Analisi Matematica I

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Analisi Matematica I"

Transcript

1 Università degli Studi di Udine Anno Accademico 997/98 Cognome e Nome: Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica Analisi Matematica I Compitino del 3 aprile 998 Matricola: Documento di identità se chiesto: Si prega di consegnare anche il presente testo Si intende 30 come punteggio pieno Data la funzione f := /, a determinare il dominio naturale, Df, di f non considerare gli 0; b determinare l insieme dei punti di accumulazione, la chiusura, la parte interna e la frontiera di Df; c studiare la continuità, la prolungabilità, e l eventuale comportamento asintotico all infinito Data la successione definita per induzione da a 0 := 3, a n+ := a n 3 per n 0, a dimostrare che è itata inferiormente; b dimostrare che è monotona; c studiarne il comportamento al ite per n + ; d dimostrare che tutti i termini della successione escluso a 0 sono numeri interi dispari Se a n è dispari allora si scrive come a n =m+ per un qualche m Z; ma allora a n+ = 3 Calcolare il seguente ite al variare del parametro a>0: a sena 0 cos a 4 Provare che la seguente successione non ha ite: b n = n sen π +nπ Punti: +3+5, , 8, 6

2 Università degli Studi di Udine Anno Accademico 996/97 Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica Analisi Matematica I Compitino del 3 aprile 998 Svolgimento a Visto che quando la base è > 0 la potenza può avere qualsiasi esponente reale, l unica operazione problematica per calcolare f := / è la divisione per, che si può fare solo quando 0, cioè quando / {, } Per una potenza a esponente reale qualsiasi, come la nostra, non consideriamo buone basi i numeri 0 Quindi possiamo prendere come dominio naturale di f l insieme Df =]0, [ ], + [ C è un pizzico di arbitrarietà nell escludere gli 0, in quanto ci sono degli <0 per i quali l esponente / è intero quali?, e per i quali quindi la f sarebbe definita, ma non ce ne occupiamo b L insieme Df è l unione dei due intervalli aperti ]0, [ e ], + [, e quindi è aperto e la sua parte interna Df è Df stesso Essendo aperto non ha punti isolati e la sua chiusura Df coincide con l insieme Df dei punti di accumulazione In generale la chiusura di un intervallo è l intervallo chiuso con gli stessi estremi, e A B = A B Applicando tali regole a Df risulta Df =Df =[0, ] [, + [ = [0, + [ La frontiera di Df è la chiusura meno la parte interna, cioè [0, + [ \ Df =[0, + [ \ Df ={0, } c Cominciamo riscrivendo la potenza in base e: Df Df Df Df Df 0 / = e ln / ln ln La f risulta quindi la composizione della funzione esponenziale ep, che è continua ovunque, con la funzione ln che è continua dove è definita, perché tali sono i fattori / e ln Pertanto anche la f è continua su Df La prolungabilità si studia nei punti di frontiera, cioè in0einper 0 + il denominatore tende a, mentre il numeratore ln è una forma indeterminata 0 che se non è già nota si può decidere col cambio di variabile y = ln : ln = e y y = y e y e y = ln + per 0 + È noto che y/e y 0pery + l esponenziale è un infinito di ordine superiore rispetto alle potenze Tornando a noi, per 0 + l argomento dell esponenziale tende a 0/ = 0, per cui 0 + / La f è prolungabile con continuità in 0 con valore Veniamo al ite per Scrivendo ln = ep = / ln + può venire in mente la parentela col ite fondamentale ln+z z perz 0 In effetti, se poniamo =+z abbiamo che z 0perz eche / ln + z ln + z zz + ln + z z +z z +

3 Analisi Matematica I Svolgimento 3 aprile 998 Dunque ln + z = ep / z 0 z +z z = e La f risulta prolungabile per continuità anche in =, con valore e Infine studiamo il comportamento di f per + Possiamo scrivere, dividendo numeratore e denominatore per, f ln ln Si sa che ln 0per + il logaritmo è un infinito di ordine inferiore rispetto alle potenze Quindi e f = + ep + ln = = La f tende asintoticamente al valore per + Qui accanto c è un grafico di f prodotto per punti, con un algoritmo che a volte dà risultati fuorvianti Guardando la figura una delle congetture che possono venire in mente è che <f < e per tutti gli La cosa si può in effetti dimostrare senza troppa fatica Chi vuole cimentarsi può dare per scontato il fatto che ln+z z per ogni z> a Per ogni n 0 il termine a n è in quanto è un quadrato, per cui n a n 0 a n+ = a n = 3 per ogni n 0 Anche a 0 = 3 3,6055 è ovviamente 3/ Possiamo concludere che la successione a n è itata inferiormente da 3/, anche se non ci aspettiamo che questo sia l estremo inferiore b Uno sguardo alla tabella dei primi 7 valori di a n la fa ritenere robustamente crescente Cerchiamo di dimostrarlo Sotto che condizioni a n+ è maggiore di a n? a n+ = a n 3 >a n a n 3 > a n a n a n 3 > 0 a n 4 > 0 a n > a n > oppure a n < a n > 3 oppure a n < Definiamo la seguente proposizione: P n := 3<a n <a n+ Questa P n è vera per n = 0, in quanto 3 = 9 < 3 < 5 = 5 Inoltre se è vera per un qualche n 0 allora risulta in particolare che a n+ > 3, e quindi, per la formula trovata sopra avremo che a n+ è maggiore di a n+, il quale a sua volta è > 3 per ipotesi induttiva Insomma, P n P n + Per il principio di induzione la P n è vera per ogni n 0, e la successione è davvero strettamente crescente

