2. Fissato nello spazio un punto O, consideriamo lo spazio vettoriale geometrico

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "2. Fissato nello spazio un punto O, consideriamo lo spazio vettoriale geometrico"

Transcript

1 Algebra lineare (Mateatica C.I.) Fissato nello spazio un punto O, consideriao lo spazio vettoriale geoetrico S O dei vettori dello spazio con origine nel punto O. Sia π un piano passante per il punto O; per coe sono definite le operazioni fra vettori e fra vettori e scalari, si ha che (i) la soa di due vettori con origine O che stanno sul piano π e un vettore con origine O che sta ancora sul piano π; (ii) il prodotto di un vettore con origine O che sta sul piano π per uno scalare reale e un vettore con origine O che sta ancora sul piano π. Le stesse considerazioni valgono per una retta l passante per il punto O. Si ha che il punto O, le rette passanti per O, i piani passanti per O e l intero spazio sono gli unici sottinsiei non vuoti dello spazio che posseggono le proprieta sopra evidenziate. Queste considerazioni suggeriscono la seguente Definizione Un sottinsiee V R n si dice sottospazio dello spazio vettoriale R n se per ogni u, v V, anche u + v V; per ogni vettore u V ed ogni r R, anche ru V; 0 n V. Due esepi banali di sottospazi dello spazio vettoriale R n : l insiee {0 n } ridotto al vettore nullo di R n ; l intero spazio R n. Qualche altro esepio. Fissato un intero con n, consideriao l insiee V dei vettori di R n che hanno le coponenti dopo la a tutte nulle V = { x = [x i ] n : x + = 0, x +2 = 0,..., x n = 0. } L insiee V e un sottospazio di R n. 2. Fissato nello spazio un punto O, consideriao lo spazio vettoriale geoetrico S O dei vettori dello spazio con origine nel punto O. Sia l una retta passante per il punto O, e sia v S O un vettore che sta sulla retta l; se v e diverso dal vettore nullo, si ha che i vettori rv ultipli scalari di v descrivono al variare di r in R tutti e soli i vettori che stanno sulla retta l. Identificando ogni vettore col suo estreo libero, si ha dunque l = {rv; r R}. Sia π un piano passante per il punto O, e siano u, v S O due vettori che stanno sul piano π; se u e v non sono allineati, si ha che i vettori ru + sv

2 cobinazioni lineari di u e v descrivono al variare di r ed s in R tutti e soli i vettori che stanno sul piano π. Identificando ogni vettore col suo estreo libero, si ha dunque π = {ru + sv; r, s R}. Queste considerazioni suggeriscono la seguente Definizione 2 Dati v,..., v vettori in R n, l insiee di tutte cobinazioni lineari di v,..., v si dice sottospazio generato da v,..., v e si indica con v,..., v ; in siboli si ha v,..., v = {r v + + r v ; r,..., r R}. Osserviao che v,..., v e un sottospazio di R n in quanto per ogni u e v in v,..., v, si ha u = u + v = r i v i e v = r i v i + e dunque u + v sta in v,..., v. s i v i = s i v i, (r i + s i )v i per ogni u = r iv i in v,..., v, e per ogni r in R, si ha ru = r e dunque ru sta in v,..., v. r i v i = (rr i )v i si ha 0 n = 0v i e dunque 0 n sta in v,..., v. Osserviao inoltre che tutti i vettori v,..., v appartengono al sottospazio v,..., v ; infatti, per ogni i =, 2,..., si ha v i = 0v + + 0v i + v i + 0v i v. In realta v,..., v e il piu piccolo sottospazio di R n che contiene tutti i vettori v,..., v. Se V e un sottospazio di R n e v,..., v sono vettori in R n con V = v,..., v, allora diciao che V e generato da v,..., v e che v,..., v generano V.

3 3. Le rette per l origine nello spazio R 3 hanno coe analogo in R n i sottospazi u generati da un vettore non nullo 0 n = u R n ; i piani per l origine nello spazio R 3 hanno coe analogo in R n i sottospazi u, v generati da due vettori linearente indipendenti u R n ; siao cosi portati a considerare i sottospazi v,..., v generati da vettori linearente indipendenti v,..., v R n. Di seguito ostriao che ci si puo sepre ricondurre a questo caso. Siano v,..., v R n, con >. Se v e cobinazione lineare di v,..., v, allora v,..., v, v = v,..., v. Infatti, da un lato e chiaro che ogni cobinazione lineare di v,..., v e anche una cobinazione lineare di v,..., v, v. Dall altro, nell ipotesi che v sia cobinazione lineare di v,..., v, cioe che v si possa scrivere v = s v + + s v si ha pure che ogni cobinazione lineare di v,..., v, v r v + + r v + r v si puo scrivere r v + + r v + r (s v + + s v ) = (r + r s ) v + + (r + r s ) v e dunque e anche una cobinazione lineare di v,..., v. In odo analogo si prova che, se un vettore v i e cobinazione lineare dei rianenti v,..., v i, v i+,..., v allora v,..., v = v,..., v i, v i+,..., v. Iterando questo processo, si arriva a scrivere il sottospazio generato dall insiee dei vettori v,..., v coe il sottospazio generato da un sottinsiee di vettori v j,..., v jp linearente indipendenti v,..., v = v j,..., v jp. 4. Consideriao l equazione lineare oogenea in tre incognite x + 2x 2 + 3x 3 = 0, in breve a x = 0, dove a e il vettore riga dei tre coefficienti e x e il vettore colonna delle tre incognite. Possiao risolverla ricavando x = 2x 2 3x 3 e ponendo x 2 e x 3 uguali a paraetri liberi; le soluzioni saranno dunque date da x = x x 2 x 3 = 2p 3q p q = p q 3 0 = pu + qv

