energy Gap

Materiale Energy Gap Semiconduttori Materiale diamante silicio germanio Energy Gap 5,3 ev 1,1 ev 0,7 ev 21 Semiconduttori Quando un elettrone, portatore di carica negativa, è promosso da banda di valenza a banda di conduzione,

Dettagli

Sistemi cristallini - Soluzioni degli esercizi

Sistemi cristallini - Soluzioni degli esercizi Sistemi cristallini - Soluzioni degli esercizi Fisica della Materia Condensata Dipartimento di Matematica e Fisica Università degli Studi Roma Tre A.A. 06/07 Sistemi cristallini Esercizio.........................................

Dettagli

T08: Dispositivi elettronici (3.3.1)

T08: Dispositivi elettronici (3.3.1) T08: Dispositivi elettronici (3.3.1) Sommario Richiami sui semiconduttori conduttori, isolanti e semiconduttori bande di energia droganti nei semiconduttori corrente di deriva e diffusione Funzionamento

Dettagli

XIV Indice ISBN

XIV Indice ISBN Indice 1 Struttura della materia.................................... 1 1.1 Stati di aggregazione.................................... 1 1.2 Struttura atomistica.................................... 2 1.2.1

Dettagli

Prova scritta di Materia Condensata del 5 Luglio 2011

Prova scritta di Materia Condensata del 5 Luglio 2011 Proa scritta di Materia Condensata del Luglio 011 Prof. Paolo Calani Prof. Mario Capizzi Esercizio 1 Si assuma che un cristallo di litio metallico enga cresciuto mescolando in uguali proporzioni i due

Dettagli

Dispositivi elettronici

Dispositivi elettronici Dispositivi elettronici Sommario Richiami sui semiconduttori conduttori, isolanti e semiconduttori bande di energia droganti nei semiconduttori corrente di deriva e diffusione Funzionamento della giunzione

Dettagli

Cenni sulla teoria dell orbitale molecolare

Cenni sulla teoria dell orbitale molecolare Cenni sulla teoria dell orbitale molecolare Legame chimico: teoria dell orbitale molecolare (MO) La formazione della molecola genera ORBITALI MOLECOLARI che derivano dalla combinazione degli ORBITALI ATOMICI.

Dettagli

Elettronica dello Stato Solido Lezione 9: Moto di un elettrone in. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 9: Moto di un elettrone in. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 9: Moto di un elettrone in un cristallo Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it Outline Modello di moto semiclassico Massa efficace Approssimazione

Dettagli

Elettronica II La giunzione p-n: calcolo del potenziale di giunzione p. 2

Elettronica II La giunzione p-n: calcolo del potenziale di giunzione p. 2 Elettronica II La giunzione pn: calcolo del potenziale di giunzione Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema email: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Testo di riferimento: Millman-Grabel MICROELECTRONICS McGraw Hill Cap. 1: 1,2,3,4 Cap. 2: 1,2,3,4,6,7,8,(9,10). Cap. 3: 1,2,4,5,6,8,9,10.

Testo di riferimento: Millman-Grabel MICROELECTRONICS McGraw Hill Cap. 1: 1,2,3,4 Cap. 2: 1,2,3,4,6,7,8,(9,10). Cap. 3: 1,2,4,5,6,8,9,10. Esperimentazioni di Fisica 3 AA 20122013 Semiconduttori Conduzione nei semiconduttori Semiconduttori intrinseci ed estrinseci (drogati) La giunzione pn Il diodo a semiconduttore Semplici circuiti con diodi

Dettagli

Corso di Elettronica Industriale (CdL in Ingegneria Meccatronica, sede di Mantova) Semiconduttori intrinseci e drogati

Corso di Elettronica Industriale (CdL in Ingegneria Meccatronica, sede di Mantova) Semiconduttori intrinseci e drogati Corso di Elettronica Industriale (CdL in Ingegneria Meccatronica, sede di Mantova) Isolanti, conduttori e semiconduttori In un solido si può avere conduzione di carica elettrica (quindi passaggio di corrente)

Dettagli

Esercizio 1. CF 2 CS 2 CCl 4 ClF 3

Esercizio 1. CF 2 CS 2 CCl 4 ClF 3 Esercizio 1 Determinare in base al metodo del legame di valenza la forma delle seguenti molecole, tenendo conto delle repulsioni coulombiane tra le coppie elettroniche di valenza CF 2 CS 2 CCl 4 ClF 3