4 Analisi Matematica I Svolgimento 3 aprile 998 Una dimostrazione alternativa sarebbe di provare per induzione che Qn := a n+ >a n > 0 è vera n 0 Per n =0è ovvia Se vale Qn per un certo n, in particolare possiamo elevare al quadrato ambo i membri di a n+ >a n perché entrambi positivi, e quindi successivamente a n+ >a n > 0 = a n+ >a n a n+ 3 >a n 3 a n+ 3 a n+ >a n+ > a n 3 La parte > 0 di Qn+ viene per la transitività: a n+ >a n+ insieme all ipotesi induttiva a n+ >a n > 0 dà a n+ >a n+ > 0, cioè Qn + Il punto a diventa superfluo se si prova che n a n è crescente, perché in tal caso si ha automaticamente inf n N a n = a 0 La successione è nella forma iterativa a n+ = ga n con g := 3/, e disegnando il grafico di g con quello della bisettrice y = si può visualizzare l andamento della successione, almeno g per i primissimi termini, come qui accanto 5 3 y= 5 c Sappiamo che una successione crescente ha sempre ite, e il ite è l estremo superiore della successione Possono succedere due cose: o tale estremo superiore è+ oè un numero l finito Dai conti che abbiamo fatto sulla nostra particolare a n siamo portati a propendere per la prima alternativa Per dimostrarlo, supponiamo per assurdo che valga la seconda: a n l R Allora l a n+ = a n 3 l 3 Per l unicità del ite deve valere l =l 3/, cioè l = l 3, che equivale a l l 3=0,cheè possibile solo quando l {, 3} D altra parte, per la crescenza di a n abbiamo che a n a 0 = 3 > 3, per cui deve risultare l a 0 = 3 > 3, che è incompatibile con l {, 3} Siamo costretti a concludere che a n ha per ite +, come ci aspettavamo d Dimostriamo per induzione che la proposizione Rn := a n è un intero dispari è vera per n Per n =è ovviamente vera, perché a = 5 Supponiamo che per un certo n sia vera, cioè che esista un intero m tale che a n =m + Allora a n+ = a n 3 = m + 3 = 4m +4m + 3 =m +m =m + m Poiché m + m è ancora un intero, m + m è un intero pari, e a n+ =m + m è un intero dispari Risulta quindi che anche Rn + è vera Questo conclude la dimostrazione Un ragionamento alternativo per dimostrare che a n + è di notare che, essendo a valori interi eccetto a 0, ed essendo strettamente crescente, deve crescere di almeno ad ogni passo Quindi per induzione a n a + n =4+n per ogni n e il risultato segue per confronto 3 Cerchiamo di far saltare fuori espressioni simili a quelle di iti fondamentali, dividendo numeratore e denominatore per : g a := a sena cos a = e ln a sena cos a = 3 ln e ln a a ln a a sena a cos a

5 Analisi Matematica I Svolgimento 3 aprile 998 Calcoliamo separatamente i iti dei vari termini: 00 g a e ln a e y = =, 0 ln a y 0 y sena sen y = =, 0 a y 0 y 0 cos =0, = a 0 a 0 = a 0 = a Possiamo ora calcolare separatamente i iti di numeratore e denominatore nella formula sopra: ln a e ln a 0 ln a a sena cos = ln a a =lna a, a =0 =0 a 0 a a ln a Non può succedere che il ite del numeratore sia zero, perché vale la disuguaglianza ln a a <aper ogni a>0 Anzi, il ite del numeratore è sempre < 0 Il fattore cos a è 0 per ogni R in quanto cos sempre Pertanto il denominatore ha lo stesso segno del restante fattore, e abbiamo: g a = 0 + g a = 0 + ln a e ln a ln a 0 + ln a e ln a ln a 0 a sena a cos a = a sena a cos a = <0 {}}{ ln a a 0 + =, <0 {}}{ ln a a 0 =+ Possiamo concludere che per nessun a>0 il ite proposto esiste, sebbene esistano i iti da destra e da sinistra e siano rispettivamente e+ Possiamo anche dire che il ite esiste ma è senza segno 4 L arco π + nπ cade nel punto 0, quando n è pari, e nel punto 0, per n dispari Pertanto sen π + nπ = n ela successione si riscrive come { b n = n sen π +nπ n = n n = = n per n pari, n =/n per n dispari La sottosuccessione di n b n formata dagli indici dispari, cioè n b n =n, tende a +, mentre quella degli indici pari, π +nπ n pari 0 b n n π nπ n dispari n b n+ =/n+, tende a 0 Quando due sottosuccessioni di una data successione hanno iti diversi necessariamente la successione non ha ite

