Sistemi dinamici-parte 2 Equazioni di Hamilton: struttura simplettica e proprieta del flusso

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Sistemi dinamici-parte 2 Equazioni di Hamilton: struttura simplettica e proprieta del flusso"

Transcript

1 Sistemi dinamici-parte 2 Equazioni di : struttura e proprieta del flusso AM Cherubini 7 Maggio / 20

2 Dalle equazioni di Lagrange alle equazioni di Un sistema lagrangiano naturale L = K V si puo scrivere come sistema al primo ordine in modo diverso da quello standard e piu consono alla sua struttura. Si sfrutta la dipendenza quadratica da q attraverso K = 1 2 q A(q) q per scrivere le q in funzione dei momenti coniugati p i = L q i : p i e funzione di (q, q) e quindi la funzione p i q j = a ij (q) p : R 2n R n (q, q) p(q, q) = (p 1 (q, q),..., p n (q, q)) ha A(q) come matrice jacobiana rispetto alle q. A(q) ha determinante non nullo q 2 / 20

3 Per il teorema della funzione implicita e quindi possibile scrivere ciascuna delle q i come funzione regolare delle p e delle q q = ( q 1 (p,q),... q n (p,q)) Posso ora considerare (p,q) come variabili incognite e scrivere per esse delle equazioni, seguendo un procedimento gia visto nel caso delle variabili cicliche 3 / 20

4 Esempio: punto sul piano in coodinate cartesiane iana : K = 1 2 m(ẋ2 1 + ẋ 2 2) p 1 = mẋ 1 p 2 = mẋ 2 ẋ 1 (p,x) = p 1 m ẋ2(p,x) = p 2 m In questo caso le p sono le componenti della quantita di moto 4 / 20

5 ..e in coordinate polari iana : K = 1 2 m(ṙ2 + r 2 θ2 ) p r = mṙ ṙ(p r, p θ, r, θ) = p r m p θ = mr 2 θ θ(p r, p θ, r, θ) = p θ mr 2 In questo caso le p sono le componenti radiale e tangente del momento angolare 5 / 20

6 iana iana : A partire da L, definisco la funzione reale delle (p,q), H : R 2n R H(p, q) = p q L(q, q(p, q)) trasformata di Legendre di L H e la funzione di, o hamiltoniana del sistema Nel nostro caso L = K V, con K = 1 2 q A(q) q, H coincide l energia totale del sistema espressa in funzione di (p,q): infatti p = A(q) q H(p,q) = K(q, q(p,q)) + V (q) 6 / 20

7 Equazioni di Date L(q, q) e H(p,q) definite come sopra, con il sistema di n equazioni di Lagrange p = L q ṗ = L q e equivalente al sistema di 2n equazioni al primo ordine ṗ = H q H q = p Queste ultime sono le equazioni di, o equazioni canoniche 7 / 20

8 iana : Un generale un sistema differenziale nelle variabili (p,q) U R 2n e se esiste una funzione H : R 2n R sempre dimensione pari! per cui il sistema ha la forma incrociata ṗ = H q H q = p Questi sistemi non vengono solo dalla meccanica: sono presenti in ambiti della fisica, e non solo, molto diversi: cercate la struttura hamiltoniana nel modello di Lotka-Volterra per pecore e lupi 8 / 20

9 Esempio: iana : Per un punto sul piano in un campo di forze centrali, in coordinate polari si avra H = 1 2m con equazioni canoniche ( p 2 r + p2 θ r 2 ) + V (r) ṗ r ṗ θ ṙ = θ = = V (r) + p2 θ mr 3 = 0 quindi p θ e costante p r m p θ mr 2 9 / 20

10 iana : 10 / 20

11 Matrici iana : Definisco la matrice antisimmetrica 2n 2n ( ) 0 I E = I 0 I e 0 sono rispettivamente l identita e la matrice nulla in R n Una matrice A, 2n 2n, si dice se A T EA = E Le matrici formano gruppo Se A e deta = 1 11 / 20

12 Struttura del campo iana : Data una funzione H(p,q) ne considero il gradiente H = Moltiplico per E ( H p, H ) q E H = = (... H...,..., H )... p i q i ( H q, H ) p Se indico con x = (p,q), le equazioni di hanno quindi la forma ẋ = E H(x) 12 / 20

13 Flusso iana : Dato un sistema indichiamo con ẋ = F(x) Φ t F(x 0 ) il flusso, cioe la soluzione al tempo t relativa al dato iniziale x 0. Nel caso con hamiltoniana H, x = (p,q) e il flusso a volte viene indicizzato con H Φ t H(x 0 ) 13 / 20

