4. Programmazione Lineare Intera

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "4. Programmazione Lineare Intera"

Transcript

1 . Programmazione Lineare Intera

2 Programmazione Lineare Intera (ILP) A(m n), b(m), c(n) interi; ILP in forma standard: min c x Ax = b x x intero Forma canonica, forma generale, trasformazioni: come LP. Rimuovendo il vincolo di interezza LP (rilassamento continuo dell ILP), tale che z(lp ) z(ilp ) (Dim: si cerca il minimo in un insieme più grande. ); z(lp ) è un lower bound di z(ilp ). Algoritmo ingenuo per ILP: begin determina col simplesso la soluzione ottima x dell LP corrispondente all ILP; if LP impossibile then ILP impossibile else if LP illimitato then ILP illimitato (salvo casi particolari) else if x è intero then x = soluzione ottima di ILP else arrotonda ogni x j frazionario all intero più prossimo end.

3 Ingenuo in quanto: ) l arrotondamento può essere non ammissibile: x ) soluzione intera e continua possono essere molto lontane : x Esistono casi in cui la soluzione ottima dell LP individuata dal simplesso è sicuramente intera?

4 Unimodularità B(m m) intera è unimodulare (UM) se det(b) = ±. A(m n) intera è totalmente unimodulare (TUM) se sua sottomatrice quadrata non singolare è UM. A TUM vertici di {x : Ax = b, x } interi b intero. Dim: B = matrice corrispondente ad una base di A; soluzione base: x = B b = Ba det(b) b (B a = aggiunta di B: b a ij = ( ) i+j minore(b ji )) A è TUM = B è UM = x è intero. A TUM vertici di {x : Ax b, x } interi b intero. Dim: dimostriamo che se A è TUM, (A I) è TUM. C = sottomatrice quadrata non singolare di (A I): A C permutiamo le righe di C = C = B D I det( C) = det(b) = det(c) = ± det( C) = ±. Quindi: se A è TUM, ILP si può risolvere col simplesso ( condizioni sufficienti per verificare se A è TUM).

5 Algoritmi generali per ILP: cutting-plane branch-and-bound (branch-and-bound) + (cutting-plane) = branch-and-cut. Algoritmi cutting-plane Schema generale: (Si suppone che LP non sia illimitato o impossibile.) begin risolvi l LP corrispondente all ILP; sia x la soluzione ottima trovata; while x non è intero do begin aggiungi all ILP una condizione lineare (taglio) che elimini una parte della regione ammissibile contenente x, ma non elimini alcuna soluzione ammissibile intera; risolvi l LP corrispondente al nuovo ILP; sia x la soluzione ottima trovata end end. o taglio x x x o taglio

6 Tagli di Gomory (958) y R, parte intera di y = y = max q intero : q y Y = tableau finale dell LP; B = base ottima ( B; x β() = ( z)) i(i =,..., m): x β(i) + x A j B A j B = x β(i) + y ij x j = y i y ij x j x β(i) + A j B A j B y ij x j }{{} intera x intero A j B y ij x j y i y ij x j y i (α) (β) (α) (β) : A j B (y ij y ij )x j (y i y i ) f ij = y ij y ij (parte frazionaria di y ij ); f ij < : A j B f ij x j f i (taglio di Gomory corrispondente alla riga i) Moltiplicando per ed aggiungendo un variabile slack: A j B f ij x j + s = f i

7 Se si aggiunge al tableau finale di un LP il taglio A j B f ij x j + s = f i ) non si elimina alcun punto intero ammissibile; ) il nuovo tableau contiene una base che è: Dim: a) non ammissibile per il primale se y i non è intero, b) ammissibile per il duale. ) il taglio è stato ottenuto esclusivamente imponendo all LP le condizioni di interezza; ) a) s è una nuova variabile base che, aggiunta a B, forma una base in cui la soluzione include s = f i, inammissibile per il primale se y i non è intero; b) nella riga si aggiunge uno nella colonna di s la soluzione resta ammissibile per il duale. Quindi conviene proseguire con l algoritmo del simplesso duale. Si noti che ) se y i non è intero, la soluzione attuale resta fuori dalla nuova regione ammissibile. La riga prescelta per il taglio viene detta riga generatrice. 5

8 procedure GOMORY: begin end. rimuovi il vincolo di interezza da ILP LP ; call TWO PHASE per LP e sia Y il tableau finale; if infeasible = false and unbounded = false then begin end feasible := true; k := (contatore dei tagli); while y i frazionario and feasible = true do begin end scegli un i : y i è frazionario; k := k + ; aggiungi al tableau l equazione A j B f ij x j + s k = f i ; call DUAL SIMPLEX; if infeasible = true (duale LP illimitato) then feasible := false (ILP impossibile) Ad ogni iterazione si elimina una parte della regione ammissibile. Si può dimostrare che il metodo converge (se: a) si sceglie sempre la prima riga frazionaria; b) si sceglie il pivot del simplesso duale secondo uno specifico metodo lessicografico). 6

9 Es : min x + 6 x + +x = 6 x + x + +x = x, interi x, x interi x x x z x 6 x x x x z x 6 6 x x x z x 6 6 riga generatrice : 6 x x x + x per sostituzione : x taglio : x + x ottimo dell LP taglio x Scegliendo riga : x x + s = 7

10 x x x s z x 6 6 s x x x s z x x riga generatrice : (,, intere) taglio : x + s per sostituzione : x ottimo taglio x 8

11 Equazione del taglio: x s + s = x x x s s z x x s x x x s s z x x 5 x ottimo x Soluzione ottima intera: x = = ; z =. 9

12 Es : min x + 6x + 6x + +x = x x x = x, interi x, x interi Fase : x a x x x ξ 6 x a x a x x x ξ x Fase : x x x z 7 5 x x x x z x x Riga generatrice : taglio x ( x + s = )

13 x x x s z x x s x x x s z x 6 x duale illimitato x primale impossibile. taglio x Quando il rilassamento LP è illimitato normalmente ILP è illimitato, ma in casi particolari può essere impossibile. Es: x

