Calcolo 1 (L. Fanelli - F. Pacella)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Calcolo 1 (L. Fanelli - F. Pacella)"

Transcript

1 Matricola Corso di laurea in Matematica, aa 7/8 Calcolo (L Fanelli - F Pacella) Seconda prova in itinere 9 gennaio 8 I Cognome NORRIS Nome CHUCK Risolvere TRE E NON PIÙ DI TRE esercizi, motivando le risposte [MAX pt] Studiare la funzione e disegnarne un grafico approssimativo f () = + ( ) log[( ) ] ( ) [MAX 9 pt] Calcolare log( + sin ()), sin[( ) ( ) ] + e log + ( ) 4, sin( ) d [MAX 8 pt] Sia f C ((, +)) una funzione tale che f () = f () =+, 9c > o : f () < per < c, f () > per > c + Determinare il numero di soluzioni dell equazione f () =, al variare di R 4 [MAX pt] Si consideri la funzione f : (, +) R definita da Z e t f () = log + t dt Trovare l insieme di definizione, di continuità e di derivabilità prima e seconda di f Determinare eventuali asintoti ed estremi relativi ed assoluti di f Disegnare un grafico approssimativo di f 5 [MAX pt] Sia f : R R una funzione derivabile Dimostrare che esiste una funzione g C (R) tale che g() = Z f (t) dt, 8 R

2 SOLUZIONE La funzione f è definita per ogni valore R tale che, (affinché non si annulli il denominatore) e ( ) > (affinché abbia senso il calcolo del logaritmo) Risolvendo, otteniamo il dominio di f, dato dall insieme D f := R \{} Usando la nota proprietà log a b = b log a, possiamo riscrivere f come segue: 8 >< ( ) + log( ), se > f () = + log = ( ) >: + log( ), se < ( ) Studiamo ora il segno di f, distinguendo i casi > e < Nel caso >, abbiamo f (), ( ) log( ) Osserviamo che il termine a sinistra dell ultima disuguaglianza è positivo per, mentre il termine a destra risulta negativo per, quindi la disuguaglianza è verificata per A questo punto, al fine di studiare il segno di f nell intervallo [, ), calcoliamo la derivata f () = ( ) + = 5 ( ), 8, ed osserviamo che f () < per ogni [, ) Da ciò deduciamo che f è decrescente in [, ) e, dato che f () =, otteniamo che f (), per ogni [, ) Abbiamo dunque dimostrato che f () >, per ogni > Nel caso < ragioniamo in maniera analoga Osserviamo, dapprima, che Dato che =, ( ) f (), ( ) log( ) log( ) =+, =, ( ) log( ) = e che /( ) è decrescente in (, ), mentre log( ) è crescente sullo stesso intervallo, come conseguenza del Teorema degli Zeri otteniamo l esistenza di < tale che f ( ) = Inolre, dato che f () = e che f () =, deduciamo che < Non ci occupiamo di ottenere una migliore approssimazione di Da quanto osservato finora concludiamo che esiste < tale che f (), (, ] [ (, +) (ii) La funzione f è continua in D f, in quanto composizione di funzioni continue Inoltre, dato che /( ), per ±, otteniamo facilmente Inoltre, dato che log = per ogni >, f () = ± ± ( ) f () = log =+ ± ± La funzione (iii) Il calcolo della derivata prima svolto in precedenza mostra che + ( ) log = ± ( ) = ± f () = 5 ( ), da cui otteniamo facilmente che f 5 (), La funzione f è quindi monotona decrescente in (, ) ed in (, 5/] e monotona crescente in [5/, +) Il punto = 5 è di minimo relativo Dato che f è ilitata, essa non ammette estremi assoluti (iv) La derivata seconda di f è data da il che mostra che e quindi il grafico approssimativo è come in figura f () = ( ) 4( )( 5) 4( ) 4 = 4 ( ) f () se e solo se < apple 4

3 ; Y : Figura, : l i / Z - Z µ I I bit j y=z,+lgh' ' l Per il primo ite, osserviamo che numeratore e denominatore divergono a + Possiamo applicare il Teorema di de l Hôpital ed ottenere log( + sin ()) + sin cos = =, + sin () dato che il numeratore è itato ed il denominatore divergente, in quanto somma di un termine divergente con un termine itato Nel secondo ite, abbiamo una divisione di infinitesimi Per stabilirne l ordine, usiamo i noti sviluppi di Taylor centrati in delle funzioni sin, e, log( + ) per ottenere sin[( ) ] = ( ) + o ( ) 5, e ( ) = ( ) ( )4 + o ( ) 5, log h + ( ) 4i = ( ) 4 + o ( ) 5, per Abbiamo dunque sin[( ) ( ) ] + e log + ( ) 4 = ( )4 + o ( ) 5 = ( ) 4 + o ( ) 5 Infine, integrando per parti, sin( ) d = 4 h4 sin( ) i d = 4 cos( ) = cos + = 6 8 sin( ) = = = = cos sin cos( ) d Dalle ipotesi sul segno della derivata di f, sappiamo che f è strettamente decrescente in, c e strettamente crescente in (c, +): in particolare, min f () = f (c) (,+) Di conseguenza, detto n il numero di soluzioni dell equazione f () =, abbiamo < f (c) ) n = ; = f (c) ) n =