14 iana : Il flusso definisce una trasformazione regolare nello spazio delle fasi x Φ t (x) e, se il sistema e autonomo, forma gruppo cioe Φ t+s = Φ t Φ s = Φ s Φ s Φ 0 e l identita ( Φ t) 1 = Φ t 14 / 20

15 Campi a iana : Dato un campo vettoriale F in R l si definisce la divergenza Dato il sistema ẋ = F(x) se divf = n i=1 Teorema divf = 0 F i x i il flusso conserva il volume nello spazio delle fasi cioe vol ( ) Φ t (V ) = vol (V ) per ogni sottoinsieme V dello spazio delle fasi 15 / 20

16 Corollario: iana : Il campo p V Φ t ( H q, H ) p ha, quindi il flusso conserva il volume nello spazio delle fasi Φ t (V) q 16 / 20

17 Conseguenze del iana : In un sistema autonomo non sono possibili equilibri asintotici. Infatti se un punto x 0 fosse un equilibrio asintotico per un suo intorno B ǫ (x 0 ) di raggio ǫ dovrebbe valere lim t Φt (B ǫ (x 0 )) = x 0 che contraddice la conservazione del volume Teorema del di Poincare. Enunciamo e dimostriamo, superficialmente, il teorema, molto famoso, ma per una discussione rigorosa servono altre nozioni. 17 / 20

18 Teorema del di Poincare iana : Dato un sistema autonomo definito in un sottoinsieme Ω di volume finito dello spazio delle fasi, sia B Ω una sfera piccola a piacere, e sia Φ t (B) la sua immagine al tempo t. Allora per ogni T esiste un tempo τ > T per cui Φ τ (B) B Corollario Quasi tutte le traiettorie che hanno origine in B vi ritornano infinite volte (cioe l insieme dei dati iniziali per cui questo non vale ha misura nulla) Attenzione: i tempi di in sistemi realistici sono lunghissimi 18 / 20

19 Dimostrazione del teorema iana : I punti cruciali sono 1. il dominio e limitato 2. il flusso conserva il volume (non e necessaria la struttura hamiltoniana) 3. il flusso ha proprieta di gruppo Supponiamo Ω R 2n limitato, B Ω sfera con raggio ǫ piccolo a piacere. Consideriamo l immagine di B per il flusso ai multipli del tempo T In particolare B 0 = B. Si ha B 1 = Φ T (B),...B i = Φ it (B)... vol(b i ) = vol(b) 19 / 20

20 iana : Esistono m < n tali che B n B m altrimenti, se i B i fossero tutti disgiunti la loro unione, contenuta in Ω, avrebbe volume infinito, il che e un assurdo. Se m = 0 il teorema e dimostrato, altrimenti si torna indietro con il flusso e si ha Φ T (B n B m ) = B n 1 B m 1 Iterando Φ nt (B n B m ) = B 0 B m n = B B m n ma B n B m e quindi anche B B m n. 20 / 20

Sistemi dinamici-parte 2 Parentesi di Poisson e trasformazioni canoniche

Sistemi dinamici-parte 2 Parentesi di Poisson e trasformazioni canoniche Sistemi dinamici-parte 2 Parentesi di e trasformazioni AM Cherubini 11 Maggio 2007 1 / 25 Analogamente a quanto fatto per i sistemi lagrangiani occorre definire, insieme alla struttura del sistema, anche

Dettagli

1 Punti di equilibrio e stabilità: definizioni

1 Punti di equilibrio e stabilità: definizioni ASPETTI QUALITATIVI DELLA TEORIA DELLE EQUAZIONI DIFFERENZIALI (Schema del contenuto delle lezioni e riferimenti bibliografici) Testi [HS] M. Hirsch and S. Smale Differential Equations, Dynamical Systems

Dettagli

Sistemi dinamici-parte2 Equazioni di Lagrange per N punti

Sistemi dinamici-parte2 Equazioni di Lagrange per N punti Sistemi dinamici-parte2 Equazioni di Lagrange per N punti AM Cherubini 3 Aprile 2007 (e seguenti) 1 / 30 Sistemi olonomi Generalizziamo i concetti introdotti nel caso semplice di un solo punto materiale

Dettagli

Sistemi dinamici-parte2 Equazioni di Lagrange per il punto materiale

Sistemi dinamici-parte2 Equazioni di Lagrange per il punto materiale Sistemi inamici-parte2 Equazioni i Lagrange per il punto materiale AM Cherubini 2 Aprile 2007 1 / 16 Warning! Warning! Da Newton a Lagrange Cambio coorinate: coorinate polari el piano a una curva Lagrangiana