14 Algoritmi branch-and-bound (P ) min z = c x Ax = b x, intero x = soluzione ottima di P ; x = soluzione ottima del rilassamento continuo di P. c x z (= c x ). Se x è intera = x = x ; altrimenti Branching x min( x ) x scelta una componente x j frazionaria, imponiamo due condizioni mutualmente esclusive ed esaustive: x j x j or x j x j + (P ) min z = c x (P ) min z = c x Ax = b Ax = b x, intero x, intero x j x j x j x j + = z = min(z, z ). Es: x = = x or x : x x x

15 c x z ; c z. Normalmente x e/o non sono interi = si continua a ramificare, cioè: Da ogni problema P i si creano due nuovi problemi P j, P k a meno che: x i sia intero, oppure il rilassamento continuo di P i sia impossibile. Es: da P : = (P ) P + (P ) P + x x (impossibile) da P : x = 9 (P 5 ) P + (P 6 ) P + x x x 5 x soluzione intera: x =, =. (impossibile)

16 Rappresentazione mediante albero decisionale binario (L i = lower bound di z i ): L = Terminologia: x x nodo ramo L = 5... L = x 5 6 z = (intera) L = 7 x radice, 5, 6 foglie padre di e, figli di progenitore di,, 5 e 6,, 5, 6 discendenti di e Continuando fino a quando nessun nodo può più ramificare: Soluzione di P = soluzione della foglia di costo minimo. Bounding Problema P k : L k = c x k z k tutti i nodi discendenti da P k produrranno soluzioni z i z k L k ; z = miglior soluzione intera trovata finora; se L k (= min q intero L k ) z nessun discendente di P k potrà migliorare z si uccide il nodo k. (il nodo 5 uccide il nodo )

17 Inserimento dei vincoli nel tableau x i = a frazionario (in base): ) x i a x i + s = a s z c j... x i a [y ij ] s a si sottrae la riga di x i s r... r = a a < ) x i a + x i + s = a = t s z c j... x i a [y ij ] s t si somma la riga di x i s r... r = a a }{{} < < In entrambi i casi si prosegue col simplesso duale. 5

18 Es : min x + x + x + 6 8x 8 x, interi min x + x + + s = x + s = 6 8x 8 s = x,, s, s, s interi x a x a x s s s ξ 9 9 s x a 6 x a 8 8 x a x a x s s s ξ s x a x

19 x a x a x s s s ξ s x x s s s z 5 5 s Soluzione ottima non intera: x 5 branching su x. ) x : x + s = x s s s s z 5 5 s x 5 s 5 Impossibile. 7

20 ) x : x + s = x s s s s z 5 5 s x 5 s 5 x s s s s z s x Soluzione ottima intera: s 5 x =, =, z =. x x 8 x x x z =

21 Algoritmo branch-and-bound per un problema di ottimizzazione combinatoria procedure BRANCH AND BOUND: begin Π := {P } (insieme dei problemi attivi); z := +, X := (miglior soluzione ammissibile corrente); while Π do begin scegli un problema P Π per il branching; Π := Π \ {P }; genera i figli P i di P ; calcola i corrispondenti lower bound L i ; for each figlio P i di P do if L i z then uccidi P i else if L i dà una soluzione ammissibile then begin z := L i ; X := soluzione di P i ; Π := Π \ {P k : L k z } end else Π := Π P i end end. Occorre decidere: come scegliere il problema per il branching; come generare i problemi figli (branching non necessariamente binario); come calcolare i bound. 9

22 Altri problemi di ottimizzazione combinatoria Programmazione Lineare Intera Mista (MILP): min c x Ax = b x j j N x j intero j N Programmazione Lineare (LP): min c x Ax = b x j {, } j Problema Knapsack (KP): min c x a x = b x j {, } j Formulazione più frequente di KP: n elementi: p j = profitto, w j = peso dell elemento j; un contenitore (knapsack = zaino) di capacità c; scegliere gli elementi da inserire nel contenitore in modo da massimizzare il profitto complessivo: max n j= n j= p j x j w j x j x j c Assumiamo: p j, w j, c interi positivi. {, } j =,..., n

23 Algoritmo branch-and-bound per KP È conveniente ordinare gli elementi secondo valori non crescenti del profitto per unità di peso: p j p j+ j w j w j+ Albero decisionale binario: = x = = = x = = Strategia di esplorazione: al primo livello x =, x = ; se nodo attivo generato da (x j = ) si ramifica da questo, altrimenti dall ultimo nodo attivo generato da (x j = ). L insieme dei nodi attivi contiene sempre al più un nodo generato da (x j = ) uno o più nodi generati da (x j = )

24 Upper bound rilassamento continuo: x j {, } (j =,..., n) sostituito da x j (j =,..., n). Soluzione del rilassamento continuo (Dantzig, 957): si inseriscono con continuità gli elementi migliori frazionando il primo che non entra interamente, cioè: s := min{i : c := c s U := j= s j= i j= w j ; p j + c p s Es: n = 5 w j > c} (elemento critico); w s p = (,, 7, 6, ) w = (, 5,,, ) c = U = = 6 Si osservi che Upper bound di un nodo generato da (x j = ) upper bound del nodo padre.

25 Es: n = 5 p = (,, 7, 6, ) w = (, 5,,, ) c = Upper bound U sottolineato se occorre calcolarlo: U = 6 U = 6 U = 5 = U = 6 U = 5 x = U = 5 = U= 6 6 U= 5 x = x = x = x = x = x = x = 8 x 5 = x 5 = 7 U= 5 z = 9 z = 5

26 Questo tipo di strategia è detto depth first (esplorazione che tende a scendere in profondità il più possibile). minima occupazione di memoria e semplicità di implementazione poichè non occorre memorizzare l albero: vettore corrente: x = (,,,,,,,,, ) puntatore al livello corrente k x,... x k hanno i valori attualmente fissati nell albero. Passo principale: k := k + ; if w k c k else begin end j= x k := ; w j x j then x k := forward step U := upper bound per il nodo attuale; while U z (= miglior soluzione trovata) do begin end k := max{j < k : x j = }; x k := ; backtracking U := upper bound per il nodo attuale