4 Rimane da studiare il caso > f (c) Dalla definizione di ite segue che f () =+ ) 9 +, c : f ( ) > f () =+ ) 9 (c, +) : f ( ) > Dato che f è continua e che f (c) <, per il Teorema dei Valori Intermedi e visto che f è iniettiva su (, c) e su (c, +), otteniamo che 9 (, c) : f ( ) =, 9 (c, +) : f ( ) = ovvero > f (c) ) n = 4 (i)la funzione log è definita per > D altro canto, la funzione e t /t è definita per, e continua nel suo dominio, quindi integrabile in ogni intervallo della forma [, ] oppure [, ], qualunque sia > Di conseguenza, il dominio di f è dato dalla semiretta aperta (, +) Dalle proprietà elementari della funzione logaritmo e dal Teorema Fondamentale del Calcolo (valido, dato che e t /t è continua in [, ] o [, ], per > ), segue che f è derivabile in (, +) e f () = e Analogamente, derivando ulteriormente scopriamo che f è derivabile due volte in (, +) e f () = e e (ii) Per la ricerca degli asintoti, dobbiamo calcolare i iti = ( + ( )e ) f (), + f () Osserviamo che dal Teorema Fondamentale del Calcolo segue che log = Z t dt = Z Z dt ) f () = t e t t La funzione integranda ha la proprietà che e quindi, posto si ha che g C([, +)) ed inoltre e t = t + t 8 e >< g() := se > >: se = 8 > f () = Z Z g(t) dt ) f () = g(t) dt =: <+ + Dunque f può essere prolungata per continuità in e non possiede asintoti verticali Per il ite a + osserviamo che Z f () = e t Z e t dt = dt t t Poiché e t > + t per ogni t, abbiamo (e t )/t per ogni t e quindi e quindi = Z e t t dt apple Z f () = dt = ( ) = Quindi f non ha asintoti orizzontali a + La ricerca di eventuali asintoti obliqui ci porta a calcolare (usando il Teorema di de l H `ôpital ed il Teorema Fondamentale del Calcolo f () = f () = e =

5 ovvero f non possiede asintoti obliqui a + (iii) Osserviamo che f () = e < 8 > e che f () per + Quindi f è strettamente decrescente ed ha tangente orizzontale in (dove abbiamo visto che può essere estesa per continuità Inoltre, la derivata seconda è data da e quindi Osserviamo che h() = e che quindi f () = e e = ( + ( )e ) f (), h() := + ( )e apple h () = e > 8 > min h() = h() = ) h() 8 ) f () < 8 > [,+) In conclusione, f è concava in (, +) Il grafico approssimativo di f è quello in figura ya Figura g=hg +f' ftdt PM ; p jo#dt : 5 È sufficiente provare che la funzione h() = Z può essere estesa ad una funzione di classe C su R A tal fine, osserviamo che h è ben definita e continua per ogni,, in quanto prodotto della funzione continua / con la funzione dell area di f che è continua, dato che f è derivabile, quindi continua, quindi integrabile Inoltre, per il Teorema di de l Hôpital ed il Teorema fondamentale del Calcolo, abbiamo h() = f () = f (), f (t) dt visto che f è derivabile e quindi continua in R Di conseguenza, la funzione 8 >< h() se, eh() = >: f () se = è un prolungamento continuo di h a R Per concludere la dimostrazione, è sufficiente mostrare che eh C (R) Dal Teorema fondamentale del Calcolo, segue che, per,, eh () = h () = f () Z f (t) dt = f() R f (t) dt (, )

6 Per studiare la derivabilità di eh in, invece di applicare la definizione, dimostriamo che esiste, finito, il ite eh () = f() R f (t) dt (?) Dato che f è derivabile, si ha f () = f () + f () + o() per (??) Notiamo che che o() = o( ): dunque, inserendo (??) in (?) ed applicando nuovamente il Teorema di de l Hôpital, otteniamo Riepilogando, f() + eh f () + o( ) () = = f f () f () () + = f () e segue da quanto visto che eh C (R) R 8 R f() f (t) dt >< eh se, () = >: f () se = f (t) dt f() = f () + f () = f () R f (t) dt

7 Matricola Cognome Corso di laurea in Matematica, aa 7/8 Calcolo (L Fanelli - F Pacella) Seconda prova in itinere 9 gennaio 8 II Nome Risolvere TRE E NON PIÙ DI TRE esercizi, motivando le risposte [MAX pt] Studiare la funzione e disegnarne un grafico approssimativo f () = + ( + ) log[( + ) ] ( + ) [MAX 9 pt] Calcolare log(sin () + ), h log i + ( ) 4 e ( ) + sin[( ) ], cos( ) d [MAX 8 pt] Sia f C ((, +)) una funzione tale che f () = f () =+, 9c > o : f () < per < c, f () > per > c + Determinare il numero di soluzioni dell equazione f () =, al variare di R 4 [MAX pt] Si consideri la funzione f () = Z e t t dt + log Trovare l insieme di definizione, di continuità e di derivabilità prima e seconda di f Determinare eventuali asintoti ed estremi relativi ed assoluti di f Disegnare un grafico approssimativo di f 5 [MAX pt] Sia f : R R una funzione derivabile Dimostrare che esiste una funzione g C (R) tale che g() = Z f (t) dt, 8 R