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 00/ Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi sul primo semestre del

Dettagli

Esercitazioni di Matematica

Esercitazioni di Matematica Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +

Dettagli

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE

ANALISI MATEMATICA I-A. Prova scritta del 1/9/2009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ANALISI MATEMATICA I-A CORSO DI LAUREA IN FISICA Prova scritta del /9/009 TUTTE LE RISPOSTE DEVONO ESSERE MOTIVATE ESERCIZIO. Punti 8 Risolvere la seguente equazione nel campo complesso w 6 w 64 = 64 3

Dettagli

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore)

ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A Diario delle lezioni. Mercoledì 2 ottobre 2013 (2 ore) c Andrea Dall Aglio - Analisi Matematica: Diario delle lezioni - 8 novembre 0 ANALISI MATEMATICA I per Ingegneria Aerospaziale - A.A. 0-04 Diario delle lezioni Questo è un indice degli argomenti trattati

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

13 LIMITI DI FUNZIONI

13 LIMITI DI FUNZIONI 3 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione caratterizzazione per successioni) Si ha fx) = L x 0, L R) se e solo se per ogni successione a n x 0 con

Dettagli

23 INVERTIBILITÀ E CONTINUITÀ

23 INVERTIBILITÀ E CONTINUITÀ 23 INVERTIBILITÀ E CONTINUITÀ Ricordiamo che se A, B sono insiemi e f : A B è una funzione iniettiva, ovvero a 1 a 2 = fa 1 ) fa 2 ), allora la relazione gb) = a fa) = b definisce una funzione g : Im f

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 008/09 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica Esercizi di Analisi Matematica Esercizi del 4 ottobre 008 Dimostrare

Dettagli

Esercizi sulle Funzioni

Esercizi sulle Funzioni AM0 - A.A. 03/4 ALFONSO SORRENTINO Esercizi sulle Funzioni Esercizio svolto. Trovare i domini di definizione delle seguenti funzioni: a) f) sin + cos ; b) g) log ) ; c) h) sin + e sin. Soluzione. a) La

Dettagli

ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI DISCONTINUITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI CONTINUE Sia f : domf R una funzione e sia x 0 domf (esista cioè f(x 0 ) R) Possono verificarsi due casi: il

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 005/06 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica Esercizi di Analisi Matematica Esercizi del 9 settembre 005 Dimostrare

Dettagli

Esercizi riguardanti limiti di successioni e di funzioni

Esercizi riguardanti limiti di successioni e di funzioni Esercizi riguardanti iti di successioni e di funzioni Davide Boscaini Queste sono le note da cui ho tratto le esercitazioni del giorno 0 Novembre 20. Come tali sono ben lungi dall essere esenti da errori,

Dettagli

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti

Limiti e continuità. Teoremi sui limiti. Teorema di unicità del limite Teorema di permanenza del segno Teoremi del confronto Algebra dei limiti Limiti e continuità Teorema di unicità del ite Teorema di permanenza del segno Teoremi del confronto Algebra dei iti 2 2006 Politecnico di Torino 1 Se f(x) =` ` è unico Per assurdo, siano ` 6= `0 con f(x)

Dettagli

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006 Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/2/2006 COGNOME NOME MATRICOLA.) Determinare 2. + 2 Possibile svolgimento. Il ite proposto si presenta nella forma indeterminata [

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti.