27 Ricerca di un buon upper bound Un metodo per calcolare un upper bound è tanto migliore quanto più basso è il risultato (più alto, per lower bound). Miglioramento del bound di Dantzig (Martello Toth, 977): nella soluzione ottima l elemento s può essere se x s =, il bound è B = se x s =, il bound è B = s j= s j= w s+ p j + c p s+ p j (w s c) p s capacità da recuperare = nuovo bound U = max(b, B ) } {{ } Es. n = 5, p = ( 5, 8, 8, 7, 5), w = ( 5,,,, 5), c = U = 7; B = 6, B = 5 U = 6. incluso escluso w s } {{ } U U, cioè U è più stretto ( tight ) di U: ovviamente B U si può dimostrare per via algebrica che B U. U richiede poche operazioni in più = conveniente. peggior rapporto minima perdita In generale, compromesso tra qualità e tempo di calcolo. 5

28 Algoritmi branch-and-cut branch-and-cut := (branch-and-bound) + (cutting-plane). Algoritmo branch-and-bound in cui ad ogni nodo dell albero decisionale si generano tagli, cercando di trovare una soluzione intera, o almeno ottenere un bound migliore. Non si usano normalmente i tagli di Gomory in quanto essi dipendono dalle condizioni imposte dai nodi progenitori = occorrerebbe memorizzare i tagli relativi a ciascun nodo. Si usano tagli validi su tutto l albero decisionale, memorizzati in una struttura dati apposita (pool dei vincoli). Ad ogni nodo dell albero decisionale: x := soluzione del rilassamento LP del problema corrente; while x non è intera do if il pool contiene tagli violati da x then begin scegli uno o più tagli non ancora utilizzati; aggiungi i tagli al problema corrente; x := soluzione del rilassamento LP end else genera nuovi tagli e aggiungili al pool; (procedimento arrestato se raggiunto un limite di iterazioni) Principale difficoltà: metodo per la generazione dei tagli. 6

29 Pacchetto applicativo LINDO Linear, INteractive, and Discrete Optimizer. Accesso: $ RUN [DEISOR]LINDO : Comandi principali: COMMAND (dà l elenco dei comandi); HELP c (dà informazioni sul comando c); MAX oppure MIN (inizio dell inserimento di un problema); ST (inizio dell inserimento dei vincoli); END (termine dell inserimento di un problema); GO (risolve il problema corrente); QUIT (esce dall ambiente); Es: : MAX X + Y? ST? X + 5Y < 9? 7X + 6Y <? END : GO problema non necessariamente in forma standard; < sta per, > per ; le variabili sono per default non negative e illimitate; altri comandi per: definire variabili libere, intere o /; imporre upper e lower bound alle variabili; scrivere o leggere i problemi da file,... 7

Algoritmi generali per PLI

Algoritmi generali per PLI Programmazione Lineare Intera: Parte II: Algoritmo Cutting Planes Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 3.1 ottobre 23 Algoritmi generali per PLI Metodi esatti tradizionali

Dettagli

Algoritmi generali per PLI

Algoritmi generali per PLI Programmazione Lineare Intera: II Algoritmo Cutting Planes Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev.. ottobre Algoritmi generali per PLI Metodi esatti tradizionali (anni 6 oggi):

Dettagli

5.1 Metodo Branch and Bound

5.1 Metodo Branch and Bound 5. Metodo Branch and Bound Si consideri il problema min{ c(x) : x X } Idea: Ricondurre la risoluzione di un problema difficile a quella di sottoproblemi più semplici effettuando una partizione (ricorsiva)

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2014-2015 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Daniele Vigo rev. 1.1.a ottobre 2014 Fondamenti di Ricerca Operativa

Dettagli

5.1 Metodo Branch and Bound

5.1 Metodo Branch and Bound 5. Metodo Branch and Bound Consideriamo un generico problema di ottimizzazione min{ c(x) : x X } Idea: Ricondurre la risoluzione di un problema difficile a quella di sottoproblemi più semplici effettuando

Dettagli

Soluzione dei problemi di Programmazione Lineare Intera

Soluzione dei problemi di Programmazione Lineare Intera Fondamenti di Ricerca Operativa T-A a.a. 2015-2016 Soluzione dei problemi di Programmazione Lineare Intera Andrea Lodi, Enrico Malaguti, Paolo Tubertini, Daniele Vigo rev. 2. ottobre 2016 Fondamenti di

Dettagli

5.3 Metodo dei piani di taglio

5.3 Metodo dei piani di taglio 5.3 Metodo dei piani di taglio (PLI) min s.v. c T x Ax b x interi X Ipotesi: a ij, c j e b i interi Osservazione: La regione ammissibile di un PLI può essere descritta mediante dei vincoli più o meno stringenti

Dettagli

Ingegneria Informatica ed Automatica (forma teledidattica) Appunti dalle esercitazioni di Daniele Vigo Parte I Programmazione Lineare e Lineare Intera

Ingegneria Informatica ed Automatica (forma teledidattica) Appunti dalle esercitazioni di Daniele Vigo Parte I Programmazione Lineare e Lineare Intera Ingegneria Informatica ed utomatica (forma teledidattica) ppunti dalle esercitazioni di Parte I Programmazione Lineare e Lineare Intera Problemi di Ottimizzazione x = (x 1 ;:::;x n )2R n : vettore di variabili

Dettagli

Programmazione Lineare Intera (PLI)

Programmazione Lineare Intera (PLI) PLI.1 Programmazione Lineare Intera (PLI) z P LI = min c T x Ax b x 0 x intero vincoli di interezza non lineari: es. sin(πx) = 0 Rimuovendo il vincolo di interezza PL (rilassamento continuo di PLI), tale

Dettagli

1 Il metodo dei tagli di Gomory

1 Il metodo dei tagli di Gomory Il metodo dei tagli di Gomory Esercizio Sia dato il problema min(x x ) x + x (P 0 ) x + x x, x 0, interi. Calcolare la soluzione ottima applicando il metodo dei tagli di Gomory. Risoluzione Per applicare