4 dove p e q variano liberaente in R. Dunque l insiee delle soluzioni dell equazione e il piano u, v generato dai vettori u, v. 5. Si ha che: l insiee delle soluzioni di una equazione lineare oogenea in tre incognite a x = 0 nella quale il vettore a dei coefficienti e non nullo, e un piano per l origine di R 3 ; l insiee delle soluzioni di un sistea di due equazioni lineari oogenee in tre incognite { a x = 0 a 2 x = 0 nel quale i vettori a, a 2 dei coefficienti sono non nulli e fra loro non proporzionali, e una retta per l origine di R 3 ; l insiee delle soluzioni di un sistea di tre equazioni lineari oogenee in tre incognite a x = 0 a 2 x = 0 a 3 x = 0 nel quale i vettori a, a 2, a dei coefficienti sono linearente indipendenti, e ridotto all origine di R 3. Tutti i piani di R 3 passanti per l origine e tutte le rette di R 3 passanti per l origine si trovano in questo odo. In generale si ha che l insiee delle soluzioni di un qualsiasi sistea lineare oogeneo in n incognite a x = 0 e un sottospazio di R n. Infatti:. a x = 0 (a,..., a R n ) se due vettori s, t R n sono soluzioni del sistea, cioe se a i s = 0, i =,..., e a it = 0, i =,..., allora per il vettore soa s + t si ha a i (s + t) = a i s + a i t = = 0, i =,..., cioe s + t e una soluzione del sistea;

5 se il vettore s R n e una soluzione del sistea, cioe se a i s = 0, i =,..., e se r e uno scalare, allora per il vettore rs si ha a i (rs) = r ( a i s) = r0 = 0, i =,...,, cioe rs e una soluzione del sistea; il vettore nullo 0 n e una soluzione del sistea in quanto a i 0 n = 0, i =,...,. Si prova che, se il vettore a i dei coefficienti della i a equazione e cobinazione lineare dei vettori a,..., a i, a i+,..., a dei coefficienti delle altre equazioni, allora il sistea a x = 0. a x = 0 ha le stesse soluzioni del sistea ottenuto cancellando la i a equazione. Iterando questo processo, si arriva a un sistea lineare oogeneo a j x = 0. a j p x = 0 nel quale i vettori a j,..., a j p dei coefficienti delle equazioni sono linearente indipendenti, e che ha le stesse soluzioni del sistea dato. 6. Nello spazio vettoriale R n abbiao evidenziato i vettori e che ha tutte le coponenti nulle tranne la pria che vale, e 2 che ha tutte le coponenti nulle tranne la seconda che vale,..., e n che ha tutte le coponenti nulle tranne la n a che vale ; abbiao osservato che i vettori e, e 2,..., e n sono linearente indipendenti e che ogni vettore x di R n si puo scrivere coe cobinazione lineare x = x e + x 2 e x n e n, dei vettori e, e 2,..., e n ; i coefficienti x, x 2,..., x n sono le coponenti del vettore x, e dunque questa scrittura e unica. Definizione 3 Sia V un sottospazio di R n e siano v,..., v vettori di V. Diciao che v,..., v forano una base di V se v,..., v sono linearente indipendenti; v,..., v generano V.

6 I vettori e, e 2,..., e n forano una base di R n, detta base canonica di R n ; il fatto che ogni vettore di R n si possa scrivere in uno ed un solo odo coe cobinazione lineare dei vettori della base canonica di R n vale piu in generale, nel senso della seguente Proposizione Sia V un sottospazio di R n e sia v,..., v una base di V. Allora ogni vettore v in V si puo scrivere in uno ed un solo odo coe cobinazione lineare v = r v + + r v di v,..., v. I coefficienti r,..., r si dicono pria,..., a coordinata di v rispetto alla base v,..., v. Di. Sia v un qualsiasi vettore del sottospazio V. I vettori v,..., v generano V, dunque v si puo scrivere in aleno un odo coe cobinazione lineare di v,..., v ; ora, se v = r v + + r v, e v = s v + + s v sono due scritture di v coe cobinazione lineare di di v,..., v, allora sottraendo ebro a ebro le due scritture otteniao 0 n = (r s )v + + (r s )v. I vettori v,..., v sono linearente indipendenti, dunque r s = 0,..., r s = 0, cioe r = s,..., r = s. 7. Si prova che ogni sottospazio di R n possiede aleno una base; in realta ciascun sottospazio non nullo di R n possiede infinite basi; vale pero il seguente Teorea, che non diostriao. Teorea Tutte le basi di uno stesso sottospazio V di R n sono forate dallo stesso nuero di vettori. Questo nuero si dice diensione del sottospazio e si indica con di(v). Chiaraente si ha di (R n ) = n. Per i sottospazi dati ediante generatori o equazioni oogenee valgono le Proposizione 2 Siano v,..., v R, e sia v,..., v = {r v + + r v ; r,..., r R} il sottospazio generato da v,..., v. Si ha di ( v,..., v ) di ( v,..., v ) = se e solo se v,..., v sono lin. indip.