Seconda prova in itinere di Analisi Matematica 1 Ingegneria Elettronica. Politecnico di Milano. A.A. 2015/2016. Prof. M. Bramanti. Seconda prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 5/6. Prof. M. Bramanti Tema n 3 5 6 Tot. Cognome e nome (in stampatello) codice persona (o n

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 0/3 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica e TWM Esercizi di Analisi Matematica Esercizi del 0 ottobre 0 La sottrazione

Dettagli

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A

Matematica A Corso di Laurea in Chimica. Prova scritta del Tema A Matematica A Corso di Laurea in Chimica Prova scritta del 7..6 Tema A P) Data la funzione f(x) = ex+ x determinarne (a) campo di esistenza; (b) zeri e segno; (c) iti agli estremi del campo di esistenza

Dettagli

LIMITI - ESERCIZI SVOLTI

LIMITI - ESERCIZI SVOLTI LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ±

Dettagli

Limiti di funzioni. Hynek Kovarik. Università di Brescia. Analisi Matematica 1

Limiti di funzioni. Hynek Kovarik. Università di Brescia. Analisi Matematica 1 Limiti di funzioni Hynek Kovarik Università di Brescia Analisi Matematica 1 Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi Matematica 1 1 / 38 Cenni di topologia La nozione di intorno

Dettagli

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006

Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006 Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 5. Funzioni continue Soluzione dell Esercizio 76. Osserviamo che possiamo scrivere p() = n (a n + u()) e q() = m (b m + v()) con lim

Dettagli

15 LIMITI DI FUNZIONI

15 LIMITI DI FUNZIONI 5 LIMITI DI FUNZIONI Estendiamo la nozione di ite a funzioni reali di variabile reale. Definizione (caratterizzazione per successioni) Si ha f(x) = L (x 0, L R) se e solo se per ogni successione a n x

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 64555 - Fax +39 09 64558 Analisi Matematica Testi d esame e Prove parziali a prova - Ottobre

Dettagli

Esercizi di Analisi Matematica

Esercizi di Analisi Matematica Università degli Studi di Udine Anno Accademico 006/07 Facoltà di Scienze Matematiche Fisiche e Naturali Corso di Laurea in Informatica Esercizi di Analisi Matematica Esercizi del 3 ottobre 006 Dimostrare

Dettagli

Una funzione è continua in un intervallo chiuso e limitato [a,b] se e solo se è continua in ogni punto dell intervallo.

Una funzione è continua in un intervallo chiuso e limitato [a,b] se e solo se è continua in ogni punto dell intervallo. FUNZIONI CONTINUE. PUNTI DI DISCONTINUITA. OPERAZIONI SUI LIMITI. CALCOLO DI LIMITI CHE SI PRESENTANO IN FORMA INDETERMINATA LIMITI NOTEVOLI E APPLICAZIONI Angela Donatiello DEF. di Funzione Continua in

Dettagli

Appello del 16/2/2017 Matematica per l Economia lettere E-Z, a.a , compito A, prof. Gianluca Amato

Appello del 16/2/2017 Matematica per l Economia lettere E-Z, a.a , compito A, prof. Gianluca Amato Corso di Laurea in Economia e Management Appello del 16//017 Matematica per l Economia lettere E-Z, a.a. 016 017, compito A, prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo

Dimostrazione. Indichiamo con α e β (finiti o infiniti) gli estremi dell intervallo I. Poniamo C.6 Funzioni continue Pag. 114 Dimostrazione del Corollario 4.25 Corollario 4.25 Sia f continua in un intervallo I. Supponiamo che f ammetta, per x tendente a ciascuno degli estremi dell intervallo, iti

Dettagli

Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 26/01/2007

Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 26/01/2007 Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 6/0/007 COGNOME NOME MATRICOLA 3 sin( ) e 3 + ) Determinare ( cos()) Possibile svolgimento Il ite proposto si presenta nella forma

Dettagli

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09

UNIVERSITA DEL SALENTO CORSO DI LAUREA IN MATEMATICA Prova scritta di ANALISI MATEMATICA I 19/01/09 UNIVERSITA DEL SALENTO Prova scritta di ANALISI MATEMATICA I 19/01/09 1 Determinare sup/inf max/min) e insieme dei punti di accumulazione del seguente insieme: E = {x R e x 5e x + 6) arctan x 1 x) < 1}

Dettagli

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso.

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso. Esercitazione 8 Novembre 018 1. Stabilire quali delle seguenti affermazioni sono vere e quali false. 1.1. Se una funzione f(x) è definita in un intervallo aperto (a, b), ha senso chiedersi se esistono

Dettagli

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti

FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti FUNZIONI ELEMENTARI, DISEQUAZIONI, NUMERI REALI, PRINCIPIO DI INDUZIONE Esercizi risolti Discutendo graficamente la disequazione x > 3 + x, verificare che l insieme delle soluzioni è un intervallo e trovarne

Dettagli

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di

Dettagli

Verso il calcolo dei limiti: alcuni risultati generali

Verso il calcolo dei limiti: alcuni risultati generali Verso il calcolo dei iti: alcuni risultati generali Ci proponiamo adesso di enunciare e dimostrare alcuni fatti di per sé piuttosto intuitivi, che trovano una giustificazione grazie al concetto di ite.