Dettagli

Programmazione Lineare Intera (ILP)

Programmazione Lineare Intera (ILP) Programmazione Lineare Intera (ILP) (P) min (x), x F Z : R n ->R è lineare: (x) = c, x = c 1 x 1 + c 2 x 2 +... + c n x n F R n è definito da : g i (x) 0 (i = 1,...,m), con g i : R n R lineare i Z insieme

Dettagli

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso

Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Programmazione Matematica: VI Estensioni dell algoritmo del Simplesso Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev. 1.0 Aprile 2004 Algoritmo del Simplesso L algoritmo del Simplesso

Dettagli

Algoritmo Branch and Cut (B&C)

Algoritmo Branch and Cut (B&C) Programmazione Lineare Intera: III Algoritmo Branch and Cut Daniele Vigo DEIS Università di Bologna dvigo@deisuniboit rev.0 aprile 2005 Algoritmo Branch and Cut (B&C) Sviluppato negli anni 90, nasce come

Dettagli

Il metodo dei Piani di Taglio (Cutting Planes Method)

Il metodo dei Piani di Taglio (Cutting Planes Method) Il metodo dei Piani di Taglio (Cutting Planes Method) E un metodo di soluzione dei problemi (IP) di tipo generale. L idea di base: Se la soluzione di (RL) non è intera allora la soluzione ottima intera

Dettagli

Esercizi sulla Programmazione Lineare Intera

Esercizi sulla Programmazione Lineare Intera Soluzioni 4.7-4.0 Fondamenti di Ricerca Operativa Prof. E. Amaldi Esercizi sulla Programmazione Lineare Intera 4.7 Algoritmo del Simplesso Duale. Risolvere con l algoritmo del simplesso duale il seguente

Dettagli

Parte III: Algoritmo di Branch-and-Bound

Parte III: Algoritmo di Branch-and-Bound Parte III: Algoritmo di Branch-and-Bound Sia Divide et Impera z* = max {c T x : x S} (1) un problema di ottimizzazione combinatoria difficile da risolvere. Domanda: E possibile decomporre il problema (1)

Dettagli

3.6 Metodi basati sui piani di taglio

3.6 Metodi basati sui piani di taglio 3.6 Metodi basati sui piani di taglio Problema generale di Programmazione Lineare Intera (PLI) con A matrice m n e b vettore n 1 razionali min{ c t x : x X = {x Z n + : Ax b} } Sappiamo che esiste una

Dettagli

Programmazione Matematica: VII La scomposizione di Dantzig Wolfe

Programmazione Matematica: VII La scomposizione di Dantzig Wolfe Programmazione Matematica: VII La scomposizione di Dantzig Wolfe Daniele Vigo D.E.I.S. Università di Bologna dvigo@deis.unibo.it rev..0 Maggio 2004 Scomposizione di problemi Accade spesso che un problema

Dettagli

Tecniche di Decomposizione per Programmazione Lineare Intera (Mista)

Tecniche di Decomposizione per Programmazione Lineare Intera (Mista) Tecniche di Decomposizione per Programmazione Lineare Intera (Mista) Domenico Salvagnin 2011-06-12 1 Introduzione Dato un problema di programmazione lineare intera (mista), non è sempre possibile (o conveniente)

Dettagli

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound.

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound. Ricerca Operativa A.A. 2007/2008 17. Esercitazione di laboratorio: Branch and Bound. Luigi De Giovanni - Ricerca Operativa - 17. Esercitazione di laboratorio: Branch and Bound 17.1. Luigi De Giovanni -

Dettagli

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound.

Ricerca Operativa A.A. 2007/ Esercitazione di laboratorio: Branch and Bound. Ricerca Operativa A.A. 2007/2008 17. Esercitazione di laboratorio: Branch and Bound. Luigi De Giovanni - Ricerca Operativa - 17. Esercitazione di laboratorio: Branch and Bound 17.1 . Luigi De Giovanni

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari

Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari Metodi e Modelli per l Ottimizzazione Combinatoria Problema dell assegnamento e matrici totalmente unimodulari L. De Giovanni G. Zambelli 1 Problema dell assegnamento Sia dato un grafo non orientato bipartito

Dettagli

3.4 Metodo di Branch and Bound

3.4 Metodo di Branch and Bound 3.4 Metodo di Branch and Bound Consideriamo un generico problema di Ottimizzazione Discreta dove X è la regione ammissibile. (P ) z = max{c(x) : x X} Metodologia generale di enumerazione implicita (Land

Dettagli

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem

Introduzione al Column Generation Caso di Studio: il Bin Packing Problem Introduzione al Column Generation Caso di Studio: il Bin Packing Problem November 15, 2014 1 / 26 Introduzione Il column generation è una metodologia che può essere usata per risolvere problemi di ottimizzazione

Dettagli

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015

Ricerca Operativa. G. Liuzzi. Lunedí 20 Aprile 2015 1 Lunedí 20 Aprile 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Rilassamento di un problema Rilassare un problema di Programmazione Matematica vuol dire trascurare alcuni (tutti i)

Dettagli

Massimo flusso e matching

Massimo flusso e matching Capitolo Massimo flusso e matching. Problema del massimo matching. Nel problema del massimo matching è dato un grafo non orientato G(V, A); un matching in G è un insieme di archi M A tale che nessuna coppia

Dettagli

5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1

5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano 1 5 PROGRAMMAZIONE LINEARE INTERA (PLI) E. Amaldi Fondamenti di R.O. Politecnico di Milano Programma lineare intero: (PLI) min c T x Ax b x 0 intero Ipotesi: A, b interi La condizione di interezza non è

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x 0 PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Programmazione Lineare Intera (ILP)

Programmazione Lineare Intera (ILP) Programmazione Lineare Intera (ILP) (P) min ϕ(x), x F Z ϕ: R n - >R è lineare: ϕ(x) = c, x = c 1 x 1 + c 2 x 2 +... + c n x n F R n è definito da : g i (x) 0 (i = 1,...,m), con g i : R n R lineare i Z

Dettagli

4.5 Metodo del simplesso

4.5 Metodo del simplesso 4.5 Metodo del simplesso min z = c T x s.v. Ax = b x PL in forma standard Esamina una sequenza di soluzioni di base ammissibili con valori non crescenti della funzione obiettivo fino a raggiungerne una

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities

Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities Metodi e Modelli per l Ottimizzazione Combinatoria Cover inequalities L. De Giovanni M. Di Summa In questa lezione introdurremo una classe di disuguaglianze, dette cover inequalities, che permettono di

Dettagli

Il Branch & Bound. Definizione 1. Sia S R n. La famiglia S = {S 1, S 2,..., S k S} tale che S 1 S 2 S k = S viene detta suddivisione di S.

