Esercizi di Algoritmi e Strutture Dati

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercizi di Algoritmi e Strutture Dati"

Transcript

1 Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it 12 ottobre Vero o falso? Per ciascuna delle seguenti affermazioni, dire se è vera o falsa, fornendo una dimostrazione: 1. 3 n = O(2 n ) 2. 2 n = O(3 n ) n = O(2 n ) 4. 2 n+1 = O(2 n ) 5. log 3 n = Θ(log 2 n) 6. ln n = O(n α ), per ogni α > 0 (ln è il logaritmo naturale). Soluzione 1. Verifichiamo se esiste una costante c > 0 tale che 3 n c2 n per n n 0. Dividendo entrambi i membri per 2 n si richiederebbe the (3/2) n c per una qualche costante c. Poiché n + (3/2) n = +, si ha che la relazione di cui sopra non può essere verificata per n arbitrariamente grande. Concludiamo quindi che l affermazione è falsa. 2. Verifichiamo se esiste una costante c > 0 tale che 2 n c3 n per n n 0. Possiamo scrivere: 2 n c3 n (2/3) n c Osserviamo che per ogni n 0 si ha (2/3) n 1 (infatti la successione (2/3) 0, (2/3) 1, (2/3) 2,... (2/3) i,... è strettamente decrescente), quindi possiamo porre n 0 = 0 e c = 1 per verificare la disuguaglianza. Concludiamo quindi che l affermazione è vera. 1

2 3. Verifichiamo se esiste una costante c > 0 tale che, per valori sufficientemente grandi di n, valga: 2 2n c2 n Si noti che 2 2n = (2 2 ) n = 4 n. Seguendo la stessa argomentazione del punto precedente, si richiede che 4 n c2 n per una qualche costante c. Concludiamo quindi che l affermazione è falsa. 4. Proviamo a verificare se esiste una costante c > 0 tale che, per valori sufficientemente grandi di n, valga: 2 n+1 c2 n Si noti che 2 n+1 = 2 2 n, per cui possiamo scrivere 2 2 n c2 n che è certamente verificata ponendo ad esempio c = 2, per ogni n 0. Quindi l affermazione è vera. 5. Verifichiamo se c 1 log 2 n log 3 n c 2 log 2 n per opportune costanti c 1 e c 2, e per valori di n sufficientemente grandi. Sia x = log 3 n. Dalla definizione di logaritmo, si ha che 3 x = n. Prendendo il logaritmo in base 2 di entrambi i membri, otteniamo: da cui log 2 (3 x ) = log 2 n x log 2 3 = log 2 n e quindi, ricordando che x era log 3 n si ha: log 3 n = log 2 n log 2 3 In generale, per ogni y > 0, b, c > 1 vale la proprietà di cambio di base dei logaritmi (descritta in appendice nel libro di testo) per cui log a y = log b y log b a Tornando al problema iniziale, si tratta ora di trovare costanti c 1 > 0, c 2 > 0 tali che c 1 log 2 n log 2 n log 2 3 c 2 log 2 n che è verificata se c 1 = c 2 = 1/ log 2 3. Quindi l affermazione è vera. 6. Verifichiamo se ln n cn α, per una opportuna costante c > 0 e per n sufficientemente grande. Per fare questo, studiamo il ite seguente: ln n n + n α 2

3 Derivando numeratore e denominatore (regola di de l Hôpital) si ottiene ln n n + n α = n + 1/n αn α 1 = n + 1 αn α = 0 Dalla definizione di ite, possiamo concludere che l affermazione ln n = O(n α ) è vera. 2 Il numero mancante Si consideri una permutazione dei primi n numeri interi 1, 2,... n da cui sia tolto un valore. Supponiamo che la permutazione con il valore mancante sia memorizzata in un array di n 1 elementi A[1,... n 1]. Scrivere un algoritmo efficiente che, dato l array A, individua il valore mancante. Ad esempio, dato A = [1, 4, 2, 5], l algoritmo deve restituire il risultato 3; dato A = [7, 1, 8, 6, 2, 3, 4] l algoritmo deve restituire 5. (Suggerimento: è sufficiente una singola scansione dell array A, senza ricorrere ad ulteriori array d appoggio). Soluzione Sfruttiamo l idea seguente: sappiamo che la somma dei primi n numeri interi vale n(n + 1)/2; sottraendo da tale quantità i valori contenuti nel vettore, quello che ci rimane è esattamente il numero mancante. L algoritmo è quindi il seguente: algoritmo trova_mancante( array A[1..n-1] di interi ) -> intero S := n*(n+1)/2; for i:=1 to n-1 do S := S-A[i]; endfor return S; 3 Dimostrazioni per induzione Il seguente esercizio mostra come sia particolarmente importante prestare attenzione a come si fanno le dimostrazioni per induzione Consideriamo la seguente relazione di ricorrenza: 2T ( n/2 ) + 1 n > 1 1 n = 1 È relativamente facile rendersi conto che O(n). Riuscite a dimostrare per induzione che T (n) cn, per una opportuna costante c > 0? Riuscite a dimostrare che T (n) cn b, per opportune costanti c > 0 e b arbitraria? 3