Dettagli

Limiti del modello a elettroni liberi

Limiti del modello a elettroni liberi Limiti del modello a elettroni liberi Il modello di elettroni liberi spiega in modo semi-quantitativo certi aspetti del comportamento dei metalli: contributo elettronico alla compressibilità e al calore

Dettagli

Legame metallico. Metalli

Legame metallico. Metalli LEGAME METALLICO Un metallo può essere descritto come un reticolo di ioni positivi (nucleo più elettroni di core) immersi in una nube di elettroni di valenza mobili (delocalizzati) attorno ai cationi.

Dettagli

La fisica dei semiconduttori

La fisica dei semiconduttori La fisica dei semiconduttori Ricerca ed organizzazione appunti: Prof. ing. Angelo Bisceglia Proprietà dei semiconduttori Proprietà dei semiconduttori - Conducibilità Proprietà dei semiconduttori - Elettroni

Dettagli

Formazione delle bande di energia. Fisica Dispositivi Elettronici CdL Informatica A.A. 2003/4

Formazione delle bande di energia. Fisica Dispositivi Elettronici CdL Informatica A.A. 2003/4 Formazione delle bande di energia Calcolo formale: Equazione di Schröedinger L equazione di Schröedinger è una relazione matematica che descrive il comportamento ondulatorio di una particella (elettrone)

Dettagli

S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009

S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009 S.I.C.S.I. Scuola Interuniversitaria Campana di Specializzazione all Insegnamento VIII ciclo - a.a. 2008/2009 Conduzione elettrica nei metalli (conduttori e semiconduttori) Corso di Laboratorio di Didattica

Dettagli

Dispositivi Elettronici. Proprietà elettriche dei materiali

Dispositivi Elettronici. Proprietà elettriche dei materiali Dispositivi Elettronici Proprietà elettriche dei materiali Proprietà elettriche I materiali vengono classificati in: isolanti o dielettrici (quarzo o SiO 2, ceramiche, materiali polimerici) conduttori

Dettagli

(2) cubico a facce centrate (3) esagonale compatto

(2) cubico a facce centrate (3) esagonale compatto IL LEGAME METALLICO La maggior parte dei metalli cristallizza in strutture a massimo impacchettamento, ovvero in solidi in cui si può considerare che gli ioni metallici che occupano le posizioni reticolari,

Dettagli

Lo stato solido. Solido: qualsiasi corpo rigido e incomprimibile che ha forma e volume propri. amorfi. cristallini

Lo stato solido. Solido: qualsiasi corpo rigido e incomprimibile che ha forma e volume propri. amorfi. cristallini Lo stato solido Solido: qualsiasi corpo rigido e incomprimibile che ha forma e volume propri Solidi amorfi cristallini Cella elementare: la più piccola porzione del reticolo cristallino che ne possiede

Dettagli

ENERGIA TOTALE VIBRAZIONALE

ENERGIA TOTALE VIBRAZIONALE ENERGIA OALE IBRAZIONALE Cristallo all equilibrio alla temperatura distribuzione statistica di Bose-Einstein determina il numero medio di fononi di energia ε = k presenti nel cristallo: D( ε ) N ( ) dε

Dettagli

Semiconduttori. Bande di energia. Un cristallo è formato da atomi disposti in modo da costituire una struttura periodica regolare

Semiconduttori. Bande di energia. Un cristallo è formato da atomi disposti in modo da costituire una struttura periodica regolare Semiconduttori Bande di energia Un cristallo è formato da atomi disposti in modo da costituire una struttura periodica regolare Quando gli atomi formano un cristallo, il moto degli elettroni dello strato

Dettagli

Solidi Es. 7. Esercizi Materia Condensata 2009/2010 Mario Capizzi

Solidi Es. 7. Esercizi Materia Condensata 2009/2010 Mario Capizzi Gli stati elettronici di valenza di una catena lineare monoatomica con N 10 23 siti e di passo reticolare a = 0,2 nm con condizioni periodiche al bordo sono ben descritti, in approssimazione a elettroni