Il Branch & Bound. Definizione 1. Sia S R n. La famiglia S = {S 1, S 2,..., S k S} tale che S 1 S 2 S k = S viene detta suddivisione di S. Il Branch & Bound Il metodo Branch & Bound è una tecnica che permette di risolvere all ottimo un generico problema di Programmazione Lineare Intera. Tale metodo si basa su due concetti cardine: quello

Dettagli

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2

Formulazioni. Consideriamo il seguente problema di Knapsack 0-1. max (5x x 2. ) st 3x x 2. < 6 x {0,1} 2 Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)} Rappresentiamo sul piano gli insiemi ammissibili.

Dettagli

RICERCA OPERATIVA. Tema d esame del 04/12/2008 (Simulazione 1)

RICERCA OPERATIVA. Tema d esame del 04/12/2008 (Simulazione 1) RICERCA OPERATIVA Tema d esame del 04/12/2008 (Simulazione 1) COGNOME: NOME: MATRICOLA: 1. Un azienda meccanica deve pianificare il lavoro delle sue tre macchine per un dato giorno. I lotti che è possibile

Dettagli

3.3 Problemi di PLI facili

3.3 Problemi di PLI facili 3.3 Problemi di PLI facili Consideriamo un generico problema di PLI espresso in forma standard min{c t x : Ax = b, x Z n +} (1) dove A Z m n con n m, e b Z m. Supponiamo che A sia di rango pieno. Sia P

Dettagli

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4

Programmazione Lineare Intera. Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Programmazione Lineare Intera p. 1/4 Programmazione Lineare Intera Problema di PLI in forma standard: max cx Ax = b x 0, x I n I insieme degli interi. Regione ammissibile:

Dettagli

Esame di Ricerca Operativa del 03/07/18. Base x degenere y Indice Rapporti Indice entrante uscente

Esame di Ricerca Operativa del 03/07/18. Base x degenere y Indice Rapporti Indice entrante uscente Esame di Ricerca Operativa del 0/0/8 Cognome) Nome) Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso duale per il problema min y + y + y + y + y +8 y y +y y y y y

Dettagli

RICERCA OPERATIVA. Tema d esame del 13/12/2005

RICERCA OPERATIVA. Tema d esame del 13/12/2005 RICERCA OPERATIVA Tema d esame del 13/12/2005 COGNOME: NOME: MATRICOLA: 1. Un associazione umanitaria ha raccolto 150.000 euro per inviare dei pacchetti regalo natalizi ai bambini di Haiti. Per l acquisto

Dettagli

Esame di Ricerca Operativa del 15/09/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 15/09/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /09/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x x x x x x +x 9 x + x 8 x +x Base

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I)

Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Metodi e Modelli per l Ottimizzazione Combinatoria Ripasso sulla Programmazione Lineare e il metodo del Simplesso (parte I) Luigi De Giovanni Giacomo Zambelli 1 Problemi di programmazione lineare Un problema

Dettagli

5.5 Metodi dei piani di taglio

5.5 Metodi dei piani di taglio 5.5 Metodi dei piani di taglio Problema generale di Programmazione Lineare Intera (PLI) max{c t x : x X} dove X = {x Z n + : Ax b}, con A matrice m n e b vettore n 1 razionali Proposizione: conv(x) = {x

Dettagli

Programmazione a numeri interi: il metodo del Branch and Bound

Programmazione a numeri interi: il metodo del Branch and Bound Programmazione a numeri interi: il metodo del Branch and Bound L. De Giovanni G. Zambelli Un problema di programmazione lineare intera è una problema della forma z I = maxc T x Ax b x 0 x i Z, i I. (1)

Dettagli

RICERCA OPERATIVA (a.a. 2018/19)

RICERCA OPERATIVA (a.a. 2018/19) Secondo appello //9 RICERCA OPERATIVA (a.a. 8/9) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: min y + y y y y y = y + y y = y, y, y, y Si verifichi se la soluzione ȳ =,,, sia ottima

Dettagli

Esame di Ricerca Operativa del 21/02/19. max 3 x 1 +x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 3

Esame di Ricerca Operativa del 21/02/19. max 3 x 1 +x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 3 Esame di Ricerca Operativa del /0/ Cognome) Nome) Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso primale. max x +x x +0 x x + x 8 x x x x x + x x x passo {,} passo

Dettagli

Esame di Ricerca Operativa del 21/07/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 21/07/14. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y y + y + y + y + y y y +y + y +y

Dettagli

Algoritmo del simplesso

Algoritmo del simplesso Algoritmo del simplesso Ipotesi : si parte da una S.A.B. e dal tableau A=b in forma canonica. Si aggiunge una riga costituita dagli r j, j =,., n e da -z (valore, cambiato di segno, della f.o. nella s.a.b.)