7 Proposizione 3 Siano a,..., a R, e sia N (a,..., a ) = { x R n : a x = 0,..., a x = 0 } lo spazio delle soluzioni delle equazioni aventi coe coefficienti i vettori a,..., a. Si ha di (N (a,..., a )) n di (N (a,..., a )) = n se e solo se a,..., a sono lin. indip.

Lezione del 5 dicembre. Sottospazi vettoriali.

Lezione del 5 dicembre. Sottospazi vettoriali. Lezione del 5 dicembre. Sottospazi vettoriali. 1. Sottospazi vettoriali. Identificato lo spazio con R 3 tramite un sistema di riferimento cartesiano ortogonale, consideriamo un piano passante per l origine

Dettagli

ed un operazione di moltiplicazione per scalari reali u u 2u

ed un operazione di moltiplicazione per scalari reali u u 2u Geometria e Algebra (II), 0... Consideriamo il piano della geometria euclidea, intuitivamente inteso, e sia un punto fissato in esso. Sull insieme P dei vettori del piano applicati nel punto sono definite

Dettagli

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano

1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano Geometria e Algebra (II), 11.12.12 1. Complemento ortogonale di un vettore non nullo Abbiamo visto che nel piano P O i vettori ortogonali ad un dato vettore non nullo descrivono una retta per O, e nello

Dettagli

Esistono quando la funzione possiede punti di discontinuità di seconda specie. se esiste un punto singolare x

Esistono quando la funzione possiede punti di discontinuità di seconda specie. se esiste un punto singolare x Asintoti Una retta r si dice asintoto della curva di equazione y f() quando la distanza tra un punto P( y) della curva e la retta r tende a zero quando aleno una delle coordinate di P tende all' Esistono

Dettagli

Geometria e Topologia I (U1-4) 2006-mag-10 61

Geometria e Topologia I (U1-4) 2006-mag-10 61 Geometria e Topologia I (U1-4) 2006-mag-10 61 (15.9) Teorema. Consideriamo il piano affine. Se A A 2 (K) è un punto e r una retta che non passa per A, allora esiste unica la retta per A che non interseca

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

Analisi dei dati corso integrato - Algebra lineare,

Analisi dei dati corso integrato - Algebra lineare, Analisi dei dati corso integrato - Algebra lineare, 050308-2 1 Ortogonalita nel piano Sia fissato nel piano un sistema di riferimento cartesiano ortogonale monometrico, con origine in O Tranne avviso contrario,

Dettagli

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti:

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti: Combinazioni lineari [Abate, 4.2] Sia V uno spazio vettoriale e v 1, v 2,..., v n dei vettori di V. Diremo che un vettore w V è combinazione lineare dei vettori v 1,..., v n se esistono a 1, a 2,..., a

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2017/2018 Antonio Lanteri e Cristina Turrini (UNIMI - 2017/2018) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali

Dettagli

Spazi vettoriali. Indipendenza lineare.

Spazi vettoriali. Indipendenza lineare. Spazi vettoriali Indipendenza lineare Nel piano vettoriale G 2, fissato un punto O ed identificati i vettori con i segmenti orientati con origine in O, informalmente si puo dire che che due vettori sono

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Cristina Turrini UNIMI - 2018/2019 Cristina Turrini (UNIMI - 2018/2019) Elementi di Algebra Lineare 1 / 32 index Spazi vettoriali 1 Spazi vettoriali 2 Sottospazi

Dettagli

Facoltà di Scienze. Appello A

Facoltà di Scienze. Appello A Facoltà di Scienze Appello -2-28-A SOLUZIONI Esercizio. Discutere e risolvere almeno 3 dei seguenti esercizi. Giustificare sempre le risposte, fornendo una dimostrazione nel caso l affermazione sia vera

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 4: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Esercizio. Sono dati i seguenti sistemi lineari omogenei nelle incognite x, y, z: { x + y z = x + y z = x + y z = S : x y + z =, S :, S 3 : x 3y =,

Dettagli

GEOMETRIA I Prima Prova Intermedia 3 Novembre 2017

GEOMETRIA I Prima Prova Intermedia 3 Novembre 2017 Corso di Laurea in Fisica GEOMETRIA I Prima Prova Intermedia Novembre 017 Cognome: Nome: Matricola: PARTE 1 Test a risposta multipla Una ed una sola delle quattro affermazioni è corretta. Indicarla con

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2015/2016 Antonio Lanteri e Cristina Turrini (UNIMI - 2015/2016) Elementi di Algebra Lineare 1 / 37 index Spazi vettoriali