8 SOLUZIONE Lo studio è del tutto analogo a quello dell esercizio del compito I Si osservi che la funzione f () = + ( + ) log[( + ) ] ( + ) è ottenuta traslando la variabile 7 + e quindi il grafico si ottiene traslando di verso sinistra il grafico in figura del compito precedente Omettiamo dunque ulteriori dettagli Per il primo ite, osserviamo che numeratore e denominatore divergono a + Possiamo applicare il Teorema di de l Hôpital ed ottenere log(sin () + ) sin cos + = =, sin () + dato che il numeratore è itato ed il denominatore divergente, in quanto somma di un termine divergente con un termine itato Nel secondo ite, abbiamo una divisione di infinitesimi Per stabilirne l ordine, usiamo i noti sviluppi di Taylor centrati in delle funzioni sin, e, log( + ) per ottenere per Abbiamo dunque Infine, integrando per parti, cos( ) d = 4 log h + ( ) 4i = ( ) 4 + o ( ) 5 sin[( ) ] = ( ) + o ( ) 5, e ( ) = ( ) ( )4 + o ( ) 5, log h + ( ) 4i e ( ) + sin[( ) ] = ( ) 4 + o ( ) 5 h4 cos( ) i d = 4 sin( ) = sin + = 6 8 cos( ) = ( = )4 + o ( ) 5 = = = cos + 6 sin( ) d 8 cos Si veda la soluzione al compito I 4 Si veda la soluzione al compito I 5 Si veda la soluzione al compito I

9 Matricola Cognome Corso di laurea in Matematica, aa 7/8 Calcolo (L Fanelli - F Pacella) Seconda prova in itinere 9 gennaio 8 III Nome Risolvere TRE E NON PIÙ DI TRE esercizi, motivando le risposte [MAX pt] Studiare la funzione e disegnarne un grafico approssimativo f () = + ( ) log[( ) ] ( ) [MAX 9 pt] Calcolare log(cos () + ), sin[( ) ( ) ] + e log + ( ) 4, Z sin( ) d [MAX 8 pt] Sia f C ((, +)) una funzione tale che f () = f () =+, 9c > o : f () < per < c, f () > per > c + Determinare il numero di soluzioni dell equazione f () =, al variare di R 4 [MAX pt] Si consideri la funzione f () = Z arctan (t) dt Trovare l insieme di definizione, di continuità e di derivabilità prima e seconda di f Determinare eventuali asintoti ed estremi relativi ed assoluti di f Disegnare un grafico approssimativo di f 5 [MAX pt] Sia f : R R una funzione derivabile Dimostrare che esiste una funzione g C (R) tale che g() = Z f (t) dt, 8 R

10 SOLUZIONE Le soluzioni agli esercizi,,,5 sono del tutto analoghe (o identiche) a quelle dei compiti precedenti Ci itiamo a risolvere l esercizio 4 4 (i) La funzione arctan t è continua su R e quindi integrabile su [, ] o [, ], per ogni R La funzione / invece è definita per, Dunque f risulta definita su R \{} La funzione / è continua nel suo dominio e come lei lo è la funzione dell area di arctan t Abbiamo dunque che f è continua nel suo dominio Per la derivabilità, dal Teorema Fondamentale del Calcolo segue che f () = Z arctan tdt+ arctan = R arctan tdt+ arctan (, ) definita per ogni,, per gli stessi motivi di sopra La funzione f risulta dunque derivabile nel suo dominio Infine, la derivata seconda è data, per,, da f () = Z arctan tdt arctan + arctan ( + ) (, ) e come sopra concludiamo che f è derivabile due volte nel suo dominio R \{} (ii) Per la ricerca di eventuali asintoti, dobbiamo studiare i iti di f a ± ed in Usando il Teorema di de l Hôpital ed il Teorema Fondamentale del Calcolo, calcoliamo f () = arctan = Quindi f non ha asintoti verticali ed è prolungabile per continuità in = Ora notiamo che / è una funzione dispari e che arctan t è pari, per cui R arctan tdt è una funzione dispari Dunque f è prodotto di due funzioni dispari, quindi f è pari Basta quindi studiare il ite per + Quando +, la funzione arctan converge a 4, e dunque Z arctan tdt=+ Per calcolare il ite di f possiamo quindi applicare nuovamente il Teorema di de l Hôpital ed ottenere f () = ± f () = arctan = 4 Concludiamo che la retta orizzontale y = /4 è asintotica ad f a ± (iii) Data la parità di f, riduciamo lo studio al caso > Ricordiamo che f () = Z arctan tdt+ arctan = R arctan tdt+ arctan (, ) Dato che arctan è una funzione crescente, abbiamo apple t apple ) arctan t apple arctan ) Z arctan tdtapple arctan Di conseguenza, f () per ogni ovvero f è crescente in [, +) Per la derivata seconda, richiamiamo la definizione f () = Z arctan tdt arctan + arctan (, ) ( + ) ed osserviamo che f C (,+) Inoltre, usando il Teorema di de l Hôpital, otteniamo facilmente f () = + >, f () = Possiamo quindi intuire che nu grafico approssimativo di f sia quello in figura