Dettagli

Parte IV: Matrici totalmente unimodulari

Parte IV: Matrici totalmente unimodulari Parte IV: Matrici totalmente unimodulari Formulazioni Consideriamo il seguente problema di Knapsack 0-1 max (5x 1 + 2x 2 ) st 3x 1 + 4x 2 < 6 x {0,1} 2 Insiemi ammissibili F = {(0, 0), (0, 1), (1, 0)}

Dettagli

Parte III: Algoritmo di Branch-and-Bound

Parte III: Algoritmo di Branch-and-Bound Parte III: Algoritmo di Branch-and-Bound Divide et Impera Sia z * max {c T x : x S} (1) un problema di ottimizzazione combinatoria difficile da risolvere. Domanda: E possibile decomporre il problema (1)

Dettagli

Esame di Ricerca Operativa del 16/02/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 16/02/15. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y + y +0 y +0 y +y + y y y +y y y y

Dettagli

RICERCA OPERATIVA. Tema d esame del 04/12/2008 (Simulazione 2)

RICERCA OPERATIVA. Tema d esame del 04/12/2008 (Simulazione 2) RICERCA OPERATIVA Tema d esame del 04/12/2008 (Simulazione 2) COGNOME: NOME: MATRICOLA: 1. Un azienda di telefonia mobile deve installare delle antenne per la copertura di sei zone sul territorio. Sono

Dettagli

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 2x 2 + x 3 = 4 x 1 x 2 x 3 = 3 x 2 + 2x 3 = 1 x 1, x 2, x 3 0

COMPITO DI RICERCA OPERATIVA. max x 1 + x 2 x 1 2x 2 + x 3 = 4 x 1 x 2 x 3 = 3 x 2 + 2x 3 = 1 x 1, x 2, x 3 0 COMPITO DI RICERCA OPERATIVA ESERCIZIO. (5 punti) Sia dato il seguente problema di PL: max x + x 2 x 2x 2 + x 3 = 4 x x 2 x 3 = 3 x 2 + 2x 3 = x, x 2, x 3 0 Utilizzando il metodo due fasi, si stablisca

Dettagli

Esame di Ricerca Operativa del 10/09/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 10/09/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 0/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x + x 8 x +x x x x x x x x Base

Dettagli

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi Risolutivi per la Programmazione Lineare Intera

Metodi e Modelli per l Ottimizzazione Combinatoria Metodi Risolutivi per la Programmazione Lineare Intera Metodi e Modelli per l Ottimizzazione Combinatoria Metodi Risolutivi per la Programmazione Lineare Intera L. De Giovanni G. Zambelli Un problema di programmazione lineare intera é una problema della forma

Dettagli

Esame di Ricerca Operativa del 15/01/19. max 6 x 1 x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 19

Esame di Ricerca Operativa del 15/01/19. max 6 x 1 x 2 6 x x x 1 +2 x x 1 3 x x 1 4 x x 1 +2 x x 1 x 2 19 Esame di Ricerca Operativa del /0/9 Cognome) Nome) Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso primale: max x x x + x x + x 8 x x x x x + x x x 9 passo {,} passo

Dettagli

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola:

RICERCA OPERATIVA (a.a. 2015/16) Nome: Cognome: Matricola: o Appello // RICERCA OPERATIVA (a.a. /) Nome: Cognome: Matricola: ) Si consideri il seguente problema di PL: max x + x x x x x x + x x Si applichi l algoritmo del Simplesso Duale, per via algebrica, a

Dettagli

Esame di Ricerca Operativa del 17/01/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 17/01/17. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ Cognome) Nome) Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min 8 y y + y + y + y + y +0 y y +y

Dettagli

RICERCA OPERATIVA. Stock bamboline automobiline libri peluches costo (euro)

RICERCA OPERATIVA. Stock bamboline automobiline libri peluches costo (euro) RICERCA OPERATIVA Tema d esame del 15/12/2008 (5 crediti) COGNOME: NOME: MATRICOLA: 1. Babbo Natale deve organizzare gli acquisti per le prossime festività. Sono arrivate richieste di 15000 bamboline,

Dettagli

Ricerca Operativa. G. Liuzzi. Giovedí 19 Marzo Tableau del Simplesso Esempio Fase I del Simplesso Esempio

Ricerca Operativa. G. Liuzzi. Giovedí 19 Marzo Tableau del Simplesso Esempio Fase I del Simplesso Esempio 1 Giovedí 19 Marzo 2015 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Tableau o Dizionario Qualche richiamo sulla generica iterazione della Fase II: B base ammissibile corrente x SBA corrente:

Dettagli

Matrici unimodulari e totalmente unimodulari

Matrici unimodulari e totalmente unimodulari Matrici unimodulari e totalmente unimodulari Sia una matrice intera di dimensione con, si dice unimodulare se presa una qualsiasi sottomatrice di ordine massimo (di dimensione ) vale det = 1, +1, 0. Una

Dettagli

Simplesso Revised. Domenico Salvagnin

Simplesso Revised. Domenico Salvagnin Simplesso Revised Domenico Salvagnin 2011-04-18 1 Introduzione Consideriamo un problema di programmazione lineare in forma standard: min z = c T x (1.1) Ax = b (1.2) x 0 (1.3) dove A R m n è una matrice

Dettagli

Esame di Ricerca Operativa del 30/06/14. max 4 x 1 7 x 2 x 1 +7 x 2 7 x 1 4 x 2 7 x 1 +5 x 2 5 x 1 x 2 5 x 2 1 x 1 +4 x 2 6

Esame di Ricerca Operativa del 30/06/14. max 4 x 1 7 x 2 x 1 +7 x 2 7 x 1 4 x 2 7 x 1 +5 x 2 5 x 1 x 2 5 x 2 1 x 1 +4 x 2 6 Esame di Ricerca Operativa del 0/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x 7 x x +7 x 7 x x 7 x + x x x x x

Dettagli

Esame di Ricerca Operativa del 11/02/2015

Esame di Ricerca Operativa del 11/02/2015 Esame di Ricerca Operativa del /0/0 (Cognome) (Nome) (Matricola) Esercizio. Un azienda produce tipi di TV (, 0, 0 e pollici) ed è divisa in stabilimenti (A e B). L azienda dispone di 0 operai in A e 0

Dettagli

Esame di Ricerca Operativa del 28/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 28/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 8/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y y + y + y + y +8 y + y y y +y +y

Dettagli

COMPITO DI RICERCA OPERATIVA. max 5 2x 1 + 3x 2 x 3 = 2 + x 1 5x 2 x 4 = 5 + x 2. x 5 = 1 + x 1 x 2