Dettagli

1. Funzioni implicite

1. Funzioni implicite 1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,

Dettagli

Richiami di Meccanica Classica

Richiami di Meccanica Classica Richiami di Meccanica Classica Corso di Fisica Matematica 3 (seconda parte), a.a. 2016/17 G. Gaeta 18/4/2017 Questa dispensa, che va vista in connessione a quella sul principio variazionale e la formulazione

Dettagli

MA - Soluzioni dell esame scritto del

MA - Soluzioni dell esame scritto del MA - Soluzioni dell esame scritto del 7-9-015 1. Si consideri un punto materiale di massa m vincolato a muoversi su una superficie ellissoidale di equazione (x + y ) + z = R, sottoposto all azione della

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

Capitolo 16. Meccanica hamiltoniana

Capitolo 16. Meccanica hamiltoniana 65. sistemi hamiltoniani 143 Capitolo 16. Meccanica hamiltoniana sec.65 65. Sistemi Hamiltoniani p.65.1 p.65.2 65.1 p.65.3 65.1a 65.1. Introduzione. 65.2. Definizione (Trasformata di Legendre) Sia f :

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di sistema fondamentale di soluzioni di un equazione differenziale lineare d ordine n omogenea. Sia I un intervallo non banale di R; siano

Dettagli

Compito del 14 giugno 2004

Compito del 14 giugno 2004 Compito del 14 giugno 004 Un disco omogeneo di raggio R e massa m rotola senza strisciare lungo l asse delle ascisse di un piano verticale. Il centro C del disco è collegato da una molla di costante elastica

Dettagli

3.3 Trasformazioni canoniche

3.3 Trasformazioni canoniche 3.3. TRASFORMAZIONI CANONICHE 37 3.3 Trasformazioni canoniche Sia U R 2n un aperto. In questa sezione caratterizzeremo le trasformazioni di coordinate Ψ U x p,q) Ψ P,Q) y R 2n che lasciano invariata la

Dettagli

FM210 / MA - Terzo scritto ( ), con l > 0. Il vincolo può supporsi ideale. Oltre alle forze di reazione vincolare, il punto è soggetto a

FM210 / MA - Terzo scritto ( ), con l > 0. Il vincolo può supporsi ideale. Oltre alle forze di reazione vincolare, il punto è soggetto a FM10 / MA - Terzo scritto (9-9-017) Esercizio 1. Un punto materiale P di massa m è vincolato a muoversi senza attrito sulla superficie di equazione z = l log x +y, con l > 0. Il vincolo può l supporsi

Dettagli

Prova Scritta di di Meccanica Analitica

Prova Scritta di di Meccanica Analitica Prova Scritta di di Meccanica Analitica 7 gennaio 015 Problema 1 Un punto di massa unitaria si muove sull asse x soggetto al potenziale V (x) = x e x a) Determinare le posizioni di equilibrio e la loro

Dettagli

CINEMATICA DEL PUNTO MATERIALE

CINEMATICA DEL PUNTO MATERIALE CINEMATICA DEL PUNTO MATERIALE Regole di derivazione per il prodotto scalare e per il prodotto vettore Sia v funzione di un parametro reale t, t.c. 5 v : R R 3 t 7 v (t). (1) Proprietà: 1. Limite. Il concetto

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di forma differenziale chiusa. Sia A R N ; sia A aperto; sia ω = N i=1 ω i dx i una forma differenziale su A; sia ω di classe C 1 ; si dice

Dettagli

Prova Scritta di di Meccanica Analitica. 4 Luglio ) Si consideri un punto materiale di massa m soggetto al potenziale.

Prova Scritta di di Meccanica Analitica. 4 Luglio ) Si consideri un punto materiale di massa m soggetto al potenziale. Prova Scritta di di Meccanica Analitica 4 Luglio 7 Problema ) Si consideri un punto materiale di massa m soggetto al potenziale V x) ax 4 determinare la dipendenza del periodo dall energia. ) Si scriva

Dettagli

EH. Equazioni di Hamilton

EH. Equazioni di Hamilton EH. Equazioni di Hamilton Iniziamo questo capitolo con un osservazione di carattere preliminare. Consideriamo, per esempio, un sistema differenziale costituito da N equazioni ciascuna del secondo ordine,