11 y -=--= Fh----#"g guia flare tail at y = I X

12 Matricola Cognome Corso di laurea in Matematica, aa 7/8 Calcolo (L Fanelli - F Pacella) Seconda prova in itinere 9 gennaio 8 IV Nome Risolvere TRE E NON PIÙ DI TRE esercizi, motivando le risposte [MAX pt] Studiare la funzione e disegnarne un grafico approssimativo f () = + ( + ) log[( + ) ] ( + ) [MAX 9 pt] Calcolare log(arctan () + ), h log + ( ) 4 i sin[( ) ] + e ( ), Z cos( ) d [MAX 8 pt] Sia f C ((, +)) una funzione tale che f () = f () =+, 9c > o : f () < per < c, f () > per > c + Determinare il numero di soluzioni dell equazione f () =, al variare di R 4 [MAX pt] Si consideri la funzione f : R \{} R definita da f () = Disegnare un grafico approssimativo di f Esiste un prolungamento continuo di f a R? Z arctan (t) dt 5 [MAX pt] Sia f : R R una funzione derivabile Dimostrare che esiste una funzione g C (R) tale che g() = Z f (t) dt, 8 R

13 Si vedano le soluzioni ai compiti precedenti SOLUZIONE

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 6 aprile 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 6 aprile 2018 Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A Pisa, 6 aprile cos ) sin se Domanda Sia f) = Allora se =. A) non ha derivata in = ) è derivabile C) ha un punto di cuspide D) ha

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006 Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/2/2006 COGNOME NOME MATRICOLA.) Determinare 2. + 2 Possibile svolgimento. Il ite proposto si presenta nella forma indeterminata [

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni

Esercizi proposti. x b) f(x) = 2. Determinare i punti di non derivabilità delle funzioni Esercizi proposti 1. Calcolare la derivata prima f () per le seguenti funzioni: a) f() = c) f() = ( 1 + 1 b) f() = 1 arctan ) d) f() = cos ( ( + ) 5) e) f() = 1 + sin 1 f) f() = arcsin 1. Determinare i

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA 1

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA 1 Esercizio Data la funzione ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3 TEMA fx = x 3 + logx, a determinarne il dominio, calcolarne i iti agli estremi e determinare eventuali

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 8 novembre 07

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 08/9 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 7 novembre 08

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del.. TEMA Esercizio. Sia f) = + 3) log + 3), D =] 3, + [. i) Determinare i iti di f agli estremi di D e gli eventuali asintoti; studiarne

Dettagli

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche

ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche ISTITUZIONI DI ANALISI MATEMATICA Commissione P. Mannucci, A. Sommariva, a.a. 4- Corsi di laurea in Scienze Statistiche 4 febbraio TEMA Esercizio 8 punti) Si consideri la funzione ) e f) = arctan e a)

Dettagli

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti.

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti. Seconda prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 3 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 26/01/2007

Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 26/01/2007 Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 6/0/007 COGNOME NOME MATRICOLA 3 sin( ) e 3 + ) Determinare ( cos()) Possibile svolgimento Il ite proposto si presenta nella forma

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria

Politecnico di Milano Ingegneria Industriale Analisi Matematica 1 e Geometria Politecnico di Milano Ingegneria Industriale Analisi Matematica e Geometria Preparazione al primo compito in itinere Cognome: Nome: Matricola: Prima Parte. Determinare, se esistono, il minimo, il massimo,

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + e (x+). Per cominciare, osserviamo che f si ottiene traslando di, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè abbiamo

Dettagli

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni:

Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli x R che verificano le condizioni: Studi di funzione 5) Studiare la funzione definita da f() = arcsin ( ) + 3 2 +. Dominio di f ed eventuali simmetrie: Il dominio di f è definito dall insieme degli R che verificano le condizioni: () : +,

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 3..7 TEMA Esercizio Calcolare l integrale log(3) 4 dx Svolgimento. Si ha log(3) 4 dx = (ponendo ex = t, per cui dx = dt/t) e = 4 3

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, P. Mannucci e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza + Svolgimento (cenno) a) Dominio={ R,6= }. Non ci sono simmetrie. b)! f() = 4,! + f() = 4. La funzione non può essere prolungata per continuità in =, dove c è un salto.!+1 f() =!+1 arctan + = 1, f()!+1

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

Risoluzione del compito n. 4 (Giugno 2014)

Risoluzione del compito n. 4 (Giugno 2014) Risoluzione del compito n. 4 Giugno 2014) PROBLEMA 1 Determinate le soluzioni z, w), con z, w C,delsistema { z = w 2 w i Dalla prima equazione ricaviamo 2iz +4i z = w 2. che sostituito nella seconda la

Dettagli

Soluzioni del Foglio 7

Soluzioni del Foglio 7 7.1. Esercizio. Assegnate le funzioni ANALISI Soluzioni del Foglio 7 18 novembre 2009 e e sin(), dire quali possono essere prolungate per continuitá in = 0, studiare, per le funzioni che risultino prolungabili

Dettagli

ANALISI MATEMATICA 1 Commissione F. Albertini, V. Casarino e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione F. Albertini, V. Casarino e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza TEMA f = 2 arctan 2) log e 2 αx α sin x + 2x + x 6 + x + n n 2 log n xe x dx al variare di a R x a e x dx Tempo: due ore e mezza Viene corretto solo ciò che è scritto sul foglio intestato È vietato tenere