Dettagli

0 0 c. d 1. det (D) = d 1 d n ;

0 0 c. d 1. det (D) = d 1 d n ; Registro Lezione di Algebra lineare del 23 novembre 216 1 Matrici diagonali 2 Autovettori e autovalori 3 Ricerca degli autovalori, polinomio caratteristico 4 Ricerca degli autovettori, autospazi 5 Matrici

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA INDUSTRIALE 27 GENNAIO 2014 DOCENTE: MATTEO LONGO Rispondere alle domande di Teoria in modo esauriente e completo. Svolgere il maggior numero di esercizi

Dettagli

Esercizi svolti. delle matrici

Esercizi svolti. delle matrici Esercizi svolti. astratti. Si dica se l insieme delle coppie reali (x, y) soddisfacenti alla relazione x + y è un sottospazio vettoriale di R La risposta è sì, perchè l unica coppia reale che soddisfa

Dettagli

Elementi di Algebra Lineare Spazi Vettoriali

Elementi di Algebra Lineare Spazi Vettoriali Elementi di Algebra Lineare Spazi Vettoriali Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017) Elementi di Algebra Lineare 1 / 41 index Spazi vettoriali

Dettagli

SOLUZIONI (PROVA DELL 11 FEBBRAIO 2019) Due rette sghembe sono simultaneamente parallele a infiniti piani. [ V ]

SOLUZIONI (PROVA DELL 11 FEBBRAIO 2019) Due rette sghembe sono simultaneamente parallele a infiniti piani. [ V ] SOLUZIONI (PROVA DELL FEBBRAIO 209) Il rango per righe può superare di il rango per colonne [ F ] In R 6 possono esistere 7 generatori di un sottospazio [ V ] {( + 2k, 2 k, 0), (,, 0), (0, 0, )} è una

Dettagli

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2.

Trapani. Dispensa di Geometria, x 1 x 2.x n. (x 1 y 1 ) (x n y n ) 2. 2006 Trapani Dispensa di Geometria, 1 Distanze Siano P e Q punti di R n con P di coordinate allora la distanza tra P e Q e P Q = x 1 x 2 x n (x 1 y 1 ) 2 + (x n y n ) 2 e Q di coordinate Siano Σ 1 e Σ

Dettagli

Sistemi lineari e spazi vettoriali 1 / 14

Sistemi lineari e spazi vettoriali 1 / 14 Sistemi lineari e spazi vettoriali 1 / 14 Sistemi lineari 2 / 14 Studieremo sistemi lineari costituiti da m equazioni in n incognite (m,n N, m,n 1): cioè a 11 x 1 + +a 1n x n = b 1 a 21 x 1 + +a 2n x n

Dettagli

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2

1.[25 punti] Risolvere il seguente sistema di equazioni lineari al variare del parametro reale λ: X +Y +Z = 2. X 2Y +λz = 2 Università di Modena e Reggio Emilia Facoltà di Scienze MM.FF.NN. PROVA SCRITTA DI GEOMETRIA A del 27 giugno 2011 ISTRUZIONI PER LO SVOLGIMENTO. Scrivere cognome, nome, numero di matricola in alto a destra

Dettagli

b = p + q l q Diciamo che p e la proiezione ortogonale di b su l, e che q e la proiezione ortogonale di b su l.

b = p + q l q Diciamo che p e la proiezione ortogonale di b su l, e che q e la proiezione ortogonale di b su l. Matematica II, 4... rtogonalita nel piano. Fissato nel piano un punto, consideriamo il piano vettoriale P. Diamo per intuitivamente nota la nozione di ortogonalita fra due vettori non nulli. Per convenzione,

Dettagli

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 17 SETTEMBRE 2012

INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 17 SETTEMBRE 2012 INGEGNERIA EDILE ARCHITETTURA ELEMENTI DI ALGEBRA LINEARE E GEOMETRIA 7 SETTEMBRE 202 Esercizio. Sia V = R[X] 2 lo spazio vettoriale dei polinomi ax 2 + bx + c nella variabile X di grado al più 2 a coefficienti

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) 28 aprile 2014 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma) 28 aprile 2014 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (nuovo programma 8 aprile 04 Tema A Tempo a disposizione: ore e mezza. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti.

Cognome Nome A. Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti. Cognome Nome A Scrivere le risposte agli esercizi 1,2,3 negli spazi sottostanti. 1) 2) 3) Geometria e algebra lineare 5/11/2015 A 1) Sia π il piano passante per i punti A = ( 3, 2, 1), B = (0, 1, 2), C

Dettagli

2. Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse, quando è possibile:

2. Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse, quando è possibile: aa 5-6 Esercizi 5 Basi dimensione e coordinate Soluzioni Apostol: Sezione 5 Esercizi 6a 7 8 9 Determinare le dimensioni dei seguenti sottospazi W ed esibirne due basi basi diverse quando è possibile: i

Dettagli

LA RETTA DI REGRESSIONE LINEARE E SISTEMI SOVRADETERMINATI

LA RETTA DI REGRESSIONE LINEARE E SISTEMI SOVRADETERMINATI LA RETTA DI REGRESSIONE LINEARE E SISTEMI SOVRADETERMINATI MAURIZIO PAOLINI - CORSO PAS CLASSE A048 Dipartiento di Mateatica e Fisica, Università Cattolica, sede di Brescia. paolini@df.unicatt.it E-ail

Dettagli

3 settembre Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

3 settembre Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

24 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

24 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... 4 giugno 010 - Soluzione esame di geometria - 1 crediti Ingegneria gestionale - a.a. 009-010 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore.