Dettagli

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017

Prova Scritta di di Meccanica Analitica. 12 Gennaio 2017 Prova Scritta di di Meccanica Analitica 1 Gennaio 017 Problema 1 Si studi il sistema meccanico costituito da un punto materiale di massa unitaria soggetto al potenziale V x) = a lnx) x > 0 x a) Scrivere

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Somma diretta di sottospazi vettoriali

Somma diretta di sottospazi vettoriali Capitolo 8 Somma diretta di sottospazi vettoriali 8.1 Introduzione Introduciamo un caso particolare di somma di due sottospazi vettoriali: la somma diretta. Anche questo argomento è stato visto nel corso

Dettagli

FM210 / MA - Secondo scritto ( )

FM210 / MA - Secondo scritto ( ) FM10 / MA - Secondo scritto (6-7-017) Esercizio 1. Un asta rigida omogenea di lunghezza l e massa M è vincolata a muoversi su un piano verticale di coordinate x-y (con l asse x orizzontale e l asse y verticale,

Dettagli

Equazioni di Hamilton

Equazioni di Hamilton Equazioni di Hamilton Osservazione di carattere preliminare Consideriamo un sistema differenziale costituito da N equazioni ciascuna del secondo ordine, in forma normale: y h = f h (x, y l, y l), h, l

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

Si consideri il moto di un punto materiale di massa m soggetto ad un poten- ziale centrale. 1 r

Si consideri il moto di un punto materiale di massa m soggetto ad un poten- ziale centrale. 1 r 1 3 o tutorato - FM - 4/3/017 Si consideri il moto di un punto materiale di massa m soggetto ad un poten- Esercizio 1 ziale centrale dove V 0, r 0 > 0. V ( r ) = V 0 ( 1 10 ( r0 r ) 10 1 6 ( r0 ) ) 6 r

Dettagli

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà)

Foglio di Esercizi 7 Meccanica Razionale a.a. 2018/19 Canale A-L (P. Buttà) Foglio di Esercizi 7 Meccanica Razionale a.a. 018/19 Canale A-L P. Buttà Esercizio 1. Sia {O; x, y, z} un sistema di riferimento ortonormale con l asse z diretto secondo la verticale ascendente. Un punto

Dettagli

Prova Scritta di di Meccanica Analitica. 11 febbraio Problema 1

Prova Scritta di di Meccanica Analitica. 11 febbraio Problema 1 Prova Scritta di di Meccanica Analitica 11 febbraio 019 Problema 1 Si consideri un punto materiale P di massa m vincolato a muoversi su una retta orizzontale e connesso mediante una molla di costante elastica

Dettagli

Richiami di topologia di R n e di calcolo differenziale in più variabili

Richiami di topologia di R n e di calcolo differenziale in più variabili Anno accademico: 2016-2017 Corso di laurea in Ingegneria Aerospaziale e Ingegneria dell Autoveicolo Programma di Analisi Matematica II (6 CFU) (codice: 22ACILZ e 22ACILN) Docente: Lancelotti Sergio Richiami

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2012/13 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Esercizio: pendolo sferico. Soluzione

Esercizio: pendolo sferico. Soluzione Esercizio: pendolo sferico Si consideri un punto materiale di massa m vincolato a muoversi senza attrito sulla superficie di una sfera di raggio R e soggetto alla forza di gravita. Ridurre il moto alle

Dettagli

0.1 Arco di curva regolare

0.1 Arco di curva regolare .1. ARCO DI CURVA REGOLARE 1.1 Arco di curva regolare Se RC(O, i, j, k ) è un riferimento cartesiano fissato per lo spazio euclideo E, e se v (t) = x(t) i + y(t) j + z(t) k è una funzione a valori vettoriali

Dettagli

Metodi multiscala per le fasi condensate

Metodi multiscala per le fasi condensate p. 1/2 Metodi multiscala per le fasi condensate Cenni di meccanica razionale - II Antonino Polimeno antonino.polimeno@unipd.it Università degli Studi di Padova Dipartimento di Scienze Chimiche p. 2/2 Lagrange

Dettagli

PARTE 4: Equazioni differenziali

PARTE 4: Equazioni differenziali PROGRAMMA di Fond. di Analisi Mat. 2 - sett. 1-11 A.A. 2011-2012, canali 1 e 2, proff.: Francesca Albertini e Monica Motta Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi

Dettagli

Prova Scritta di di Meccanica Analitica. 10 Febbraio 2017

Prova Scritta di di Meccanica Analitica. 10 Febbraio 2017 Prova Scritta di di Meccanica Analitica 10 Febbraio 017 Problema 1 Si consideri un punto materiale di massa m soggetto alla forza peso e vincolato ad una curva in un piano verticale y x x Schematizzare