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Algebra dei limiti. quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha. lim. f (x)

Algebra dei limiti. quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha. lim. f (x) Algebra dei limiti Teorema. Se lim f () = l R e lim g() = m R, allora, 0 0 quando l espressione a secondo membro è definita (non si hanno forme indeterminate), si ha lim (f () + g()) = lim f () + lim g()

Dettagli

19 LIMITI FONDAMENTALI - II

19 LIMITI FONDAMENTALI - II 19 LIMITI FONDAMENTALI - II 3. Il ite che permette il calcolo di forme indeterminate in cui sono presenti funzioni logaritmiche è: log1 + = 1. La dimostrazione di questo ite si ha subito dal ite Esempio.

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

Analisi Matematica 1 - Ingegneria Aerospaziale Compitino del 22 febbraio Soluzioni

Analisi Matematica 1 - Ingegneria Aerospaziale Compitino del 22 febbraio Soluzioni PRIMA PARTE Analisi Matematica 1 - Ingegneria Aerospaziale Compitino del febbraio 008 - Soluzioni 1. Si consideri la successione a n ) n definita da a n := 3)n + 1 3 n n Allora p. 1/ 1 per domanda) a)

Dettagli

Successioni ricorsive

Successioni ricorsive Successioni ricorsive Emanuele Paolini Analisi Matematica I, 015 016 In queste note prenderemo in considerazione le successioni a n definite per ricorrenza o ricorsivamente dalle condizioni: a1 = α, (1)

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 08/9 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 7 novembre 08

Dettagli

ESERCIZIO SULLE FUNZIONI DI DUE VARIABILI. g(x, y). x arctan x + y 2.

ESERCIZIO SULLE FUNZIONI DI DUE VARIABILI. g(x, y). x arctan x + y 2. Sia f : R R la funzione definita da ESERCIZIO SULLE FUNZIONI DI DUE VARIABILI f, y = + y 4 y + 4, y R e sia g la funzione di due variabili reali definita da g, y = f, y + y.. Determinare il dominio D di

Dettagli

ANNO ACCADEMICO 2016/2017 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA IV appello 12/1/2017 1

ANNO ACCADEMICO 2016/2017 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA IV appello 12/1/2017 1 ANNO ACCADEMICO 016/017 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA IV appello 1/1/017 1 Esercizio 1. Una scatola contiene 10 monete; 8 di queste sono equilibrate, mentre le altre danno testa con probabilità

Dettagli

Limiti di funzioni di una variabile

Limiti di funzioni di una variabile Capitolo 6 Limiti di funzioni di una variabile 6.1 Limiti all infinito La definizione di ite data per le successioni si può immediatamente trasportare al caso di una funzione definita in un qualunque insieme

Dettagli

ANALISI 1 1 QUARTA LEZIONE

ANALISI 1 1 QUARTA LEZIONE ANALISI 1 1 QUARTA LEZIONE 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti 1/C email: saccon@mail.dm.unipi.it web: http://www2.ing.unipi.it/ d6081/index.html Ricevimento:

Dettagli

Corso di Analisi Matematica 1 - professore Alberto Valli

Corso di Analisi Matematica 1 - professore Alberto Valli Università di Trento - Corso di Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio - 07/8 Corso di Analisi Matematica - professore Alberto Valli 7 foglio di esercizi - 8 novembre 07

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2

QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 2017/18 23 LUGLIO 2018 CORREZIONE. x 4 f(x) = x 2 + x 2 QUINTO APPELLO DEL CORSO DI ANALISI MATEMATICA CORSO DI LAURA IN INFORMATICA, A.A. 27/8 23 LUGLIO 28 CORREZIONE Esercizio ) Considerate la funzione f definita da f(x) = x 2 + x 2. Trovatene il dominio

Dettagli

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Limiti e funzioni continue

Matematica per le Applicazioni Economiche I A.A. 2017/2018 Esercizi con soluzioni Limiti e funzioni continue Matematica per le Applicazioni Economiche I AA 07/08 Esercizi con soluzioni Limiti e funzioni continue ottobre 07 Limiti Esercizio Usando l'opportuna denizione di ite, si verichi che + 5 Soluzione Osserviamo

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

15. Funzioni continue: esercizi

15. Funzioni continue: esercizi 15. Funzioni continue: esercizi Esercizio 15.7. Data la funzione f : R f(r) con legge α se 0 f() = β 2 se > 0, 1. dire se per α = β = 1 la funzione è invertibile e, in caso affermativo, determinare dominio,