Dettagli

Esame di Geometria - 9 CFU (Appello del 20 Giugno A)

Esame di Geometria - 9 CFU (Appello del 20 Giugno A) Esame di Geometria - 9 CFU (Appello del 20 Giugno 2012 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio 1. Siano dati, al variare del parametro k R, i piani: π 1 : x 2y + 2z = 2, π 2 : z =

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 8 LUGLIO 2015 MATTEO LONGO Svolgere entrambe le parti (Teoria ed Esercizi Si richiede la sufficienza su entrambe le parti 1

Dettagli

21 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

21 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI

Soluzione facsimile 2 d esame di geometria - Ingegneria gestionale - a.a ISTRUZIONI Soluzione facsimile d esame di geometria - Ingegneria gestionale - a.a. 00-004 COGNOME......................................... NOME......................................... N. MATRICOLA................

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani parametriche Allineamento nel piano nello spazio Angoli tra rette e distanza 2 2006 Politecnico di Torino 1 Esempio 2 Sia A = (1, 2). Per l interpretazione geometrica

Dettagli

Soluzioni esercizi complementari

Soluzioni esercizi complementari Soluzioni esercizi complementari Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17 x, y Z xry x y X, Y sottoinsiemi di un insieme

Dettagli

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016)

Esame di Geometria - 9 CFU (Appello del 26 gennaio 2016) Esame di Geometria - 9 CFU (Appello del 26 gennaio 206) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Al variare del parametro α R, si considerino la retta { x + y z = r : 2x + αy + z = 0 ed

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo).

Dim. Usare la chiusura rispetto al prodotto esterno (vedi appunti lezione o libri di testo). ESERCIZI PER CASA di GEOMETRIA per il Corso di Laurea di Scienze dei Materiali, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 28 maggio 29 Sottospazi di uno spazio vettoriale, sistemi

Dettagli

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,

Dettagli

x + 2y = 0 Soluzione. La retta vettoriale di equazione cartesiana x + 2y = 0.

x + 2y = 0 Soluzione. La retta vettoriale di equazione cartesiana x + 2y = 0. Algebra Lineare. a.a. 4-5. Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del //5 Esercizio. Sia V = R il piano vettoriale euclideo con base ortonormale standard {e, e }. Determinare le

Dettagli

Esercizi 10. David Barbato

Esercizi 10. David Barbato Esercizi 10 29\05\2017 David Barbato Breve riepilogo di teoria Consideriamo il sistema lineare: a 1,1 x 1 +... + a 1,n x n = b 1...... a k,1 x 1 +... + a k,n x n = b k se il sistema ammette soluzione allora

Dettagli

Esercizi 9 Rango di una matrice, sistemi lineari

Esercizi 9 Rango di una matrice, sistemi lineari Esercizi 9 Rango di una matrice, sistemi lineari Quesiti a risposta multipla 0 3 ) Sia A a. Il rango di A è uguale a se e solo se 0 3 a a b a 0 c a k 0 0 ) Sia A, con k numero reale. Allora il rango della

Dettagli

Fluidodinamica applicata Esercizi Finali

Fluidodinamica applicata Esercizi Finali ESERCZO (NS MENSONE CONOTTO) U Condotto infinito di sezione x Usando l analisi diensionale, studiao la dipendenza del gradiente della pressione dagli altri paraetri del flusso: f (,, U, ) dove U velocità

Dettagli

Esame di GEOMETRIA (Appello del 30 gennaio 2018)

Esame di GEOMETRIA (Appello del 30 gennaio 2018) Esame di GEOMETRIA (Appello del 3 gennaio 28) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Siano dati i sottospazi di R 4 : W = L, 4, 5 2 2. Scrivere equazioni cartesiane per W. {, U : x +

Dettagli

MATEMATICA II (Durante) Aversa, Marzo 2001., B = , e D = Si calcoli il rango delle matrici A, B, C, D.