4 Soluzione Proviamo a dimostrare che T (n) cn per una opportuna costante c > 0. Il caso base T (1) = 1 c è valido per qualunque c 1. Vediamo ora il passo induttivo: 2T ( n/2 ) + 1 2c(n/2) + 1 = cn + 1 A questo punto però non possiamo proseguire affermando cn + 1 cn, perché questo non sarebbe vero. Il problema si risolve usando cn b al posto di cn nella dimostrazione sopra. Infatti, in questo caso il passo induttivo risulta essere 2T ( n/2 ) + 1 2(c(n/2) b) + 1 = cn 2b + 1 cn b che risulta essere verificato se b 1. Il caso base: T (1) = 1 c b risulta verificato scegliendo c b + 1, il che completa la dimostrazione. 4 Problema con il caso base Il seguente esercizio mostra un esempio in cui si presenta un problema con il caso base, facilmente aggirabile. Consideriamo la seguente relazione di ricorrenza: 2T ( n/2 ) + n n > 1 1 n = 1 Dimostrare per induzione che O(n log n), ossia dimostrare che T (n) cn log n per una opportuna costante c > 0 e per ogni n n 0. Soluzione Partiamo alla rovescia, dal passo induttivo: 2T ( n/2 ) + n 2c(n/2) log(n/2) + n per l ipotesi induttiva = cn log(n/2) + n = cn(log n 1) + n = cn log n cn + n = cn log n + n(1 c) cn log n 4

5 (poiché n è un intero positivo, l ultimo passaggio vale purché sia c > 1). Vediamo ora il caso base: 1 = T (1) c log 1 = 0 Il caso base non funziona per n = 1. Fortunatamente, in questi casi possiamo sfruttare a nostro vantaggio il fatto che la relazione T (n) cn log n non deve necessariamente valere a partire da n = 1, ma solo per n n 0 con n 0 scelto opportunamente. In particolare scegliamo come n 0 un valore per cui valga la relazione che dobbiamo dimostrare. Esaminiamo i valori n = 2, 3,...: T (2) = 2T (1) + 2 = 4 c2 log 2 T (3) = 2T (1) + 3 = 5 c3 log 3 T (4) = 2T (2) + 4 Si noti che possiamo individuare un valore c > 1 che soddisfi le prime due equazioni (ossia T (2) c2 log 2 e T (3) c3 log 3): basta prendere c > max1, 4/(2 log 2), 5/(3 log 3)}. Usando n = 2 e n = 3 come casi base, possiamo sfruttare la dimostrazione del passo induttivo a partire da n = 4 in poi. 5 Analisi di complessità Si consideri la funzione Fun(n), con n 1 intero, definita dal seguente algoritmo ricorsivo: algoritmo Fun(int n) -> int if (n <= 2) then return n; else return Fun(n-1) - 2*Fun(n-2); endif Calcolare un ite superiore e inferiore del tempo di esecuzione T (n) della funzione Fun. Soluzione La relazione di ricorrenza che descrive il tempo T (n) richiesto dall algoritmo di cui sopra è la seguente: c 1 se n 2 T (n 1) + T (n 2) + c 2 se n > 2 Coms i può osservare, la relazione di ricorrenza è la stessa che si ottiene dall analisi dell algoritmo ricorsivo per il calcolo dell n-esimo numero di Fibonacci, per cui si rimanda ai lucidi delle lezioni per il calcolo dei iti superiori 5

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla http://www.moreno.marzolla.name/ Ultima Modifica: 7 ottobre 202 Copyright Portions of this work are Copyright 202, Moreno Marzolla. This work is licensed

Dettagli

Esercitazione 7 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016

Esercitazione 7 Algorithmi e Strutture Dati (Informatica) A.A 2015/2016 Esercitazione 7 Algorithmi e Strutture Dati (Informatica) A.A 015/016 Tong Liu April 1, 016 Elementi fondamentali Notazioni Asintotiche Definition 1.1. (Notazione O) Sia g (n) una funzione di costo; indichiamo

Dettagli

Esercizi sul Principio d Induzione

Esercizi sul Principio d Induzione AM110 - ESERCITAZIONI I - II - 4 OTTOBRE 01 Esercizi sul Principio d Induzione Esercizio svolto 1. Dimostrare che per ogni n 1, il numero α(n) := n 3 + 5n è divisibile per 6. Soluzione. Dimostriamolo usando

Dettagli

Esercizi per il corso Matematica clea

Esercizi per il corso Matematica clea Esercizi per il corso Matematica clea Daniele Ritelli anno accademico 008/009 Lezione : Numeri naturali e principio di induzione Esercizi svolti. Provare che + + + n. Provare che + + + n n(n + ) n(n +