Dettagli

Istituzioni di Matematiche terza parte

Istituzioni di Matematiche terza parte Istituzioni di Matematiche terza parte anno acc. 2013/2014 Univ. degli Studi di Milano D.Bambusi, C.Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 45 index Il concetto di ite 1 Il

Dettagli

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A

Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica), a.a. 2007/08. Insiemi numerici: sup A, inf A Facoltà di Scienze MFN, Università di Cagliari Analisi Matematica 1 (Informatica, a.a. 2007/08 Esercizi: Parte 1 Insiemi numerici: sup A, inf A 1. Verificare se A, nel caso sia non vuoto, è limitato superiormente,

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A ST) V I foglio di esercizi ESERCIZIO. Si calcoli + sin t) dt t cos t + log + t))dt e + tg t + e t )dt cos t dt t. Calcoliamo il primo dei due. Si tratta di un ite della

Dettagli

1 Successioni di funzioni

1 Successioni di funzioni Successioni di Esercizio.. Studiare la convergenza puntuale ed uniforme della seguente successione di (.) f n (x) = n x Osserviamo che fissato x R f n(x) = + n x x R. x ( n + x ) = pertanto la successione

Dettagli

Limiti di successioni

Limiti di successioni Capitolo 5 Limiti di successioni 5.1 Successioni Quando l insieme di definizione di una funzione coincide con l insieme N costituito dagli infiniti numeri naturali 1, 2, 3,... talvolta si considera anche

Dettagli

1 Limiti e continuità per funzioni di una variabile

1 Limiti e continuità per funzioni di una variabile 1 Limiti e continuità per funzioni di una variabile Considerazioni introduttive Consideriamo la funzione f() = sin il cui dominio naturale è R\ {0}. Problema: non è possibile calcolare il valore di f per

Dettagli

Prove scritte di Analisi I - Informatica

Prove scritte di Analisi I - Informatica Prove scritte di Analisi I - Informatica Prova scritta del 3 gennaio Esercizio Stabilire il comportamento delle seguenti serie: n= n + 3 sin n, n= ( ) n n + 3 sin n, n= (n)! (n!), n= n + n 9 n + n. Esercizio

Dettagli

Analisi Matematica 1+2

Analisi Matematica 1+2 Università degli Studi di Genova Facoltà di Ingegneria - Polo di Savona via Cadorna 7-700 Savona Tel. +39 09 264555 - Fax +39 09 264558 Ingegneria Gestionale Analisi Matematica +2 A.A 998/99 - Prove parziali

Dettagli

Esame di Matematica e Abilità Informatiche - 12 Luglio Le soluzioni

Esame di Matematica e Abilità Informatiche - 12 Luglio Le soluzioni Esame di Matematica e Abilità Informatiche - Luglio 3 Le soluzioni. Data la funzione f ( ln( a. trova il dominio di f b. scrivi, esplicitamente e per esteso, quali sono gli intervalli in cui f( risulta

Dettagli

CORSO DI LAUREA IN MATEMATICA

CORSO DI LAUREA IN MATEMATICA CORSO DI LAUREA IN MATEMATICA ESERCITAZIONI DI ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia

Dettagli

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA I appello 29/5/2018 1

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA I appello 29/5/2018 1 ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA I appello 29/5/2018 1 Esercizio 1. Una classe di liceo è composta da 12 ragazze e 9 ragazzi. La professoressa di matematica interroga

Dettagli

Temid esamesvolti-1. Analisi delle funzioni

Temid esamesvolti-1. Analisi delle funzioni Temi d esame svolti - 1 1 Temid esamesvolti-1 Analisi delle funzioni (91003) 1 Si consideri la funzione definita a tratti su tutto R: ½ + sin 1 f() =, 6= 0 k, =0 (a) Per quale valore di k la funzione è

Dettagli

Università degli Studi di Verona

Università degli Studi di Verona Tipologia A 1.1 Si enunci il teorema dei carabinieri e se ne dia un esempio di applicazione. 1.2 Sia f : R R una funzione derivabile con derivata continua, la cui derivata si annulla solo in un punto x

Dettagli

Infiniti e Infinitesimi

Infiniti e Infinitesimi Infiniti e Infinitesimi Infiniti e Infinitesimi Def. Una funzione f() si dice infinitesima per (o per ), punto di accumulazione per il dominio di f(), se: f ( ) ( oppure f ( ) ) Infiniti e Infinitesimi

Dettagli

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno.

a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre gli zeri di f e studiarne il segno. 1 ESERCIZI CON SOLUZIONE DETTAGLIATA Esercizio 1. Si consideri la funzione f(x) = e x 3e x +. a) Determinare il dominio, i limiti agli estremi del dominio e gli eventuali asintoti di f. Determinare inoltre