MATEMATICA II (Durante) Aversa, Marzo 2001., B = , e D = Si calcoli il rango delle matrici A, B, C, D. MATEMATICA II (Durante) Aversa, Marzo 2001. COGNOME........................ NOME............... MATRICOLA............ 1. Dati i tre vettori u, v e w di R 3, si dica se essi sono linearmente dipendenti

Dettagli

Corso di Laurea in Management e Marketing Esercizi di Algebra Lineare (1)

Corso di Laurea in Management e Marketing Esercizi di Algebra Lineare (1) Corso di Laurea in Management e Marketing Esercizi di Algebra Lineare (1) 1) Si stabilisca se ciascuno dei seguenti sottoinsiemi di R 2 è costituito da vettori linearmente indipendenti. Si determini la

Dettagli

Matematica per Analisi dei Dati,

Matematica per Analisi dei Dati, Matematica per Analisi dei Dati, 230209 1 Spazio vettoriale R n Sia n un intero positivo fissato Lo spazio vettoriale R n e l insieme delle n ple ordinate di numeri reali, che rappresenteremo sempre come

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 26 febbraio 2007 Traccia I COG 1 In R 3 sono assegnati i vettori: u 1 = (2, h, 0), u 2 = (1, 0, h), u 3 = (h, 1, 2). Stabilire se esistono valori reali del parametro h per cui S = {u 1, u 2,

Dettagli

Esercizi complementari

Esercizi complementari Esercizi complementari (tratti dagli esercizi del prof. Alberto Del Fra) Relazioni 1) Quali delle seguenti relazioni sono di equivalenza? x, y R {0} xry x/y Q x, y Z xry x + y è divisibile per 17 x, y

Dettagli

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria

Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Esercizi di MATEMATICA PER RCHITETTURA prima parte: Algebra Lineare e Geometria Avvertenze In quanto segue tutti i vettori hanno il medesimo punto d origine O l origine dello spazio cartesiano. Possiamo

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER Canale A-K Esercizi 8 Esercizio. Si consideri il sottospazio U = L v =, v, v 3 =. (a) Si trovino le equazioni cartesiane ed una base ortonormale di U. (b) Si trovi una base ortonormale di

Dettagli

Parte I. Algebra lineare teorica

Parte I. Algebra lineare teorica Parte I Algebra lineare teorica 1 1 Gli spazi vettoriali 11 Definizione ed esempi Consideriamo come esempio di riferimento lo spazio R n, n 1, ossia l insieme delle n uple di numeri reali con n fissato

Dettagli

Le risposte vanno giustificate con chiarezza. 1) Nello spazio vettoriale V delle matrici 2 2 a coefficienti reali, considera le matrici A 1 = , A 4 =

Le risposte vanno giustificate con chiarezza. 1) Nello spazio vettoriale V delle matrici 2 2 a coefficienti reali, considera le matrici A 1 = , A 4 = Università degli Studi di Roma Tor Vergata. Corso di Laurea in Matematica Esame di Geometria 1 con Elementi di Storia Prof. F. Tovena 30 gennaio 2015 Le risposte vanno giustificate con chiarezza. 1 Nello

Dettagli

12 gennaio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

12 gennaio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Sottospazi vettoriali

Sottospazi vettoriali Capitolo 6 Sottospazi vettoriali 6.1 Introduzione Riprendiamo un argomento già studiato ampiamente nel corso di Geometria, i sottospazi vettoriali di uno spazio vettoriale. Ci limiteremo a darne la definizione,

Dettagli

APPUNTI DI ALGEBRA LINEARE

APPUNTI DI ALGEBRA LINEARE APPUNTI DI ALGEBRA LINEARE. Definizione Si dice spazio vettoriale (sul campo dei numeri reali R) un insieme V per il quale siano definite l operazione interna di somma (che ad ogni coppia di vettori e

Dettagli

2 Sistemi lineari. Metodo di riduzione a scala.

2 Sistemi lineari. Metodo di riduzione a scala. Sistemi lineari. Metodo di riduzione a scala. Esercizio.1 Utilizzando il metodo di eliminazione di Gauss, risolvere i seguenti sistemi lineari: 1. 3. x 1 x + 3x 3 = 1 x 1 x x 3 = x 1 + x + 3x 3 = 5 x 1

Dettagli

Algebra/Algebra Lineare,

Algebra/Algebra Lineare, Algebra/Algebra Lineare, 00308 Distanza di un punto da una retta, nel piano Svolgiamo ora un semplice esercizio di geometria analitica nel piano: determinare la distanza di un punto da una retta Il modo

Dettagli

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni.

Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Politecnico di Torino. Sottospazi vettoriali. Nota Bene: Questo materiale non deve essere considerato come sostituto delle lezioni. Argomenti: Sottospazi. Generatori. Confrontando sottospazi: intersezione.

Dettagli

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A.

ATTENZIONE: : giustificate le vostre argomentazioni! Geometria Canale 3. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Geometria Canale. Lettere J-PE (Prof P. Piazza) Esame scritto del 12/02/2014. Compito A. Nome e Cognome: Numero di Matricola: Esercizio Punti totali Punteggio 1 7 2 6 6 4 6+1 5 6+2 Totale 1+ ATTENZIONE:

Dettagli

8 novembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

8 novembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma.

La lunghezza dei vettori e legata alle operazioni sui vettori nel modo seguente: Consideriamo due vettori v, w e il vettore v + w loro somma. Matematica II, 20.2.. Lunghezza di un vettore nel piano Consideriamo il piano vettoriale geometrico P O. Scelto un segmento come unita, possiamo parlare di lunghezza di un vettore v P O rispetto a tale

Dettagli

Esame di geometria e algebra

Esame di geometria e algebra Laurea Ing. 9 febbraio 2007 Traccia I 1 In R 3 si consideri il sottoinsieme H = {(a, b, 2a + b) a, b R}. Stabilire se H è un sottospazio vettoriale di R 3 e, in caso affermativo, determinarne la dimensione

Dettagli

Algebra lineare e geometria AA Soluzioni della simulazione

Algebra lineare e geometria AA Soluzioni della simulazione Algebra lineare e geometria AA. 2018-2019 Soluzioni della simulazione QUIZ Q1. Sia A R nn una matrice che ammette l autovalore λ 0 con molteplicità algebrica k. Quale delle seguenti affermazioni è vera?