Dettagli

Conformazione polimeri

Conformazione polimeri Conformazione polimeri Random coil ½ 0fθ= l n ½ φ imperturbato r 2 1/ 2 0 = l n 1/ 2 Volume segmenti del polimero ½ = α ½ 0 α dipende dal solvente e dalla temperatura 1/ 2 1/ 2 1 cosθ

Dettagli

Elettronica dello Stato Solido Lezione 10: Strutture a bande in. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 10: Strutture a bande in. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 10: Strutture a bande in due e tre dimensioni Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it Outline Il reticolo reciproco Zone di Brillouin in

Dettagli

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018

Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 2018 Corso di Laurea in Fisica Compito di Fisica 3 (Prof. E. Santovetti) 9 febbraio 8 Problema Si consideri una chitarra classica in cui il diapason (lunghezza totale della corda vibrante) vale l = 65 mm e

Dettagli

MODELLI DI DRUDE E DI SOMMERFELD

MODELLI DI DRUDE E DI SOMMERFELD MODELLI DI DRUDE E DI SOMMERFELD BANDE PIENE E SEMIPIENE In base al principio di Pauli non possono esistere in uno stesso sistema due elettroni con tutti i numeri quantici uguali. Poiché una banda può

Dettagli

Figura 3.1: Semiconduttori.

Figura 3.1: Semiconduttori. Capitolo 3 Semiconduttori Con il termine semiconduttori si indicano alcuni elementi delle colonne III, IV e V della tavola periodica, caratterizzati da una resistività elettrica ρ intermedia tra quella

Dettagli

VII ESERCITAZIONE. Soluzione

VII ESERCITAZIONE. Soluzione VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo

Dettagli

La conducibilità elettrica del semiconduttore

La conducibilità elettrica del semiconduttore Viene presentata una classificazione dei materiali allo stato solido in riferimento alla conducibilità elettrica, che ne misura la attitudine a condurre corrente elettrica. Sulla base di questa classificazione

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Diffrazione da reticolo.

Diffrazione da reticolo. Reticolo della presente reciproco. opera. Diffrazione da reticolo. 1 Reticolo reciproco Sistema reticolare: periodico > ogni grandezza fisica sarà periodica con stesso periodo. Ogni grandezza Enrico Silva

Dettagli

Interazione dei raggi X con la materia

Interazione dei raggi X con la materia Interazione dei raggi X con la materia Emissione di fotoelettroni Fascio incidente (I 0 ) di raggi X Fluorescenza Scattering coerente e incoerente Assorbimento (I) calore Lo scattering coerente dei raggi

Dettagli

Una famiglia di piani è caratterizzata da: Orientazione del piano nel cristallo (indici di Miller) Distanza tra i piani (d hkl

Una famiglia di piani è caratterizzata da: Orientazione del piano nel cristallo (indici di Miller) Distanza tra i piani (d hkl Reticolo reciproco E un concetto per certi versi astratto ma ci aiuta a capire i risultati degli esperimenti di diffrazione sui cristalli Il disegno di un reticolo cristallino diventerebbe rapidamente

Dettagli

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2

1. Scrivere l equazione di Schrödinger unidimensionale per una particella di massa m con energia potenziale V (x) = mω2 1 Teoria Una particella di massa m = 1 g e carica elettrica q = 1 c viene accelerata per un tratto pari a l = m da una differenza di potenziale pari av = 0 volt Determinare la lunghezza d onda di De Broglie

Dettagli

Materia Condensata, Prova scritta del 01/07/2008 F. De Luca, [G. B. Bachelet], M. Capizzi, V. D. P. Servedio

Materia Condensata, Prova scritta del 01/07/2008 F. De Luca, [G. B. Bachelet], M. Capizzi, V. D. P. Servedio Materia Condensata, Prova scritta del 01/07/2008 F. De Luca, [G. B. Bachelet], M. Capizzi, V. D. P. Servedio Esercizio 1 Nell atomo di elio gli stati eccitati 3 P = 1s2p e 1 P = 1s2p si osservano rispettivamente

Dettagli

Temperatura ed Energia Cinetica (1)

Temperatura ed Energia Cinetica (1) Temperatura ed Energia Cinetica (1) La temperatura di un corpo è legata alla energia cinetica media dei suoi componenti. Per un gas perfetto si ha: Ek = ½ me vm2 ; Ek = 3/2 kt ; k = costante di Boltzmann