COMPITO DI RICERCA OPERATIVA. max 5 2x 1 + 3x 2 x 3 = 2 + x 1 5x 2 x 4 = 5 + x 2. x 5 = 1 + x 1 x 2 COMPITO DI RICERCA OPERATIVA ESERCIZIO. ( punti) La riformulazione di un problema di PL rispetto alla base B = {x, x, x } è la seguente: max 2x + x 2 x = 2 + x x 2 x = + x 2 x = 2 + x + x 2 x, x 2, x,

Dettagli

Esame di Ricerca Operativa del 12/06/18. Base x Degenere? y Indice Rapporti Indice uscente entrante

Esame di Ricerca Operativa del 12/06/18. Base x Degenere? y Indice Rapporti Indice uscente entrante Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Effettuare due iterazioni dell algoritmo del simplesso duale: min y + y + y + y + y + y y y y + y +y = y y + y +y y

Dettagli

Esame di Ricerca Operativa del 24/07/18. max 7 x 1 +4 x 2 x 1 +3 x x 1 +x x 1 +x 2 12 x 1 x x 1 3 x 2 2 x 1 2 x 2 14

Esame di Ricerca Operativa del 24/07/18. max 7 x 1 +4 x 2 x 1 +3 x x 1 +x x 1 +x 2 12 x 1 x x 1 3 x 2 2 x 1 2 x 2 14 Esame di Ricerca Operativa del /07/18 Cognome) Nome) Numero di Matricola) Esercizio 1. Effettuare due iterazioni dell algoritmo del simplesso primale per il problema max 7 x 1 + x x 1 + x 6 x 1 +x x 1

Dettagli

Esame di Ricerca Operativa del 08/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 08/01/13. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del 08/0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x + x x +x x x 0 x + x x x 8 x x 8

Dettagli

COMPITO DI RICERCA OPERATIVA. max 3x 1 + 2x 2 x x 2 + x 3 = 4 2x 1 + x 2 + x 4 = 3

COMPITO DI RICERCA OPERATIVA. max 3x 1 + 2x 2 x x 2 + x 3 = 4 2x 1 + x 2 + x 4 = 3 COMPITO DI RICERCA OPERATIVA ESERCIZIO 1. (7 punti) Sia dato il seguente problema di PL: max 3x 1 + 2x 2 x 1 + 1 2 x 2 + x 3 = 4 2x 1 + x 2 + x 4 = 3 Lo si risolva con l algoritmo che si ritiene più opportuno

Dettagli

ALGORITMO DEL SIMPLESSO. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Simplesso / 1.

ALGORITMO DEL SIMPLESSO. Una piccola introduzione. Ricerca Operativa. Prof. R. Tadei. Politecnico di Torino. Simplesso / 1. ALGORITMO DEL SIMPLESSO Una piccola introduzione R. Tadei R. Tadei 2 SIMPLESSO L obiettivo del capitolo è quello di fornire un algoritmo, l algoritmo del simplesso, che risolve qualsiasi problema di programmazione

Dettagli

Registro dell'insegnamento

Registro dell'insegnamento Registro dell'insegnamento Anno accademico 2016/2017 Prof. MARCO SCIANDRONE Settore inquadramento MAT/09 - RICERCA OPERATIVA REGISTRO Scuola Ingegneria NON CHIUSO Dipartimento Ingegneria dell'informazione

Dettagli

Esame di Ricerca Operativa del 07/09/2016

Esame di Ricerca Operativa del 07/09/2016 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Un industria chimica produce due tipi di fertilizzanti (A e B) la cui lavorazione è affidata ai reparti di produzione e

Dettagli

Esame di Ricerca Operativa del 04/07/17

Esame di Ricerca Operativa del 04/07/17 Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y y + y + y + y + y +9 y y y

Dettagli

METODI DELLA RICERCA OPERATIVA

METODI DELLA RICERCA OPERATIVA Università degli Studi di Cagliari FACOLTA' DI INGEGNERIA CORSO DI METODI DELLA RICERCA OPERATIVA Dott.ing. Massimo Di Francesco (mdifrance@unica.it) i i Dott.ing. Maria Ilaria Lunesu (ilaria.lunesu@unica.it)

Dettagli

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0.

min 2x 1 +4x 2 2x 3 +2x 4 x 1 +4x 2 +2x 3 + x 4 =6 2x 1 + x 2 +2x 3 + x 5 =3 x 0. 5 IL METODO DEL SIMPLESSO 6.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Esame di Ricerca Operativa del 12/02/18. P 1 P 2 P 3 P 4 P 5 P 6 Peso bagaglio km di viaggio

Esame di Ricerca Operativa del 12/02/18. P 1 P 2 P 3 P 4 P 5 P 6 Peso bagaglio km di viaggio Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. L autista di un taxi puo trasportare al massimo persone richiedendo a ciascuna Euro a km per il viaggio. Fanno richiesta

Dettagli

Esercizio 1. Variabili decisionali:

Esercizio 1. Variabili decisionali: Esercizio 1 Si noti che i costi sono dati per tonnellata, mentre molti vincoli riguardano il numero di navi. Si introducono pertanto DUE tipi di variabili, uno relativo al numero di tonnellate per tipo

Dettagli

COMPITO DI RICERCA OPERATIVA. max x 1 + 2x 2 + x 3 x 1 x 2 + x 3 = 1 2x 1 + 3x 2 + x 4 = 2

COMPITO DI RICERCA OPERATIVA. max x 1 + 2x 2 + x 3 x 1 x 2 + x 3 = 1 2x 1 + 3x 2 + x 4 = 2 COMPITO DI RICERCA OPERATIVA ESERCIZIO. (9 punti) Sia dato il seguente problema di PL: max x + 2x 2 + x 3 x x 2 + x 3 = 2x + 3x 2 + x 4 = 2 x, x 2, x 3, x 4 0 Si determini il duale del problema ( punto).

Dettagli

Esame di Ricerca Operativa del 06/02/17

Esame di Ricerca Operativa del 06/02/17 Esame di Ricerca Operativa del 0/0/7 (Cognome) (Nome) (Numero d Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max 7 x x x x x x x + x x x 0 x

Dettagli

Esame di Ricerca Operativa del 16/01/18. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 16/01/18. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y +9 y +9 y + y +y +0 y y +

Dettagli

Esame di Ricerca Operativa del 03/09/2015

Esame di Ricerca Operativa del 03/09/2015 Esame di Ricerca Operativa del 0/09/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una raffineria di petrolio miscela tipi di greggio per ottenere tipi di carburante: senza piombo, diesel e blu diesel.