Dettagli

CORSO DI LAUREA IN FISICA

CORSO DI LAUREA IN FISICA CORSO DI LAUREA IN FISICA ANALISI MATEMATICA I BREVI RICHIAMI DELLA TEORIA DEI LIMITI. Confronto di infinitesimi. Sia A sottoinsieme di R, sia 0 punto di accumulazione di A nella topologia di R quindi

Dettagli

LA FORMULA DI TAYLOR

LA FORMULA DI TAYLOR LA FORMULA DI TAYLOR LORENZO BRASCO Indice. Definizioni e risultati. Sviluppi notevoli 3.. Esponenziale 4.. Seno 4.3. Coseno 4.4. Una funzione razionale 5.5. Logaritmo 6 3. Esercizi 6. Definizioni e risultati

Dettagli

Corso di Analisi Matematica Limiti di funzioni

Corso di Analisi Matematica Limiti di funzioni Corso di Analisi Matematica Limiti di funzioni Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 39 1 Definizione di ite 2 Il calcolo dei

Dettagli

1. Esercizi. E SE R C I Z I O 1.2. Calcolare il limite. 3 + x α. lim. 2 + x

1. Esercizi. E SE R C I Z I O 1.2. Calcolare il limite. 3 + x α. lim. 2 + x Esercizi In questo paragrafo svolgiamo parecchi esempi allo scopo di illustrare la tecnica dei confronti asintotici Da un uso accorto di questa tecnica segue la possibilità di calcolare molti iti senza

Dettagli

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( )

R. Capone Analisi Matematica Limiti di una funzione reale di variabile reale ESERCIZI SUI LIMITI DI FUNZIONE ( ) Esercizio proposto N 1 Verificare che ESERCIZI SUI LIMITI DI FUNZIONE Si ricordi la definizione di ite finito in un punto: Pertanto, applicando la definizione al caso concreto, si ha: o, ciò che è lo stesso:

Dettagli

Studio Qualitativo di Funzione

Studio Qualitativo di Funzione Studio Qualitativo di Funzione Reperire un certo numero di informazioni, per descrivere a livello qualitativo l andamento di una funzione y = f() : 1. campo di esistenza ( insieme di definizione ) 2. segno:

Dettagli

Corso di Laurea in Matematica Applicata PROVA DI ANALISI MATEMATICA 1 Mod. 1-1/12/2014 Tipologia A

Corso di Laurea in Matematica Applicata PROVA DI ANALISI MATEMATICA 1 Mod. 1-1/12/2014 Tipologia A Tipologia A 1.1 Si enunci il teorema di Bolzano Weierstrass e si dia un esempio di successione itata che non ammette ite. 1.2 Il ite x 0 + x3 e 1/x non esiste; vale 0; vale 1; vale + ; 1.3 Sia f : R R

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. CdS Sviluppo Economico e Cooperazione Internazionale. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia CdS Sviluppo Economico e Cooperazione Internazionale Appunti del corso di Matematica 05 - Limiti Anno Accademico 2013/2014 D. Provenzano M. Tumminello,

Dettagli

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche

Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche C.7 Serie Pag. 151 Dimostrazioni dei criteri per lo studio della convergenza di serie numeriche Teorema 5.29 (Criterio del confronto) Siano e due serie numeriche a termini positivi e si abbia 0, per ogni

Dettagli

Corso di Analisi Matematica. Comportamenti asintotici

Corso di Analisi Matematica. Comportamenti asintotici a.a. 2013/2014 Laurea triennale in Informatica Corso di Analisi Matematica Comportamenti asintotici Avvertenza Questi sono appunti informali delle lezioni, che vengono resi disponibili per comodità degli

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale

FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio

Dettagli

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1.

Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA 1. Prova scritta del 14 gennaio 2017 Fila 1. Corso di Laurea in Ingegneria Biomedica ANALISI MATEMATICA Prova scritta del gennaio 207 Fila. Esporre il procedimento di risoluzione degli esercizi in maniera completa e leggibile.. (Punti 6) Determinare

Dettagli

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) =

STUDIO DI UNA FUNZIONE INTEGRALE. Z x. ln t ln t 2 2 dt. f(x) = STUDIO DI UNA FUNZIONE INTEGRALE Studiamo la funzione f di una variabile reale, a valori in R, definitada. Il dominio di f. f() = Z Denotiamo con g la funzione integranda. Allora g(t) = numeri reali tali

Dettagli

Vicenza, 12 settembre 2016 Si consideri la funzione. sinh 2x sinh 2x 1 3x. f(x) =

Vicenza, 12 settembre 2016 Si consideri la funzione. sinh 2x sinh 2x 1 3x. f(x) = ANALISI MATEMATICA - Traccia di soluzioni Commissione F. Albertini, L. Caravenna e V. Casarino Ingegneria Gestionale, Meccanica, Meccatronica, Vicenza Esercizio, Tema [9 punti] Vicenza, settembre 06 Si