Dettagli

S ν = c 4 u ν. S ν dν = c 8π h ν e hν. k B T. S λ = 2π λ 5 c2 h

S ν = c 4 u ν. S ν dν = c 8π h ν e hν. k B T. S λ = 2π λ 5 c2 h Corso di Introduzione alla Fisica Quantistica (f) Esercizi: Maggio 2006 (con soluzione) i) Un filamento emette radiazione che ha una lunghezza d onda massima λ Max = 15000 10 8 cm. Considerando di approssimare

Dettagli

Spettro elettromagnetico

Spettro elettromagnetico Spettro elettromagnetico Sorgenti Finestre Tipo Oggetti rilevabili Raggi γ ev Raggi X Lunghezza d onda E hc = hν = = λ 12. 39 λ( A o ) Visibile Infrarosso icro onde Onde-radio Dimensione degli oggetti

Dettagli

Fisica 2 per biotecnologie: Prova in itinere 26 Maggio 2014

Fisica 2 per biotecnologie: Prova in itinere 26 Maggio 2014 Fisica 2 per biotecnologie: Prova in itinere 26 Maggio 2014 Scrivere immediatamente, ED IN EVIDENZA, sui due fogli protocollo consegnati (ed eventuali altri fogli richiesti) la seguente tabella: NOME :...

Dettagli

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME

Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11. Prova di esame del 13/6/ NOME Corso di Laurea in Scienze Ambientali Corso di Fisica Generale II a.a. 2010/11 Prova di esame del 13/6/2011 - NOME 1) Un gas perfetto monoatomico con n= 2 moli viene utilizzato in una macchina termica

Dettagli

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2 Elettronica II Grandezze elettriche microscopiche (parte 1) Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

, mentre alla fine, quando i due cilindri ruotano solidalmente, L = ( I I ) ω. . Per la conservazione, abbiamo

, mentre alla fine, quando i due cilindri ruotano solidalmente, L = ( I I ) ω. . Per la conservazione, abbiamo A) Meccanica Un cilindro di altezza h, raggio r e massa m, ruota attorno al proprio asse (disposto verticalmente) con velocita` angolare ω i. l cilindro viene appoggiato delicatamente su un secondo cilindro

Dettagli

Prof.ssa Silvia Martini. L.S. Francesco D Assisi

Prof.ssa Silvia Martini. L.S. Francesco D Assisi Prof.ssa Silvia Martini L.S. Francesco D Assisi Modello atomico Bande di energia in un cristallo Le sostanze solide possono essere suddivise in tre categorie: isolanti, conduttori e semiconduttori. I livelli

Dettagli

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi.

La risposta numerica deve essere scritta nell apposito riquadro e giustificata accludendo i calcoli relativi. Corso di Laurea in Chimica Compito di Fisica Generale II (Prof. E. Santovetti) 11 febbraio 016 Nome: La risposta numerica deve essere scritta nell apposito riuadro e giustificata accludendo i calcoli relativi.

Dettagli

Esame 28 Giugno 2017

Esame 28 Giugno 2017 Esame 28 Giugno 2017 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Dipartimento di atematica Università degli Studi di Roma La Sapienza Anno Accademico 2016-2017 Esame - Fisica Generale I 28

Dettagli

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye

Corso:Fisica moderna/calore specifico dei solidi/modello di Debye 1 / 5 Corso:Fisica moderna/calore specifico dei solidi/modello di Debye Debye riprende l intero modello di Planck per il corpo nero: non solo la quantizzazione dell energia ma anche l idea che vi siano

Dettagli

Diffusione dei raggi X da parte di un elettrone

Diffusione dei raggi X da parte di un elettrone Diffusione dei raggi X da parte di un elettrone Consideriamo un onda elettro-magnetica piana polarizzata lungo x che si propaga lungo z L onda interagisce con un singolo elettrone (libero) inducendo un

Dettagli

CAMERE A IONIZZAZIONE A STATO SOLIDO

CAMERE A IONIZZAZIONE A STATO SOLIDO CAMERE A IONIZZAZIONE A STATO SOLIDO Di principio, degli elettrodi depositati su un cristallo isolante consentono di realizzare un contatore a ionizzazione. Rispetto al gas: Piu denso piu sottile (300

Dettagli

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L.

Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Università degli Studi dell Aquila Corso di Laurea in Scienze e Tecnologie Chimiche e dei Materiali Corso di Fisica della Materia Prof. L. Lozzi Testi degli esercizi svolti in aula Corpo Nero 1. Il corpo

Dettagli

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016

POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a I appello, 12 luglio 2016 POLITECNICO DI MILANO Fondamenti di Fisica Sperimentale, a. a. 015-16 I appello, 1 luglio 016 Giustificare le risposte e scrivere in modo chiaro e leggibile. Scrivere in stampatello nome, cognome, matricola

Dettagli

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT)

il diodo a giunzione transistori ad effetto di campo (FETs) il transistore bipolare (BJT) Contenuti del corso Parte I: Introduzione e concetti fondamentali richiami di teoria dei circuiti la simulazione circuitale con SPICE elementi di Elettronica dello stato solido Parte II: Dispositivi Elettronici

Dettagli

Ricavo della formula

Ricavo della formula Dispositivi e Circuiti Elettronici Ricavo della formula E F i E F = k B T ln N A n i Si consideri la relazione di Shockey: ( ) EFi E F p = n i exp k B T Si osservi anche che per x = il semiconduttore è

Dettagli

DIFFUSIONE ALLO STATO SOLIDO

DIFFUSIONE ALLO STATO SOLIDO DIFFUSIONE ALLO STATO SOLIDO I a legge di Fick: relazione più semplice tra causa ed effetto. L effetto è proporzionale alla causa che lo ha generato; matematicamente: C A J = D z La costante di proporzionalità

Dettagli

Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo

Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo Esercizi di acustica Caratterizzazione delle onde: lunghezza d onda, velocità, frequenza, periodo Esercizio 1 La velocità del suono nell aria dipende dalla sua temperatura. Calcolare la velocità di propagazione

Dettagli

Radiazioni ionizzanti

Radiazioni ionizzanti Dipartimento di Fisica a.a. 2004/2005 Fisica Medica 2 Radiazioni ionizzanti 11/3/2005 Struttura atomica Atomo Nucleo Protone 10 10 m 10 14 m 10 15 m ev MeV GeV 3 3,0 0,3 0 0 0 Atomo Dimensioni lineari

Dettagli

LE ORIGINI DELLA TEORIA QUANTISTICA

LE ORIGINI DELLA TEORIA QUANTISTICA LE ORIGINI DELLA TEORIA QUANTISTICA LEZIONE N.5a SEMICONDUTTORI - DIODO L. Palumbo - Fisica Moderna - 2017-18 1 TEORIA DELLE BANDE NEI CRISTALLI In un cristallo gli atomi sono disposti regolarmente occupando

Dettagli

I PORTATORI e la CORRENTE nei DISPOSITIVI SEMICONDUTTORI. Fondamenti di Elettronica

I PORTATORI e la CORRENTE nei DISPOSITIVI SEMICONDUTTORI. Fondamenti di Elettronica I PORTATORI e la CORRENTE nei DISPOSITIVI SEMICONDUTTORI 1 Come si può variare la concentrazione di n e/o di p? NON aggiungendo elettroni dall esterno perché il cristallo si caricherebbe ed assumerebbe

Dettagli

Appunti della lezione sulla Equazione Differenziale delle Onde

Appunti della lezione sulla Equazione Differenziale delle Onde Appunti della lezione sulla Equazione Differenziale delle Onde ultima revisione: 21 giugno 2017 In tutti i casi analizzati precedentemente si osserva che le onde obbediscono alla stessa Equazione Differenziale

Dettagli

Corso di Ottica con Laboratorio A.A Simulazione di Prova d Esonero, Novembre 2017

Corso di Ottica con Laboratorio A.A Simulazione di Prova d Esonero, Novembre 2017 Simulazione di Prova d Esonero, Novembre 2017 Esercizio 1. Un elettrone è inizialmente fermo sulla piastra di un condensatore di area A=18cm 2, separata di 8cm dalla seconda piastra. Per effetto della

Dettagli

Diffrazione di Raggi-X da Monocristalli A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano

Diffrazione di Raggi-X da Monocristalli A.A Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Diffrazione di Raggi-X da Monocristalli A.A. 2009-2010 Marco Nardini Dipartimento di Scienze Biomolecolari e Biotecnologie Università di Milano Raccolta Dati di Diffrazione: Diffrazione di Raggi X Raccolta