Dettagli

5.5 Metodi generali per la soluzione di problemi

5.5 Metodi generali per la soluzione di problemi 5.5 Metodi generali per la soluzione di problemi di PLI I problemi di PLI hanno caratteristiche molto diverse dai problemi di PL. In alcuni casi, la soluzione del problema lineare rilassato, ottenuto cioè

Dettagli

Esame di Ricerca Operativa del 23/02/17

Esame di Ricerca Operativa del 23/02/17 Esame di Ricerca Operativa del /0/ (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: min y + y + y + y y +0 y + y y y

Dettagli

PROGRAMMAZIONE LINEARE A NUMERI INTERI

PROGRAMMAZIONE LINEARE A NUMERI INTERI PROGRAMMAZIONE LINEARE A NUMERI INTERI N.B. Nei seguenti esercizi vengono utilizzate, salvo diversa indicazione, le seguenti notazioni: PLO programma lineare ordinario S a insieme delle soluzioni ammissibili

Dettagli

Programmazione Lineare Intera: Piani di Taglio

Programmazione Lineare Intera: Piani di Taglio Programmazione Lineare Intera: Piani di Taglio Andrea Scozzari a.a. 2014-2015 April 22, 2015 Andrea Scozzari (a.a. 2014-2015) Programmazione Lineare Intera: Piani di Taglio April 22, 2015 1 / 23 Programmazione

Dettagli

Esame di Ricerca Operativa del 06/02/17

Esame di Ricerca Operativa del 06/02/17 Esame di Ricerca Operativa del 0/0/ (Cognome) (Nome) (Numero d Matricola) Esercizio. Uno studente vuole definire un piano di studio settimanale per preparare gli esami A, B e C, massimizzando le ore (h)

Dettagli

FACOLTA DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA. Verona, 5 Febbraio , : ; ;,, trovare il punto di

FACOLTA DI ECONOMIA ESAME SCRITTO DI RICERCA OPERATIVA. Verona, 5 Febbraio , : ; ;,, trovare il punto di Verona, Febbraio 99 ) Dato il problema min( cx + cx ) x+ x x = x + x x = ax + x x = x i 0 i =,... a) dire, giustificando, per quali valori di c, c ed a in una soluzione ammissibile si ha x =x =/; la soluzione

Dettagli

Esame di Ricerca Operativa del 23/02/16. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare:

Esame di Ricerca Operativa del 23/02/16. Esercizio 1. Completare la seguente tabella considerando il problema di programmazione lineare: Esame di Ricerca Operativa del /0/ Cognome) Nome) Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x +x x x x +x x +x x x x + x Base

Dettagli

città

città Esercitazione 11-4-18 Esercizio 1. Si consideri il problema di trovare il ciclo hamiltoniano di costo minimo su una rete di 5 città, le cui distanze reciproche sono indicate in tabella: città 2 3 4 5 1

Dettagli

Esame di Ricerca Operativa del 19/01/2016

Esame di Ricerca Operativa del 19/01/2016 Esame di Ricerca Operativa del 19/01/201 (Cognome) (Nome) (Matricola) Esercizio 1. Una banca offre ai suoi clienti diversi tipi di prestito: mutuo casa, credito auto, credito famiglia, che rendono un interesse

Dettagli

Esame di Ricerca Operativa. max 14 x x 2 5 x 1 3 x x 1 3 x x x 2 16 x x x 1 x 2 15 x x 2 41

Esame di Ricerca Operativa. max 14 x x 2 5 x 1 3 x x 1 3 x x x 2 16 x x x 1 x 2 15 x x 2 41 Esame di Ricerca Operativa (Cognome) (Nome) (Corso di laurea) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x + 8 x x 3 x x 3 x x + 3 x x + x x x x +

Dettagli

Esame di Ricerca Operativa del 22/01/18

Esame di Ricerca Operativa del 22/01/18 Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda informatica produce tre tipi di processori P, P, P nelle sedi S, S, S. La capacitá di produzione settimanale

Dettagli

Rilassamento Lagrangiano

Rilassamento Lagrangiano RILASSAMENTO LAGRANGIANO 1 Rilassamento Lagrangiano Tecnica più usata e conosciuta in ottimizzazione combinatoria per il calcolo di lower/upper bounds (Held and Karp (1970)). Si consideri il seguente problema

Dettagli

Gestione della produzione e della supply chain Logistica distributiva

Gestione della produzione e della supply chain Logistica distributiva Gestione della produzione e della supply chain Logistica distributiva Paolo Detti Dipartimento di Ingegneria dell Informazione e Scienze Matematiche Università di Siena Convergenza dell algoritmo Se non

Dettagli

Si consideri il seguente tableau ottimo di un problema di programmazione lineare

Si consideri il seguente tableau ottimo di un problema di programmazione lineare ESERCIZIO 1 Si consideri il seguente tableau ottimo di un problema di programmazione lineare -25/3 0 4/3 19/6 9/2 0 0 0 7/6 1 0 1-1/2-3/2 1 0 0 3/2 11/3 1-2/3-1/3 0 0 0 0 2/3 2/3 0 1/3 1/6-1/2 0 1 0 7/6

Dettagli

Esame di Ricerca Operativa del 22/01/18

Esame di Ricerca Operativa del 22/01/18 Esame di Ricerca Operativa del /0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Un azienda informatica produce tre tipi di processori P, P, P nelle sedi S, S, S. La capacitá di produzione settimanale

Dettagli

Esame di Ricerca Operativa del 18/06/18

Esame di Ricerca Operativa del 18/06/18 Esame di Ricerca Operativa del 8/0/8 (Cognome) (Nome) (Numero di Matricola) Esercizio. Completare la seguente tabella considerando il problema di programmazione lineare: max x x x +x x x x +x x x x + x

Dettagli