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 6 foglio di esercizi - 5 ottobre 07

Dettagli

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza ANALISI MATEMATICA - Parte B Commissione F Albertini, L Caravenna e M Motta Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza Vicenza, febbraio 07 TEMA Esercizio [ punti] Si consideri la funzione

Dettagli

Esercitazione di AM120

Esercitazione di AM120 Università degli Studi Roma Tre - Corso di Laurea in Matematica Esercitazione di M0.. 07 08 - Esercitatore: Luca Battaglia Soluzioni dell sercitazione 3 4 del 4 Marzo 08 rgomento: Derivate, Massimi e minimi,

Dettagli

Vicenza, 12 settembre 2016 Si consideri la funzione. sinh 2x sinh 2x 1 3x. f(x) =

Vicenza, 12 settembre 2016 Si consideri la funzione. sinh 2x sinh 2x 1 3x. f(x) = ANALISI MATEMATICA - Traccia di soluzioni Commissione F. Albertini, L. Caravenna e V. Casarino Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza Esercizio, Tema [9 punti] Vicenza, settembre 06 Si

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

Analisi Matematica 1 - a.a. 2017/ Quarto appello

Analisi Matematica 1 - a.a. 2017/ Quarto appello Analisi Matematica - a.a. 07/08 - Quarto appello Soluzione del test Test A E C B B C A D C C D Test B C B C E B A E E D B Test C A A D B E C A C D D Test D D B A A B E A E B D Soluzione della parte di

Dettagli

ESERCITAZIONE 6: STUDIO DI FUNZIONI

ESERCITAZIONE 6: STUDIO DI FUNZIONI ESERCITAZIONE 6: STUDIO DI FUNZIONI Tiziana Raparelli 31/03/009 1 ESERCIZI ESERCIZIO 1 Studiare le seguenti funzioni, discuterne l uniforme continuità e tracciarne un grafico qualitativo. (a) f() = log(

Dettagli

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.

Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio. Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 9..8 NOTA: lo svolgimento del Tema contiene alcuni commenti di carattere generale. Esercizio Si consideri la funzione TEMA f := log

Dettagli

Secondo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2015/2016. Prof. M. Bramanti.

Secondo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 2015/2016. Prof. M. Bramanti. Secondo appello di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 01/01. Prof. M. Bramanti 1 Tema n 1 4 7 Tot. Cognome e nome in stampatello) codice persona o n di matricola)

Dettagli

I appello - 11 Gennaio 2016

I appello - 11 Gennaio 2016 Analisi Matematica - A.A. 5-6 Prove scritte di Analisi Matematica - A.A. 5/6 Corso di Laurea in Ingegneria Civile Corso di Laura in Ingegneria Informatica ed Elettronica I appello - Gennaio 6 Svolgere

Dettagli

x log(x) + 3. f(x) =

x log(x) + 3. f(x) = Università di Bari, Corso di Laurea in Economia e Commercio Esame di Matematica per l Economia L/Z Dr. G. Taglialatela 03 giugno 05 Traccia dispari Esercizio. Calcolare Esercizio. Calcolare e cos log d

Dettagli

Ingegneria civile - ambientale - edile

Ingegneria civile - ambientale - edile Ingegneria civile - ambientale - edile Analisi - Prove scritte dal 7 Prova scritta del 9 giugno 7 Esercizio Determinare i numeri complessi z che risolvono l equazione Esercizio (i) Posto a n = n i z z

Dettagli

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 2

Analisi Matematica I modulo Soluzioni prova scritta preliminare n. 2 Analisi Matematica I modulo Soluzioni prova scritta preinare n 2 Corso di laurea in Matematica, aa 2004-2005 22 dicembre 2004 1 (a) Calcolare il seguente ite A******* ( ) n 2 n 2 + n n 1 n + 2n 2 Soluzione

Dettagli

Calcolo I - Corso di Laurea in Fisica - 18 Giugno 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità;

Calcolo I - Corso di Laurea in Fisica - 18 Giugno 2019 Soluzioni Scritto. a) Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; Calcolo I - Corso di Laurea in Fisica - 8 Giugno 209 Soluzioni Scritto Data la funzione fx = x 2 x 6 x /3 a Calcolare il dominio, asintoti ed eventuali punti di non derivabilità; b Calcolare, se esistono,

Dettagli

Risoluzione del compito n. 1 (Gennaio 2018)

Risoluzione del compito n. 1 (Gennaio 2018) Risoluzione del compito n. (Gennaio 208 PROBLEMA Calcolate 3(2 i 2 i(5i 6 4+2i 2 5(3 + i. Determinate le soluzioni z C dell equazione z 2 + z = + i. Osserviamo che (2 i 2 = 4 4i = 3 4i e che 4+2i 2 = 6+4

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico / Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 9// N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Corso di laurea in Matematica, a.a. 2005-2006 27 aprile 2006 1. Disegnare approssimativamente nel piano (x, y) l insieme x 4 6xy 2

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I

TEMI D ESAME DI ANALISI MATEMATICA I TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea quadriennale) in Fisica a.a. 003/04 Prova scritta del 3 aprile 003 ] Siano a, c parametri reali. Studiare l esistenza e, in caso affermativo, calcolare

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare

Dettagli

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02

TEMI D ESAME DI ANALISI MATEMATICA I Corso di laurea in Fisica a.a.2001/02 I seguenti quesiti ed il relativo svolgimento sono coperti dal diritto d autore, pertanto essi non possono essere sfruttati a fini commerciali o di pubblicazione editoriale senza autorizzazione esplicita

Dettagli

ANALISI MATEMATICA II-A. Prova scritta del 29/1/2010 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA II-A. Prova scritta del 29/1/2010 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA II-A CORSO DI LAUREA IN FISICA Prova scritta del 9//00 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE Esercizio.(Punti 6) Calcolare il valore del seguente ite 0+ e cos. Esercizio.(Punti 6)

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N.