Dettagli

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n Esercizio U3. - Tensione di soglia del MOSFET a canale n Si ricavi dettagliatamente l espressione per la tensione di soglia di un MOSFET ad arricchimento a canale p e successivamente la si calcoli nel

Dettagli

Dispositivi e Tecnologie Elettroniche. Trasporto nei semiconduttori

Dispositivi e Tecnologie Elettroniche. Trasporto nei semiconduttori Dispositivi e Tecnologie Elettroniche Trasporto nei semiconduttori Trasporto di carica I portatori liberi nel materiale vengono accelerati dalla presenza di un campo elettrico E La presenza di cariche

Dettagli

Esercizi Struttura della Materia

Esercizi Struttura della Materia Esercizi Struttura della Materia 1. Si consideri un gas di particelle identiche non interagenti in cui ogni particella può assumere i valori di energia 0,ɛ, 2ɛ, 3ɛ,.. Si consideri il gas classico e si

Dettagli

Elettronica dello Stato Solido Lezione 2: I cristalli. Daniele Ielmini DEI Politecnico di Milano

Elettronica dello Stato Solido Lezione 2: I cristalli. Daniele Ielmini DEI Politecnico di Milano Elettronica dello Stato Solido Lezione 2: I cristalli Daniele Ielmini DEI Politecnico di Milano ielmini@elet.polimi.it Outline Definizione del problema Struttura cristallina Diffrazione Conclusioni D.

Dettagli

Il Legame Ionico. Quando la differenza di elettronegatività fra atomi A e B è molto grande le coppie AB possono essere considerate A + B -

Il Legame Ionico. Quando la differenza di elettronegatività fra atomi A e B è molto grande le coppie AB possono essere considerate A + B - Il Legame Ionico Quando la differenza di elettronegatività fra atomi A e B è molto grande le coppie AB possono essere considerate A + B - A + B - Le coppie di ioni si attraggono elettrostaticamente Il

Dettagli

Spettroscopia. 05/06/14 SPET.doc 0

Spettroscopia. 05/06/14 SPET.doc 0 Spettroscopia 05/06/14 SPET.doc 0 Spettroscopia Analisi del passaggio di un sistema da uno stato all altro con scambio di fotoni Spettroscopia di assorbimento Spettroscopia di emissione: In entrambi i

Dettagli

Il modello a shell fallisce nella predizione dello spin totale del nucleo 6 3

Il modello a shell fallisce nella predizione dello spin totale del nucleo 6 3 Problema 1 Il modello a shell fallisce nella predizione dello spin totale del nucleo 6 3 Li. Tuttavia la misura del suo momento magnetico fornisce il valore µ = 0.82 µ N. I momenti magnetici del protone

Dettagli

POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a II a prova in itinere, 25 giugno 2013

POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a II a prova in itinere, 25 giugno 2013 POLITECNICO DI MILANO Scuola di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 II a prova in itinere, 25 giugno 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

DIFFRAZIONE DI ONDE NEI CRISTALLI

DIFFRAZIONE DI ONDE NEI CRISTALLI DIFFRAZIONE DI ONDE NEI CRISTALLI Quando in cristallo si propaga un onda con λ a,b,c si verifica diffrazione dal suo studio è possibile ottenere informazioni su: Simmetria del cristallo (tipo di reticolo)

Dettagli

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u Esercizio Si consideri il sistema meccanico riportato in Figura, dove m e m sono le masse dei carrelli, z e z sono le rispettive posizioni, k e k sono i coefficienti elastici delle molle, e β è un coefficiente

Dettagli

Raccolta di esercizi di fisica moderna

Raccolta di esercizi di fisica moderna Raccolta di esercizi di fisica moderna M. Quaglia IIS Avogadro Torino M. Quaglia (IIS Avogadro Torino) Raccolta di esercizi di fisica moderna Torino, 20/11/2014 1 / 30 Prova AIF e Sillabo http://www.aif.it/archivioa/aif_seconda_prova_di_fisica.pdf

Dettagli

L effetto Fotovoltaico

L effetto Fotovoltaico L effetto Fotovoltaico Carla sanna sanna@sardegnaricerche.it lab.fotovoltaico@sardegnaricerche.it Carla sanna Cagliari 19 settembre 2008 Sala Anfiteatro, via Roma 253 1 Un po di storia. Becquerel nel 1839