Dettagli

DEFINIZIONE PROVVISORIA DI LOGARITMO ED ESPONENZIALE

DEFINIZIONE PROVVISORIA DI LOGARITMO ED ESPONENZIALE DEFINIZIONE PROVVISORIA DI LOGARITMO ED ESPONENZIALE 0 novemre 20 Come dice il titolo, in questi appunti vogliamo dare una definizione rigorosa, ma provvisoria, dei logaritmi e degli esponenziali. Si tratta

Dettagli

1 - Estremo superiore ed estremo inferiore di insiemi

1 - Estremo superiore ed estremo inferiore di insiemi - Estremo superiore ed estremo inferiore di insiemi Prima di affrontare gli esercizi su estremo superiore ed inferiore, ricordiamo alcune definizioni ed alcuni teoremi che ci verranno utili. Definizione.

Dettagli

Correzione del secondo compitino di Analisi 1 e 2 A.A. 2014/2015

Correzione del secondo compitino di Analisi 1 e 2 A.A. 2014/2015 Correzione del secondo compitino di Analisi e 2 AA 20/205 Luca Ghidelli, Giovanni Paolini, Leonardo Tolomeo febbraio 206 Esercizio Testo Dire per quali valori del parametro reale α, < α 3, la funzione

Dettagli

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68

Limiti e continuità. Hynek Kovarik. Analisi A. Università di Brescia. Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Limiti e continuità Hynek Kovarik Università di Brescia Analisi A Hynek Kovarik (Università di Brescia) Limiti e continuità Analisi A 1 / 68 Cenni di topologia La nozione di intorno Sia x 0 R e r > 0.

Dettagli

Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi. 1 2 n + 5 n 10 n n + 1.

Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi. 1 2 n + 5 n 10 n n + 1. Soluzioni di alcuni esercizi degli esoneri e di due esercizi dei fogli di esercizi NOTA: PER FARE PIÚ ALLA SVELTA NON HO SCRITTO TUTTI I DETTAGLI DELLE SOLUZIONI. HO CERCATO DI SPIEGARE LE IDEE PRINCIPALI.

Dettagli

6 - Grafici di funzioni

6 - Grafici di funzioni 6 - Grafici di funzioni Dato una funzione reale di variabile reale f, si richiede di dare una rappresentazione (approssimata) del grafico di f, vale a dire delle coppie di punti di R 2 della forma (x,

Dettagli

ANALISI 1 1 SETTIMA / OTTAVA LEZIONE Confronto tra infinitesimi e infiniti Sottosuccessioni Limiti notevoli Limiti di funzioni

ANALISI 1 1 SETTIMA / OTTAVA LEZIONE Confronto tra infinitesimi e infiniti Sottosuccessioni Limiti notevoli Limiti di funzioni ANALISI 1 1 SETTIMA / OTTAVA LEZIONE Confronto tra infinitesimi e infiniti Sottosuccessioni Limiti notevoli Limiti di funzioni 1 prof. Claudio Saccon, Dipartimento di Matematica Applicata, Via F. Buonarroti

Dettagli

Compito A. Prova intermedia di Analisi Matematica I

Compito A. Prova intermedia di Analisi Matematica I Compito A Prova intermedia di Analisi Matematica I L Aquila, 5 novembre 2005 Docente: B. Rubino Cognome e nome: Matricola: Esercizio 1 Applicando il principio di induzione, dimostrare la seguente proprietà:

Dettagli

Istituzioni di Matematica I

Istituzioni di Matematica I Istituzioni di Matematica I Le soluzioni proposte costituiscono solo una traccia di possibili soluzioni (lo studente deve giustificare i vari risultati), possono esserci altri modi, altrettanto corretti,

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f).

Quando non espressamente detto, intendiamo che: f : R R x 0 R è punto di accumulazione per dom(f). Teoremi sui iti Quando non espressamente detto, intendiamo che: f : R R 0 R è punto di accumulazione per dom(f). Teorema di unicità del ite. Supponiamo che f ammetta ite l (finito o infinito) per 0. Allora

Dettagli

(ln 5)i 1 i. (c) (d) Scriviamo il numero complesso assegnato in forma algebrica:

(ln 5)i 1 i. (c) (d) Scriviamo il numero complesso assegnato in forma algebrica: Primo parziale Test. L argomento principale del numero complesso (ln 5)i i è (a) 4 π (b) (c) (d) Scriviamo il numero complesso assegnato in forma algebrica: Risposta esatta a) ln 5 i i = ln 5 i( + i) i

Dettagli