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino I conigli di Fibonacci Ricerca Binaria L isola dei conigli Leonardo da

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 I conigli di Fibonacci Ricerca Binaria L isola dei conigli

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Ricorrenze Maria Rita Di Berardini 2, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino 2 Polo di Scienze Università di Camerino ad Ascoli Piceno

Dettagli

Tecniche di analisi degli algoritmi

Tecniche di analisi degli algoritmi Tecniche di analisi degli algoritmi Damiano Macedonio mace@unive.it Algoritmi e Strutture Dati, A.A. 2012/13 27 ottobre 2012 Original work Copyright c 2009 Moreno Marzolla, Università di Bologna Modifications

Dettagli

Principio di induzione: esempi ed esercizi

Principio di induzione: esempi ed esercizi Principio di induzione: esempi ed esercizi Principio di induzione: Se una proprietà P n dipendente da una variabile intera n vale per n e se, per ogni n N vale P n P n + allora P vale su tutto N Variante

Dettagli

Tecniche di analisi degli algoritmi

Tecniche di analisi degli algoritmi Tecniche di analisi degli algoritmi Moreno Marzolla, Lorenzo Donatiello Dipartimento di Infromatica, Università di Bologna 11 novembre 2014 Copyright c 2009, 2010 Moreno Marzolla, Università di Bologna

Dettagli

Calcolo I, a.a Primo esonero 11 novembre k + 2 k

Calcolo I, a.a Primo esonero 11 novembre k + 2 k Calcolo I, a.a. 015 016 Primo esonero 11 novembre 015 1) 6 punti Dimostrare per induzione che 5 n +, n 1. Se n = 1 la disuguaglianza si riduce a 5 + che è vera. Supponiamo ora che la disuguaglianza sia

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 2

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 2 Analisi Matematica I modulo Soluzioni prova scritta preinare n 2 Corso di laurea in Matematica, aa 2004-2005 22 dicembre 2004 1 (a) Calcolare il seguente ite A******* ( ) n 2 n 2 + n n 1 n + 2n 2 Soluzione

Dettagli

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09)

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09) ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09) DISPENSA N. 4 1. Ricerca Binaria Ricorsiva L algoritmo Ricerca Binaria risolve il problema della ricerca di una chiave in un vettore. È un esempio

Dettagli

Tecniche di analisi degli algoritmi

Tecniche di analisi degli algoritmi Tecniche di analisi degli algoritmi Moreno Marzolla marzolla@cs.unibo.it Dipartimento di Scienze dell Informazione, Università di Bologna 19 ottobre 2010 Copyright c 2009, 2010 Moreno Marzolla, Università

Dettagli

Algoritmi di ordinamento

Algoritmi di ordinamento Capitolo 7 Algoritmi di ordinamento 7.1 Selection sort L algoritmo di ordinamento per selezione opera nel modo seguente: supponiamo che i primi k elementi siano ordinati; l algoritmo sceglie il minimo

Dettagli

Successioni numeriche (II)

Successioni numeriche (II) Successioni numeriche (II) Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Successioni (II) Analisi A 1 / 52 Forme indeterminate associate a funzioni razionali fratte:

Dettagli

Esercizi di Algoritmi e Strutture Dati

Esercizi di Algoritmi e Strutture Dati Esercizi di Algoritmi e Strutture Dati Moreno Marzolla marzolla@cs.unibo.it Ultimo aggiornamento: 3 novembre 2010 1 Trova la somma/1 Scrivere un algoritmo che dati in input un array A[1... n] di n interi

Dettagli

Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base

Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base Dati e Algoritmi I (Pietracaprina): Esercizi 1 Problema 1. Sia T una stringa arbitraria di lunghezza n 1 su un alfabeto Σ. È sempre possibile

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 00/ Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi sul primo semestre del

Dettagli

Calcolo 1 (L. Fanelli - F. Pacella)

Calcolo 1 (L. Fanelli - F. Pacella) Matricola Corso di laurea in Matematica, aa 7/8 Calcolo (L Fanelli - F Pacella) Seconda prova in itinere 9 gennaio 8 I Cognome NORRIS Nome CHUCK Risolvere TRE E NON PIÙ DI TRE esercizi, motivando le risposte

Dettagli

Primi elementi di combinatoria Federico Lastaria, Analisi e Geometria 1

Primi elementi di combinatoria Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano. Scuola di Ingegneria Industriale e dell Informazione Analisi e Geometria 1 Federico Lastaria Primi elementi di combinatoria 11 Ottobre 2016 Indice 1 Elementi di combinatoria 2 1.1

Dettagli

Analisi asintotica. Astrazione: come il tempo di esecuzione cresce in funzione della taglia dell input asintoticamente.