Dettagli

S.Barbarino - Esercizi svolti di Fisica generale II. Esercizi svolti di Fisica generale II - Anno 1997

S.Barbarino - Esercizi svolti di Fisica generale II. Esercizi svolti di Fisica generale II - Anno 1997 SBarbarino - Esercizi svolti di Fisica generale II Esercizi svolti di Fisica generale II - nno 997 97-) Esercizio n del /3/997 Calcolare il lavoro necessario per trasportare un elettrone dal punto (,,)

Dettagli

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue

Esercitazione 1. Invece, essendo il mezzo omogeneo, il vettore sarà espresso come segue 1.1 Una sfera conduttrice di raggio R 1 = 10 cm ha una carica Q = 10-6 C ed è circondata da uno strato sferico di dielettrico di raggio (esterno) R 2 = 20 cm e costante dielettrica relativa. Determinare

Dettagli

IL LEGAME METALLICO 1

IL LEGAME METALLICO 1 IL LEGAME METALLICO 1 Non metalli Metalli Metalloidi Proprietà dei metalli Elevata conducibilità elettrica; Elevata conducibilità termica; Effetto fotoelettrico; Elevata duttilità e malleabilità; Lucentezza;

Dettagli

Esame di stato 2014_2 2 M.Vincoli

Esame di stato 2014_2 2 M.Vincoli Esame di stato 0_ M.Vincoli . Per semplificare i calcoli, evitando altresì di introdurre immediatamente grandezze numeriche, è utile adottare una notazione semplificatrice, per cui poniamo:, 0 0,,0 0,60

Dettagli

Esercitazioni 26/10/2016

Esercitazioni 26/10/2016 Esercitazioni 26/10/2016 Esercizio 1 Un anello sottile di raggio R = 12 cm disposto sul piano yz (asse x uscente dal foglio) è composto da due semicirconferenze uniformemente cariche con densità lineare

Dettagli

Struttura e geometria cristallina

Struttura e geometria cristallina Struttura e geometria cristallina Tecnologia Meccanica RETICOLO SPAZIALE E CELLE UNITARIE Gli atomi, disposti in configurazioni ripetitive 3D, con ordine a lungo raggio (LRO), danno luogo alla struttura

Dettagli

Esercizi di Elementi di Matematica Corso di laurea in Farmacia

Esercizi di Elementi di Matematica Corso di laurea in Farmacia Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando

Dettagli

Onde elettromagnetiche

Onde elettromagnetiche Onde elettromagnetiche c = λν Le onde elettromagnetiche hanno la stessa velocità nel vuoto: la velocità della luce. c = 2.998 10 8 m/s Relazione tra energia e frequenza (Planck - Einstein): E = hν c ν

Dettagli

Condensatore. Un coppia di conduttori carichi a due potenziali diversi con cariche opposte costituisce un condensatore

Condensatore. Un coppia di conduttori carichi a due potenziali diversi con cariche opposte costituisce un condensatore Condensatore Un coppia di conduttori carichi a due potenziali diversi con cariche opposte costituisce un condensatore +Q Q V o semplicemente V Un condensatore è caratterizzato da una capacità C che dipende

Dettagli

FASE. Diversi stati fisici della materia e forme alternative di un medesimo stato fisico.

FASE. Diversi stati fisici della materia e forme alternative di un medesimo stato fisico. FASE Diversi stati fisici della materia e forme alternative di un medesimo stato fisico. Esempi di fase sono il ghiaccio e l acqua liquida. Il diamante e la grafite sono due fasi del carbonio allo stato

Dettagli

Cristalli fotonici e loro applicazioni

Cristalli fotonici e loro applicazioni Dipartimento di fisica A. Volta, Università degli studi di Pavia 8 maggio 2009 solidi cristallini = reticolo + base Figura: alcuni reticoli di Bravais 3D con 3 vettori primitivi a,b,c; Figura: alcuni reticoli

Dettagli

Gas ideale: velocità delle particelle e pressione (1)

Gas ideale: velocità delle particelle e pressione (1) Gas ideale: velocità delle particelle e pressione (1) In un gas ideale le particelle sono considerate puntiformi e risentono di forze solo durante gli urti (perfettamente elastici) con le pareti del recipiente.

Dettagli