Dettagli

23 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

23 giugno Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Esame di Geometria - 9 CFU (Appello del 26 gennaio A)

Esame di Geometria - 9 CFU (Appello del 26 gennaio A) Esame di Geometria - 9 CFU (Appello del 26 gennaio 25 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. In R 3, siano dati il punto P = (, 2, 3) e la retta r : (,, ) + t(, 2), t R.. Determinare

Dettagli

Esame di Geometria - 9 CFU (Appello del 14 gennaio A)

Esame di Geometria - 9 CFU (Appello del 14 gennaio A) Esame di Geometria - 9 CFU (Appello del 4 gennaio 24 - A) Cognome: Nome: Nr.matricola: Corso di laurea: Esercizio. Si considerino le rette s : { x x 2 2x 3 = 2 3x x 2 =, { x + x s 2 : 2 x 3 = x 2 =.. Stabilire

Dettagli

21. (cenni di) Geometria analitica del piano.

21. (cenni di) Geometria analitica del piano. . (cenni di) Geometria analitica del piano... Definizione. Sia π un piano e sia O un suo punto. Siano i e j due versori ortogonali tra loro e paralleli al piano π. Diremo che la terna ordinata (O, i, j)

Dettagli

18 aprile Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

18 aprile Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

21 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

21 marzo Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Matematica per l Economia, a.a Integrazione al libro di testo

Matematica per l Economia, a.a Integrazione al libro di testo Matematica per l Economia, a.a. 2016 2017 Integrazione al libro di testo Gianluca Amato 20 dicembre 2016 1 Note ed errata corrige Sezione 2.3, definizione di dominio. La definizione di dominio data dal

Dettagli

Per capire meglio il concetto di combinazione lineare prendiamo in considerazione alcuni esempi.

Per capire meglio il concetto di combinazione lineare prendiamo in considerazione alcuni esempi. Lezione 14 14.1 Combinazioni lineari Definizione 14.1. Sia V uno spazio vettoriale su un campo K = R, C esiano v 1,...,v n 2 V vettori fissati. Un vettore v 2 V si dice combinazione lineare di v 1,...,v

Dettagli

GEOMETRIA 1 seconda parte

GEOMETRIA 1 seconda parte GEOMETRIA 1 seconda parte Cristina Turrini C. di L. in Fisica - 2014/2015 Cristina Turrini (C. di L. in Fisica - 2014/2015) GEOMETRIA 1 1 / 40 index Spazi vettoriali 1 Spazi vettoriali 2 Sottospazi 3 Sistemi

Dettagli

19 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

19 settembre Soluzione esame di geometria - 12 crediti Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Piano euclideo. In E 2 (R) fissiamo un riferimento cartesiano ortonormale [O, B], con B = ( e 1, e 2 ).

Piano euclideo. In E 2 (R) fissiamo un riferimento cartesiano ortonormale [O, B], con B = ( e 1, e 2 ). Definizione Si dice spazio (affine) euclideo di dimensione n sul campo reale, uno spazio affine A[A, (V n (R), ), a] in cui il prodotto scalare è definito positivo. Lo si indica con E n (R). In E 2 (R)

Dettagli

21 settembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA...

21 settembre Soluzione esame di geometria - Ingegneria gestionale - a.a COGNOME... NOME... N. MATRICOLA... COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono stati consegnati tre fogli, stampati fronte e retro. Come prima cosa scrivi

Dettagli

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi:

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi: Nucleo, immagine e loro proprietà [Abate, 5.2] Data una applicazione lineare f : V W, chiamiamo nucleo di f l insieme N(f) := { v V : f(v) = 0 W } Se S V è un sottoinsieme del dominio, indichiamo con f(s)

Dettagli

3) Quali delle seguenti applicazioni sono prodotti scalari? B) f : R R. D) f : R R R

3) Quali delle seguenti applicazioni sono prodotti scalari? B) f : R R. D) f : R R R 1) In uno spazio euclideo E 3 di dimensione 3 siano A un punto, r una retta e Π un piano non ortogonale ad r.allora A) esiste ed e unica la retta s passante per A, parallela ad r e ortogonale a Π. B) esiste

Dettagli

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4

Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 2009/2010 ESERCITAZIONE 4.4 Ingegneria Gestionale - Corso di Algebra lineare e Analisi II anno accademico 9/ ESERCITAZIONE. (Cognome) (Nome) (Numero di matricola) Proposizione Vera Falsa Per due punti distinti di R passa un unica