3. (Punti 8) Si consideri l integrale improprio. x n dx, n N. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 4 febbraio 27 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 9) Data l

Dettagli

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x

Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione. g(x) = x e x Studi di funzione 1) Studiare la funzione definita da f(x) = x + 2 e (x+2). Per cominciare, osserviamo che f si ottiene traslando di 2, nella direzione negativa dell asse x, la funzione g(x) = x e x cioè

Dettagli

ISTITUZIONI DI ANALISI MATEMATICA Commissione A. Cesaroni, P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche

ISTITUZIONI DI ANALISI MATEMATICA Commissione A. Cesaroni, P. Mannucci, A. Sommariva, a.a Corsi di laurea in Scienze Statistiche TEMA f(x = arccos( x (a ˆ Determiniamo il dominio Poichè arccos : [, ] [, π], poniamo x ovvero x Di conseguenza il dominio risulta D = [ 4, 4] ˆ Eventuali simmetrie: la funzione è pari ˆ Periodicità: la

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del 9.7.8 Esercizio Si consideri la funzione TEMA f log e. i Si determini il dominio D e si studi il segno di f; ii si determininio i iti

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 25 febbraio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del 5 febbraio 07 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 7) Posto

Dettagli

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0

Esercizio 1. Per quali valori di h e k le seguenti funzione sono derivabili? x 3 sin 1 x 0. 0 x = 0. x cos 1 x > 0 Sapienza Università di Roma - Facoltà I3S Corso di Laurea in Statistica Economia Finanza e Assicurazioni Corso di Laurea in Statistica Economia e Società Corso di Laurea in Statistica gestionale Matematica

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica. Pisa, 20 giugno (log x)x 1 Università di Pisa - Corso di Laurea in Informatica Analisi Matematica Pisa, 0 giugno 019 e 1 se 0 Domanda 1 La funzione f : R R definita da 1 se = 0 A) ha minimo ma non ha massimo ) ha massimo ma non

Dettagli

Secondo appello 2004/ Tema 1

Secondo appello 2004/ Tema 1 Secondo appello 2/25 - Tema Esercizio Risolvere l equazione di variabile complessa z 2 (z z)2 + (Re z) [ Im (z 2 ) ] =, () e disegnare le soluzioni sul piano di Gauss. Poniamo z = + i. Si ottiene che deve

Dettagli

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 28 Febbraio 2011, ore x e2x e 2x 1. f(x) = e 2x log(e 2x + 1) dx.

COGNOME... NOME... Matricola... Corso Prof... Esame di ANALISI MATEMATICA I - 28 Febbraio 2011, ore x e2x e 2x 1. f(x) = e 2x log(e 2x + 1) dx. Esame di ANALISI MATEMATICA I - 28 Febbraio 211, ore 8.3 A ESERCIZIO 1. (1 punti) Sia data la funzione f(x) = x e2x e 2x 1. (a) Determinarne il dominio e dimostrare che f si prolunga ad una funzione continua

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA log x. f(x) = e

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione. Appello del TEMA log x. f(x) = e Esercizio 1 [6 punti] Sia ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione Appello del 8.07.019 TEMA 1 f) = e +log. a) Determinare il dominio D di f; determinare i limiti di f agli estremi di

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 2 luglio 2004: soluzioni Data la funzione f() = 3 2 2 arctan + 0, si chiede di: a) calcolare il dominio

Dettagli

1 Analisi mat. I - Esercizi del 13/10/99

1 Analisi mat. I - Esercizi del 13/10/99 Analisi mat. I - Esercizi del //99 ES. Delle seguenti funzioni determinare: il dominio l immagine gli eventuali asintoti l insieme dove sono continue e quali siano estendibili per continuita. Determinare

Dettagli

SCRITTO 02/07/18 - ANALISI MATEMATICA I

SCRITTO 02/07/18 - ANALISI MATEMATICA I SCRITTO 02/07/18 - ANALISI MATEMATICA I Esercizio 1. Determinare tutte le coppie z, w) C C tali che { zw = z 3 w 2 zw = 1 Soluzione: Dalla seconda equazione otteniamo che sia z che w non sono zero. Quindi

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

Analisi e Geometria 1 Politecnico di Milano Ingegneria

Analisi e Geometria 1 Politecnico di Milano Ingegneria Analisi e Geometria Politecnico di Milano Ingegneria Esercizi Funzioni. Calcolare la derivata delle funzioni: (a f( = ln tg cos sin (b f( = + ln( + +. Dimostrare che la funzione è costante a tratti. 3.