Analisi asintotica. Astrazione: come il tempo di esecuzione cresce in funzione della taglia dell input asintoticamente. Analisi asintotica Vittorio Maniezzo University of Bologna Analisi asintotica Obiettivo: semplificare l analisi del consumo di risorse di un algoritmo prescindendo dai dettagli implementativi o di altro

Dettagli

Successioni ricorsive

Successioni ricorsive Successioni ricorsive Emanuele Paolini Analisi Matematica I, 015 016 In queste note prenderemo in considerazione le successioni a n definite per ricorrenza o ricorsivamente dalle condizioni: a1 = α, (1)

Dettagli

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso.

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso. Esercitazione 8 Novembre 018 1. Stabilire quali delle seguenti affermazioni sono vere e quali false. 1.1. Se una funzione f(x) è definita in un intervallo aperto (a, b), ha senso chiedersi se esistono

Dettagli

Si imposti la relazione di ricorrenza che ne descrive la complessità e la si risolva utilizzando il metodo della sostituzione.

Si imposti la relazione di ricorrenza che ne descrive la complessità e la si risolva utilizzando il metodo della sostituzione. parte II - A 2 Si consideri la seguente funzione: analizzami(int n) c = 1 k = n*n while k > 1 do k = k/2 for i = 0 to 3 do if n >1 then analizzami(n/4) Si imposti la relazione di ricorrenza che ne descrive

Dettagli

Tecniche di analisi degli algoritmi

Tecniche di analisi degli algoritmi Tecniche di analisi degli algoritmi Moreno Marzolla, Lorenzo Donatiello Dipartimento di Infromatica, Università di Bologna 29 ottobre 2017 Copyright c 2009, 2010 Moreno Marzolla, Università di Bologna

Dettagli

Programmazione dinamica Primi esempi

Programmazione dinamica Primi esempi Programmazione dinamica Primi esempi (20 ottobre 2009 e 9 novembre 2010) Programmazione dinamica e Divide et Impera Entrambe le tecniche dividono il problema in sottoproblemi: dalle soluzioni dei sottoproblemi

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 09 - Derivate II Limiti di forme indetermate e derivate

Dettagli

Per regnare occorre tenere divisi i nemici e trarne vantaggio. fai ad ogni passo la scelta più conveniente

Per regnare occorre tenere divisi i nemici e trarne vantaggio. fai ad ogni passo la scelta più conveniente Progetto di algoritmi sequenziali (un solo esecutore ) Divide et Impera Per regnare occorre tenere divisi i nemici e trarne vantaggio Greedy fai ad ogni passo la scelta più conveniente Buoni risultati

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Analisi asintotica e Ricorrenze Esercizi Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 Notazioni O, Ω e Θ Parte I Notazioni

Dettagli

Corso di Laurea in Informatica Applicata Esame di Calcolo delle Probabilità e Statistica Prova scritta dell 11 gennaio 2007

Corso di Laurea in Informatica Applicata Esame di Calcolo delle Probabilità e Statistica Prova scritta dell 11 gennaio 2007 Corso di Laurea in Informatica Applicata Esame di Calcolo delle Probabilità e Statistica Prova scritta dell 11 gennaio 007 Primo esercizio Per una certa stampante S 1, la probabilità che un generico foglio

Dettagli

Esercizi riguardanti limiti di successioni e di funzioni

Esercizi riguardanti limiti di successioni e di funzioni Esercizi riguardanti iti di successioni e di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Novembre 20. Come tali sono ben lungi dall essere esenti da errori,

Dettagli

In questa lezione: correttezza del mergesort Analisi del mergesort: relazioni di ricorrenza e alberi della ricorsione

In questa lezione: correttezza del mergesort Analisi del mergesort: relazioni di ricorrenza e alberi della ricorsione In questa lezione: correttezza del mergesort Analisi del mergesort: relazioni di ricorrenza e alberi della ricorsione Prof E Fachini - Intr Alg 1 MergeSort: correttezza MergeSort (A,p,r) if p < r then

Dettagli

Esercizi per il corso di Algoritmi

Esercizi per il corso di Algoritmi 1 Esercizi per il corso di Algoritmi Esercizi sulle Notazioni Asintotiche 1. Esercizio: In ciascuno dei seguenti casi, indicare se f(n) = O(g(n)), o se f(n) = Ω(g(n)), oppure entrambi (nel cui caso occorre

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base

Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base Dati e Algoritmi I (Pietracaprina) Esercizi sulle Nozioni di Base Dati e Algoritmi I (Pietracaprina): Esercizi 1 Problema 1. Sia T una stringa arbitraria di lunghezza n 1 su un alfabeto Σ. È sempre possibile

Dettagli

Esempio : i numeri di Fibonacci

Esempio : i numeri di Fibonacci Esempio : i numeri di Fibonacci La successione di Fibonacci F 1, F 2,... F n,... è definita come: F 1 =1 F 2 =1 F n =F n 1 F n 2,n 2 Leonardo Fibonacci (Pisa, 1170 Pisa, 1250) http://it.wikipedia.org/wiki/leonardo_fibonacci