Dettagli

Esame scritto di Geometria I

Esame scritto di Geometria I Esame scritto di Geometria I Università degli Studi di Trento Corso di laurea in Fisica A.A. 26/27 Appello di febbraio 27 Esercizio Sia f h : R R l applicazione lineare definita da f h (e ) = 2e + (2 h)e

Dettagli

Coordinate cartesiane e coordinate omogenee

Coordinate cartesiane e coordinate omogenee Coordinate cartesiane e coordinate omogenee Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Ad ogni punto P del piano possiamo associare le coordinate cartesiane (x, y),

Dettagli

Capitolo 1 Vettori applicati e geometria dello spazio

Capitolo 1 Vettori applicati e geometria dello spazio Capitolo 1 Vettori applicati e geometria dello spazio Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Tutorato di geometria e algebra lineare Anno accademico 2014-2015 Definizione (Vettore

Dettagli

Anno Accademico 2015/2016

Anno Accademico 2015/2016 Mod. 136/1 ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA Anno Accademico 2015/2016 Scuola di Scienze Corsi di Laurea o di Diploma Triennale in Matematica (nuovo ordinamento) Insegnamento Geometria I Docente

Dettagli

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n.

LAUREA IN INGEGNERIA CIVILE Corso di Matematica 2 II a prova di accertamento Padova Docenti: Chiarellotto - Cantarini TEMA n. LAUREA IN INGEGNERIA CIVILE Corso di Matematica II a prova di accertamento Padova 10-1-07 Docenti: Chiarellotto - Cantarini TEMA n.1 PARTE 1. Quesiti preliminari Stabilire se le seguenti affermazioni sono

Dettagli

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica

Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica Esercizi di Geometria e Algebra Lineare C.d.L. Ingegneria Meccanica 1) Dati i vettori a = (2, 4), b = (1, 2), c = ( 1, 1), d = (3, 6), stabilire se c e d appartengono a Span(a, b}). 2) Nello spazio vettoriale

Dettagli

Geometria e algebra lineare 20/6/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione. x 2y = 0

Geometria e algebra lineare 20/6/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione. x 2y = 0 Geometria e algebra lineare 20/6/2017 Corso di laurea in Ing. Elett. Tel., Ing. Inf. Org. e Informatica Correzione A Esercizio 1A Siano r la retta di equazioni { x + y 2z = 1 e P il punto di coordinate

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 7 GIUGNO 06 MATTEO LONGO Ogni versione del compito contiene solo due tra i quattro esercizi 6-7-8-9. Esercizio. Considerare

Dettagli

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette

Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Analisi Matematica 1 e Matematica 1 Geometria Analitica: Rette Annalisa Amadori e Benedetta Pellacci amadori@uniparthenope.it pellacci@uniparthenope.it Università di Napoli Parthenope Contenuti Nel Piano

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI

15 luglio Soluzione esame di geometria - Ing. gestionale - a.a COGNOME... NOME... N. MATRICOLA... ISTRUZIONI 15 luglio 01 - Soluzione esame di geometria - Ing. gestionale - a.a. 01-01 COGNOME.......................... NOME.......................... N. MATRICOLA............. La prova dura ore. ISTRUZIONI Ti sono

Dettagli

Si deve verificare (sulla brutta copia) che (1 i 3)z dà lo stesso risultato usando l espressione del testo e la soluzione trovata.

Si deve verificare (sulla brutta copia) che (1 i 3)z dà lo stesso risultato usando l espressione del testo e la soluzione trovata. Università degli Studi di Bergamo Corso integrato di Analisi 1 (Geometria e Algebra Lineare 18 febbraio 1 Tema A Tempo a disposizione: ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico

Capitolo 3 Matrici. Marco Robutti. Facoltà di ingegneria Università degli studi di Pavia. Anno accademico Capitolo 3 Matrici Marco Robutti Facoltà di ingegneria Università degli studi di Pavia Anno accademico 2017-2018 Tutorato di geometria e algebra lineare Definizione (Matrice) Una matrice A M R (k, n) è

Dettagli

Prove di esame. Nicola Durante. 12 febbraio MATEMATICA II (Prof. N. Durante) FAC-SIMILE I Prova Gen. 2004

Prove di esame. Nicola Durante. 12 febbraio MATEMATICA II (Prof. N. Durante) FAC-SIMILE I Prova Gen. 2004 Prove di esame Nicola Durante 12 febbraio 2004 MATEMATICA II (Prof. N. Durante) FAC-SIMILE I Prova Gen. 2004 1. (i) Sia assegnata l equazione lineare 5y + 7z = 4 in tre incognite, y, z. (a) Si dica cosa

Dettagli

3. Determinare le soluzioni del sistema lineare Σ α interpretato ora come sistema lineare nelle 4 incognite x 1, x 2, x 3, x 4.

3. Determinare le soluzioni del sistema lineare Σ α interpretato ora come sistema lineare nelle 4 incognite x 1, x 2, x 3, x 4. Corsi di Laurea in INGEGNERIA INDUSTRIALE Canali 1-2-5 Corso di Fondamenti di Algebra Lineare e Geometria Padova 21 Aprile 2012 I prova parziale Tema n.1 PARTE A. Risolvere i seguenti esercizi: Esercizio

Dettagli