Dettagli

Matematica per le Applicazioni Economiche I (M-P)

Matematica per le Applicazioni Economiche I (M-P) Matematica per le Applicazioni Economiche I (M-P) Corsi di Laurea in Economia Aziendale, Economia e Commercio, a.a. 06-7 Esercizi su Calcolo Differenziale. Per la seguente funzione, dato 0, si utilizzi

Dettagli

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 16/9/2016 1

ANNO ACCADEMICO 2015/2016 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 16/9/2016 1 ANNO ACCADEMICO 25/26 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA III appello 6/9/26 Esercizio. Uno studio scientifico ha mostrato che in una popolazione il 7% degli individui appartiene a un gruppo a

Dettagli

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione.

Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 Dicembre Studio di Funzione. Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 19 icembre 2016 Studio di Funzione 1. Si consideri la funzione f : R R così definita f(x) 1 2 log x x 2. (a) eterminare il

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine nno ccademico 5/6 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 4/7/6 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato. Tempo

Dettagli

Università degli Studi di Verona

Università degli Studi di Verona Università degli Studi di Verona Dipartimento di Informatica Ca' Vignal Strada le Grazie 15 37134 Verona - Italia Tel. +39 045 80 7069 Fax +39 045 80 7068 Corso di Laurea in Matematica Applicata PROVA

Dettagli

Analisi Matematica I

Analisi Matematica I Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-7 Savona Tel. +39 9 264555 - Fax +39 9 264558 Analisi Matematica I Testi d esame e Prove parziali Analisi Matematica

Dettagli

Analisi Matematica I

Analisi Matematica I Università di Pisa - orso di Laurea in Ingegneria Edile-Architettura Analisi Matematica I Pisa, settembre omanda La funzione f : R R definita da f(x) = x + e x A) non è né iniettiva né surgettiva ) è iniettiva

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 205/206 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 4/09/206 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Analisi Matematica per Informatici Esercitazione 10 a.a

Analisi Matematica per Informatici Esercitazione 10 a.a Analisi Matematica per Informatici Esercitazione a.a. 6-7 Dott. Simone Zuccher 7 Febbraio 7 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore (zuccher@sci.univr.it).

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO II PROVA SCRITTA DI GENNAIO 2006: SOLUZIONI Notiamo che lo studio delle funzioni assegnate f,..., f 4 si riduce a considerare

Dettagli

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 17 luglio 2018

Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A. Pisa, 17 luglio 2018 Università di Pisa - Corso di Laurea in Informatica Analisi Matematica A Pisa, 7 luglio 08 omanda La funzione f : (0, + R definita da f( = + log ( + log A ha un asintoto orizzontale e nessun altro asintoto

Dettagli

Istituzioni di Matematica I

Istituzioni di Matematica I Istituzioni di Matematica I Le soluzioni proposte costituiscono solo una traccia di possibili soluzioni (lo studente deve giustificare i vari risultati), possono esserci altri modi, altrettanto corretti,

Dettagli

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [;

a) Il denominatore dev essere diverso da zero. Studiamo il trinomio x 2 5x + 6. Si ha: x 1,2 = 5 ± se x ], 2[ ]3, + [; ESERCIZIO - Data la funzione f (x) + x2 2x x 2 5x + 6, si chiede di: a) calcolare il dominio di f ; (2 punti) b) studiare la positività e le intersezioni con gli assi; (3 punti) c) stabilire se f ha asintoti

Dettagli

Derivabilità, invertibilità e studi di funzione

Derivabilità, invertibilità e studi di funzione Derivabilità, invertibilità e studi di funzione. Studiare la continuità e la derivabilità delle funzioni elencate in tutto il loro dominio di definizione e calcolare la derivata nei punti in cui la funzione

Dettagli

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Meccanica, Meccatronica, Innovazione del Prodotto

ANALISI MATEMATICA 1 - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Meccanica, Meccatronica, Innovazione del Prodotto ANALISI MATEMATICA - Parte B Commissione F. Albertini, L. Caravenna e M. Motta Ingegneria Meccanica, Meccatronica, Innovazione del Prodotto Vicenza, Settembre 8 TEMA Esercizio Si consideri la funzione

Dettagli

Analisi Matematica 1 per IM - 11/02/2019. Tema 1 (parte di esercizi)

Analisi Matematica 1 per IM - 11/02/2019. Tema 1 (parte di esercizi) Analisi Matematica per IM - /2/29 Cognome e Nome:....................................... Matricola:.................. Docente:.................. Tempo a disposizione: due ore. Il candidato, a meno che

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

Università degli Studi di Verona

Università degli Studi di Verona Università degli Studi di Verona Dipartimento di Informatica Ca' Vignal 2 Strada le Grazie 5 3734 Verona - Italia Tel. +39 045 802 7069 Fax +39 045 802 7068 Corso di Laurea in Matematica Applicata PROVETTA

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

UNIVERSITÁ DEGLI STUDI DI PERUGIA Facoltá di Ingegneria Edile-Architettura Prova scritta di ANALISI MATEMATICA I Soluzione della prova del

UNIVERSITÁ DEGLI STUDI DI PERUGIA Facoltá di Ingegneria Edile-Architettura Prova scritta di ANALISI MATEMATICA I Soluzione della prova del UNIVERSITÁ DEGLI STUDI DI PERUGIA Facoltá di Ingegneria Edile-Architettura Prova scritta di ANALISI MATEMATICA I Soluzione della prova del 05.0.008. Stabilire, al variare di x IR, il comportamento della