Dettagli

Lezione di Laboratorio di Prgrammazione: /05/2019 a.a. 2018/2019 R.Prevete

Lezione di Laboratorio di Prgrammazione: /05/2019 a.a. 2018/2019 R.Prevete Lezione di Laboratorio di Prgrammazione: 19 13/05/2019 a.a. 2018/2019 R.Prevete Ricorsione La struttura di una funzione ricorsiva per un problema P di dimensione n (n è la dimensione dei dati input, ad

Dettagli

SOLUZIONI ESERCIZI ASSEGNATI. Contents. Il seguente Teorema generalizza al caso delle funzioni il corrispondente Teorema di confronto per successioni

SOLUZIONI ESERCIZI ASSEGNATI. Contents. Il seguente Teorema generalizza al caso delle funzioni il corrispondente Teorema di confronto per successioni SOLUZIONI ESERCIZI ASSEGNATI Contents. SOLUZIONI ESERCIZI DEL 8. [B] Dispense a cura del docente.. SOLUZIONI ESERCIZI DEL 8. Il seguente Teorema generalizza al caso delle funzioni il corrispondente Teorema

Dettagli

Esercizi di Algebra. 3 aprile 2006

Esercizi di Algebra. 3 aprile 2006 Esercizi di Algebra 3 aprile 2006 1 Sia n 2 un intero (a) Trovare due interi a b > 0 tali che siano richiesti 5 passi dell algoritmo euclideo per stabilire che MCD(a, b) = n (b) Trovare due interi x n,

Dettagli

XI ESERCITAZIONE DI AM1B

XI ESERCITAZIONE DI AM1B XI ESERCITAZIONE DI AMB Nella prima parte della lezione affrontiamo alcuni esercizi riguardanti il Teorema di de L Hopital cercando di mettere in risalto l importanza delle ipotesi del suddetto Teorema.

Dettagli

LA FORMULA DI TAYLOR

LA FORMULA DI TAYLOR LA FORMULA DI TAYLOR LORENZO BRASCO Indice. Definizioni e risultati. Sviluppi notevoli 3.. Esponenziale 4.. Seno 4.3. Coseno 4.4. Una funzione razionale 5.5. Logaritmo 6 3. Esercizi 6. Definizioni e risultati

Dettagli

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Limiti e funzioni continue

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Limiti e funzioni continue Matematica per le Applicazioni Economiche I AA 07/08 Esercizi con soluzioni Limiti e funzioni continue ottobre 07 Limiti Esercizio Usando l'opportuna denizione di ite, si verichi che + 5 Soluzione Osserviamo

Dettagli

Esercizi sulla complessità asintotica. Roberto Cordone

Esercizi sulla complessità asintotica. Roberto Cordone Esercizi sulla complessità asintotica Roberto Cordone 17 settembre 2010 Principi generali Le dimostrazioni di complessità asintotica si possono paragonare a un gioco, nel quale il primo giocatore decide

Dettagli

LIMITI - ESERCIZI SVOLTI

LIMITI - ESERCIZI SVOLTI LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ±

Dettagli

Vi sono naturalmente altri metodi per risolvere le ricorrenze. I più comuni sono:

Vi sono naturalmente altri metodi per risolvere le ricorrenze. I più comuni sono: Algoritmica 08/09 5. RICORRENZE E METODI DI SOLUZIONE Il teorema principale ha diversi pregi. Anzitutto si riferisce a un equazione espressa in funzione di due parametri arbitrari a,b di cui si specifica

Dettagli

Esempi di soluzione di equazioni differenziali mediante serie di potenze

Esempi di soluzione di equazioni differenziali mediante serie di potenze Esempi di soluzione di equazioni differenziali mediante serie di potenze Cerchiamo una soluzione dell equazione differenziale nella forma 3y () + y () + y() 0 + y() σ n con σ,. Una serie di potenze generalizzata

Dettagli

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008

Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 Analisi 1 Polo di Savona Analisi Matematica 1 (Modulo) Prove Parziali A.A. 1999/2008 1- PrA1.TEX [] Analisi 1 Polo di Savona Prima prova Parziale 21/10/1998 Prima prova Parziale 21/10/1998 Si consideri

Dettagli

MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 24 APRILE 2014

MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 24 APRILE 2014 MATEMATICA DISCRETA CLAUDIA MALVENUTO PRIMA PROVA IN ITINERE 4 APRILE 014 1. Trovare il numero di stringhe di lunghezza n che si possono formare usando le lettere A, B, C, D, E in modo che ogni stringa

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 008/09 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica Esercizi di Analisi Matematica Esercizi del 4 ottobre 008 Dimostrare