Dettagli

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza

ANALISI MATEMATICA 1 Commissione L. Caravenna, V. Casarino, S. Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza ANALISI MATEMATICA Commissione L Caravenna, V Casarino, S Zoccante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Nome, Cognome, numero di matricola: Vicenza, 7 Luglio 205 TEMA - parte B Esercizio

Dettagli

Argomento 6 Derivate

Argomento 6 Derivate Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =

Dettagli

ANALISI MATEMATICA I (Versione A) - 24 Novembre 2000 RISOLUZIONE. = 4x 2 + 8x 3 + o(x 3 )

ANALISI MATEMATICA I (Versione A) - 24 Novembre 2000 RISOLUZIONE. = 4x 2 + 8x 3 + o(x 3 ) ANALISI MATEMATICA I (Versione A) - 4 Novembre 000 RISOLUZIONE ESERCIZIO 1. Data la funzione = (e x 1) log(1 + 4x ) : 1. Calcolare lo sviluppo di ordine 3 di MacLaurin di. Scriviamo gli sviluppi di ordine

Dettagli

40 ESERCIZI SUL CALCOLO DIFFERENZIALE ECONCETTICOLLEGATI

40 ESERCIZI SUL CALCOLO DIFFERENZIALE ECONCETTICOLLEGATI 40 ESERCIZI SUL CALCOLO DIFFERENZIALE ECONCETTICOLLEGATI Derivate parziali e piani tangenti Scrivere l equazione del piano tangente al grafico delle funzioni: f(, y) = (y ) + log nel punto = y = y + f(,

Dettagli

Analisi Matematica 1 per IM - 15/07/2019. Tema 1 (parte di esercizi)

Analisi Matematica 1 per IM - 15/07/2019. Tema 1 (parte di esercizi) Analisi Matematica per IM - /07/09 Cognome e Nome:....................................... Matricola:.................. Docente:.................. Tempo a disposizione: due ore. Il candidato a meno che

Dettagli

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Primo compito in itinere 21 Novembre 2016

Politecnico di Milano Ingegneria Industriale Analisi e Geometria 1 Primo compito in itinere 21 Novembre 2016 Politecnico di Milano Ingegneria Industriale Analisi e Geometria Primo compito in itinere Novembre 0 Cognome: Nome: Matricola: Compito A T: 5 punti T: punti Totale Es: 7 punti Es: 7 punti Es: 0 punti Totale

Dettagli

2. determinare i limiti agli estremi del dominio, eventuali asintoti, eventuali punti in cui è possibile prolungare la funzione per continuità;

2. determinare i limiti agli estremi del dominio, eventuali asintoti, eventuali punti in cui è possibile prolungare la funzione per continuità; ANALISI MATEMATICA Commissione L. Caravenna, V. Casarino, S. occante Ingegneria Gestionale, Meccanica e Meccatronica, Vicenza Vicenza, 27 Gennaio 25 TEMA - arte B Esercizio ( unti). Si consideri la funzione

Dettagli

Modulo di Matematica

Modulo di Matematica Università degli Studi di Udine Anno Accademico 205/206 Corso di Laurea in Biotecnologie Modulo di Matematica Esame del 20/07/206 N.B.: scrivere nome, cognome e numero di matricola su ogni foglio consegnato.

Dettagli

Analisi Matematica per Informatici Esercitazione 9 a.a

Analisi Matematica per Informatici Esercitazione 9 a.a Analisi Matematica per Informatici Esercitazione 9 a.a. 006-007 Dott. Simone Zuccher 0 Febbraio 007 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore

Dettagli

Analisi Matematica per Bio-Informatici Esercitazione 08 a.a

Analisi Matematica per Bio-Informatici Esercitazione 08 a.a Analisi Matematica per Bio-Informatici Esercitazione 08 a.a. 007-008 Dott. Simone Zuccher 4 Gennaio 008 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore

Dettagli

Istituzioni di matematica

Istituzioni di matematica Istituzioni di matematica TUTORATO 1 - Soluzioni Mercoledì 1 novembre 018 Esercizio 1. Studiare la seguente funzione e tracciarne il graco f(x) = x + 1 + 5 x D = {x R : x 0} = R \ {0} - La funzione non

Dettagli

E := 2. a k := 2(2n 1) (2n 1) + 1 ( 1)n+1 = ( 1) n+1( 2 1 ) 1 2m 1 ;

E := 2. a k := 2(2n 1) (2n 1) + 1 ( 1)n+1 = ( 1) n+1( 2 1 ) 1 2m 1 ; Ingegneria Elettronica e Informatica Analisi Matematica a Foschi) Compito dell 8..08. Determina tutti i punti di accumulazione dell insieme { k E := k + k sin π ) } : k N. Soluzione: L insieme E è formato

Dettagli

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO. f(x) = (µx ± 2µ) e 1/x,

CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO. f(x) = (µx ± 2µ) e 1/x, CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I E II MODULO, II MODULO I PROVA SCRITTA DI GIUGNO 2005: SOLUZIONI ESERCIZIO - Data la funzione f(x) = (µx ± 2µ) e 1/x, si chiede di: a) calcolare

Dettagli