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Udine Anno Accademico 997/98 Cognome e Nome: Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica Analisi Matematica I Compitino del 3 aprile 998

Dettagli

Nozioni di base (II Parte)

Nozioni di base (II Parte) Nozioni di base (II Parte) 1 Ricorsione [GTG14, Par. 5.1-5.4 and 13.1] Algoritmo Ricorsivo: algoritmo che invoca se stesso (su istanze sempre più piccole) sfruttando la nozione di induzione. La soluzione

Dettagli

CAPITOLO 2. Divide et Impera

CAPITOLO 2. Divide et Impera CAPITOLO 2 Divide et Impera In questo capitolo discuteremo alcuni algoritmi progettati mediante la tecnica di progettazione del Divide et Impera. Algoritmi progettati usando questa tecnica consistono di

Dettagli

1 ANALISI MATEMATICA A - Esercizi della settimana 3

1 ANALISI MATEMATICA A - Esercizi della settimana 3 1 ANALISI MATEMATICA A - Esercizi della settimana 3 1.1 Esercizio Una funzione f : R R si dice pari se f (x) = f ( x) per ogni x R; una funzione g : R R si dice dispari se g(x) = g( x) per ogni x R. 1.

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 0/3 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi del 0 ottobre 0 La sottrazione

Dettagli

Tecniche Algoritmiche: divide et impera

Tecniche Algoritmiche: divide et impera Tecniche Algoritmiche: divide et impera Una breve presentazione F. Damiani - Alg. & Lab. 04/05 Divide et impera (o Divide and conquer) Per regnare occorre tenere divisi i nemici e trarne vantaggio F. Damiani

Dettagli

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2 QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 27/8 23 LUGLIO 28 CORREZIONE Esercizio ) Considerate la funzione f definita da f(x) = x 2 + x 2. Trovatene il dominio

Dettagli

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA I-A CORSO DI LAUREA IN FISICA Prova scritta del /9/009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ESERCIZIO. Punti 8 Risolvere la seguente equazione nel campo complesso w 6 w 64 = 64 3

Dettagli

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1

n! n n. n=1 an = L [0, + ] Se L = 1 il criterio non dà una risposta e la serie potrebbe sia convergere che divergere. 2 n2. n 1 46 Roberto Tauraso - Analisi 2 Esempio 3.6 Determinare il carattere della serie Applichiamo il criterio del rapporto: n n. a n+ a n (n +! nn (n + nn (n + n+ (n + n n n+ (n + ( n + n e. n Dato che e

Dettagli

PRINCIPIO DI INDUZIONE E APPLICAZIONI

PRINCIPIO DI INDUZIONE E APPLICAZIONI PRINCIPIO DI INDUZIONE E APPLICAZIONI Il principio di induzione è un potente metodo dimostrativo indiretto per stabilire la validità di proposizioni che riguardano una successione infinita di casi. GIZ

Dettagli

Analisi Matematica per Informatici Esercitazione 9 a.a

Analisi Matematica per Informatici Esercitazione 9 a.a Analisi Matematica per Informatici Esercitazione 9 a.a. 006-007 Dott. Simone Zuccher 0 Febbraio 007 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore

Dettagli

a j n + convergente divergente irregolare.

a j n + convergente divergente irregolare. Serie numeriche Definizione Data una successione reale {a j } + successione delle somme parziali n esime come: n s n a j, jj il cui limite, per n + : jj R, si definisce la s lim s n n + jj a j è detto

Dettagli

SECONDO TEST DI ANALISI 1 per i CdL in FISICA e MATEMATICA, a.a. 2016/17 assegnato in data lim

SECONDO TEST DI ANALISI 1 per i CdL in FISICA e MATEMATICA, a.a. 2016/17 assegnato in data lim SECONDO TEST DI ANALISI per i CdL in FISICA e MATEMATICA, a.a. 06/7 assegnato in data 5..06. Sia f : R \ {(0, 0)} R 3 la funzione definita da ( ( 4 ) f(x, y) = x + y sin, + arctan(x y), x + y Si calcoli

Dettagli

Introduzione agli algoritmi Prova di esame del 19/9/2016 Prof.sse E. Fachini - R. Petreschi. Parte prima

Introduzione agli algoritmi Prova di esame del 19/9/2016 Prof.sse E. Fachini - R. Petreschi. Parte prima Introduzione agli algoritmi Prova di esame del 19/9/2016 Prof.sse E. Fachini - R. Petreschi Parte prima 1) Si dimostri il teorema sulla limitazione inferiore per il tempo asintotico di esecuzione nel caso

Dettagli

vuol dire che preso M > 0 sufficientemente grande, esiste δ = δ(m) > 0 tale per cui x 1 > M lim

vuol dire che preso M > 0 sufficientemente grande, esiste δ = δ(m) > 0 tale per cui x 1 > M lim AMA Ing.Edile - Prof. Colombo Esercitazioni: Francesco Di Plinio - francesco.diplinio@libero.it Limiti - Soluzioni. Esercizio 5.2. ii) Dire che x 5 x + x = +, vuol dire che preso M > 0 sufficientemente

Dettagli

Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi. 1 2 n + 5 n 10 n n + 1.

Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi. 1 2 n + 5 n 10 n n + 1. Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi NOTA: PER FARE PIÚ ALLA SVELTA NON HO SCRITTO TUTTI I DETTAGLI DELLE SOLUZIONI. HO CERCATO DI SPIEGARE LE IDEE PRINCIPALI.

Dettagli

2 + 2(seny) 2 per (x, y) (0, 0),

2 + 2(seny) 2 per (x, y) (0, 0), Analisi II, a.a. 017-018 Soluzioni 1) Sia f la funzione di due variabili definita da xy α (senx) + (seny) per (x, y) (0, 0), 0 in (0, 0) dove α 0 è un parametro reale fissato. Determinare l insieme di

Dettagli

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006 Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/2/2006 COGNOME NOME MATRICOLA.) Determinare 2. + 2 Possibile svolgimento. Il ite proposto si presenta nella forma indeterminata [

Dettagli

Sommario della lezione:

Sommario della lezione: Sommario della lezione: Metodologie per il progetto di algoritmi: La Tecnica Divide et Impera Esempi di applicazione a: Ricerca del massimo e minimo di una sequenza di numeri Calcolo di potenze di numeri

Dettagli

1. Esercizi. E SE R C I Z I O 1.2. Calcolare il limite. 3 + x α. lim. 2 + x

1. Esercizi. E SE R C I Z I O 1.2. Calcolare il limite. 3 + x α. lim. 2 + x Esercizi In questo paragrafo svolgiamo parecchi esempi allo scopo di illustrare la tecnica dei confronti asintotici Da un uso accorto di questa tecnica segue la possibilità di calcolare molti iti senza

Dettagli

lim f(x) lim In questo caso, lim Una funzione è continua in un punto x 0 se valgono le seguenti condizioni:

lim f(x) lim In questo caso, lim Una funzione è continua in un punto x 0 se valgono le seguenti condizioni: Definizioni fondamentali Un intorno di un punto = 0 è un intervallo I che contiene 0. Un intorno destro per semplicità lo chiamiamo + 0 ) di 0 è un intervallo in cui l estremo sinistro è 0 : tutti i punti

Dettagli

1 n 1. n + 1. n=1 N+1. n=1. n=1 N N + 1.

1 n 1. n + 1. n=1 N+1. n=1. n=1 N N + 1. 44 Roberto Tauraso - Analisi 2 e quindi la somma parziale s N è uguale a N N s N n(n + ( n n + n N n n N+ n n N +. n2 N n N n n + dove nell ultimo passaggio si sono annullati tutti i termini opposti tranne

Dettagli

11. Misure con segno.

11. Misure con segno. 11. Misure con segno. 11.1. Misure con segno. Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 11.1.1. (Misura con segno). Si chiama misura con segno su A ogni funzione ϕ : A R verificante

Dettagli

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N.

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 4 febbraio 27 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 9) Data l

Dettagli

Divide et impera (Divide and Conquer) Dividi il problema in sottoproblemi piu` semplici e risolvili ricorsivamente

Divide et impera (Divide and Conquer) Dividi il problema in sottoproblemi piu` semplici e risolvili ricorsivamente Divide et impera (Divide and Conquer) Dividi il problema in sottoproblemi piu` semplici e risolvili ricorsivamente Divide et impera - Schema generale Divide-et-impera (P, n) if n k then risolvi direttamente

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09 UNIVERSITA DEL SALENTO Prova scritta di ANALISI MATEMATICA I 19/01/09 1 Determinare sup/inf max/min) e insieme dei punti di accumulazione del seguente insieme: E = {x R e x 5e x + 6) arctan x 1 x) < 1}

Dettagli

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j

Analisi II, a.a Soluzioni 1. j j + 1 ; ( 1)j Analisi II, a.a. 7-8 Soluzioni Calcolare le seguenti distanze e norme: (i d (x, y dove x = {x j } e y = {y j } sono le successioni di l definite da x j = ( j, y j = j/(j + ; (ii d (f, g dove f, g sono

Dettagli

Ricerca di Massimo e Minimo di un Array

Ricerca di Massimo e Minimo di un Array Universitá degli Studi di Salerno Corso di Introduzione agli Algoritmi e Strutture Dati Prof. Ugo Vaccaro Anno Acc. 2014/15 p. 1/18 Ricerca di Massimo e Minimo di un Array Problema. Trova l elemento di

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 08 a.a

Analisi Matematica per Bio-Informatici Esercitazione 08 a.a Analisi Matematica per Bio-Informatici Esercitazione 08 a.a. 007-008 Dott. Simone Zuccher 4 Gennaio 008 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore

Dettagli

Esercizi di Algebra. 25 marzo Soluzione Si tratta di trovare una soluzione del sistema di equazioni congruenziali

Esercizi di Algebra. 25 marzo Soluzione Si tratta di trovare una soluzione del sistema di equazioni congruenziali Esercizi di Algebra 25 marzo 2010 1. Soluzione Si tratta di trovare una soluzione del sistema di equazioni congruenziali X 2 mod 5 X 3 mod 7 X 7 mod 9, che sia prossima a 1000. Dalla prima equazione abbiamo

Dettagli

41 POLINOMI DI TAYLOR

41 POLINOMI DI TAYLOR 4 POLINOMI DI TAYLOR DERIVATE DI ORDINI SUCCESSIVI Allo stesso modo della derivata seconda si definiscono per induzione le derivate di ordine k: la funzione derivata 0-ima di f si definisce ponendo f (0

Dettagli

Risoluzione del compito n. 4 (Giugno 2014)

Risoluzione del compito n. 4 (Giugno 2014) Risoluzione del compito n. 4 Giugno 2014) PROBLEMA 1 Determinate le soluzioni z, w), con z, w C,delsistema { z = w 2 w i Dalla prima equazione ricaviamo 2iz +4i z = w 2. che sostituito nella seconda la

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 06/7 Corso di Analisi Matematica - professore Alberto Valli foglio di esercizi - ottobre 06 iti.

Dettagli

Successioni e serie di funzioni / Esercizi svolti

Successioni e serie di funzioni / Esercizi svolti M.Guida, S.Rolando, 4 Successioni e serie di funzioni / Esercizi svolti ESERCIZIO. Sia f n :[, ] R definita da f n (x) =x n ( x n ) per ogni n. a) Determinare l insieme di convergenza puntuale e la funzione

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, V. Casarino e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, V. Casarino e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza TEMA f = 2 arctan 2) log e 2 αx α sin x + 2x + x 6 + x + n n 2 log n xe x dx al variare di a R x a e x dx Tempo: due ore e mezza Viene corretto solo ciò che è scritto sul foglio intestato È vietato tenere

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Udine Anno Accademico 996/97 Cognome e Nome: Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica Analisi Matematica I Prova Scritta del dicembre

Dettagli

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( ) Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:

Dettagli

LEZIONI Dispense a cura del Docente.

LEZIONI Dispense a cura del Docente. LEZIONI 06-07-08 Contents 5. INTRODUZIONE ALLO STUDIO QUALITATIVO DELLE FUNZIONI. 5.. Operazioni elementari sui grafici di funzioni. 5.. Funzione composta. Monotonia della funzione composta. 5 5.. Grafico

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 006/07 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica Esercizi di Analisi Matematica Esercizi del 3 ottobre 006 Dimostrare

Dettagli

Soluzioni del compito di esonero di Algebra

Soluzioni del compito di esonero di Algebra Soluzioni del compito di esonero di Algebra 6 aprile 006 1. Usando il principio di induzione, svolgere uno a scelta fra i due seguenti esercizi. (a) Sia N + := N\{0}. Si consideri l applicazione f : N

Dettagli

Misure e loro proprietà (appunti per il corso di Complementi di Analisi Matematica per Fisici, a.a )

Misure e loro proprietà (appunti per il corso di Complementi di Analisi Matematica per Fisici, a.a ) Misure e loro proprietà (appunti per il corso di Complementi di Analisi Matematica per Fisici, a.a. 2006-07 Sia Ω un insieme non vuoto e sia A una σ-algebra in Ω. Definizione 1. (Misura. Si chiama misura

Dettagli

1 Il Teorema della funzione implicita o del Dini

1 Il Teorema della funzione implicita o del Dini 1 Il Teorema della funzione implicita o del Dini Ricordiamo che dato un punto x R n, un aperto A R n che contiene x si dice intorno (aperto) di x. Teorema 1.1. (I Teorema del Dini) Sia f : A (aperto) R

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 005/06 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica Esercizi di Analisi Matematica Esercizi del 9 settembre 005 Dimostrare

Dettagli

AM210 - Analisi Matematica 3: Soluzioni Tutorato 1

AM210 - Analisi Matematica 3: Soluzioni Tutorato 1 AM210 - Analisi Matematica 3: Soluzioni Tutorato 1 Università degli Studi Roma Tre - Dipartimento di Matematica Docente: Luca Biasco Tutori: Patrizio Caddeo, Davide Ciaccia 19 ottobre 2016 1 Se z = (1

Dettagli

Problemi, istanze, soluzioni

Problemi, istanze, soluzioni lgoritmi e Strutture di Dati II 2 Problemi, istanze, soluzioni Un problema specifica una relazione matematica tra dati di ingresso e dati di uscita. Una istanza di un problema è formata dai dati di un

Dettagli