Dettagli

7.4 Massimi e minimi vincolati. Moltiplicatori di Lagrange

7.4 Massimi e minimi vincolati. Moltiplicatori di Lagrange 4 7.4 Massimi e minimi vincolati. Moltiplicatori di Lagrange Sia f (,,, n ) una funzione delle n variabili,,, n, supponiamo che esse non siano indipendenti, cioè che siano legate da p < n equazioni: ϕ(,,,

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica Appunti delle lezioni tenute dal Prof. A. Fonda Università di Trieste CdL Matematica a.a. 07/08 La derivata direzionale In questa sezione E sarà un sottoinsieme aperto di R N x 0 un

Dettagli

Prova Scritta di di Meccanica Analitica. 3 giugno Un punto di massa unitaria si muove soggetto al potenziale ) V (x) = x exp.

Prova Scritta di di Meccanica Analitica. 3 giugno Un punto di massa unitaria si muove soggetto al potenziale ) V (x) = x exp. Prova Scritta di di Meccanica Analitica 3 giugno 015 Problema 1 Un punto di massa unitaria si muove soggetto al potenziale V x = x exp x a Determinare le posizioni di equilibrio e la loro stabilitá b Tracciare

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Meccanica analitica III parte Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

Funzioni di più variabili a valori vettoriali n t m

Funzioni di più variabili a valori vettoriali n t m Funzioni di più variabili a valori vettoriali n t m Definizione f(x 1, x 2,...x n )=[f 1 (x 1, x 2,...x n ), f 2 (x 1, x 2,...x n ),...f m (x 1, x 2,...x n )] Funzione definita n d m Dove: n = dominio

Dettagli

Modulo 5 Funzioni di piú variabili. A. Scanu

Modulo 5 Funzioni di piú variabili. A. Scanu Modulo 5 Funzioni di piú variabili A. Scanu 1 1 Generalitá In questo modulo studieremo funzioni di piú di una variabile cioé del tipo f : R n R m con n, m 1. In particolare prenderemo in considerazione

Dettagli

LA TRASFORMATA DI LEGENDRE

LA TRASFORMATA DI LEGENDRE LA TRASFORMATA DI LEGENDRE prof. Antonio Greco Dipartimento di Matematica e Informatica Università di Cagliari 11-12-2013 Indice Prefazione............ 3 Sintesi.............. 3 Il caso unidimensionale.....

Dettagli

NOTE SU VARIABILI AZIONE ANGOLO E TEORIA PERTURBATIVA. Armando Bazzani Dipartimento di Fisica e Astranomia - Meccanica Analitica

NOTE SU VARIABILI AZIONE ANGOLO E TEORIA PERTURBATIVA. Armando Bazzani Dipartimento di Fisica e Astranomia - Meccanica Analitica NOTE SU VARIABILI AZIONE ANGOLO E TEORIA PERTURBATIVA Armando Bazzani Dipartimento di Fisica e Astranomia - Meccanica Analitica 9 Ottobre 13 Consideriamo un sistema dinamico unidimensionale con Hamiltoniana

Dettagli

FM210 - Fisica Matematica 1 Tutorato VI - Martha Faraggiana e Enzo Livrieri (soluzioni degli esercizi)

FM210 - Fisica Matematica 1 Tutorato VI - Martha Faraggiana e Enzo Livrieri (soluzioni degli esercizi) Corso di laurea in Matematica - Anno Accademico 2012/2013 FM210 - Fisica Matematica 1 Tutorato VI - Martha Faraggiana e Enzo Livrieri (soluzioni degli esercizi) Esercizio 1. a) Il sistema planare assegnato

Dettagli

Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore

Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore Laurea Triennale in Matematica Fisica Matematica ore 14:30 15 Giugno 2017 Durata: 3 ore Attenzione: Riconsegnerete DUE fogli (protocollo bianco, a 4 facciate), scriverete chiaramente cognome e nome, data

Dettagli

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto

Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Corso di laurea: Ingegneria aerospaziale e meccanica Programma di Fondamenti di Analisi Matematica II a.a. 2013/14 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo

Dettagli

Introduzione alla Fisica Moderna - a.a

Introduzione alla Fisica Moderna - a.a Introduzione alla Fisica Moderna - a.a. 2016-17 18/12/2017 Nome Cognome Matricola: 1) Si consideri il sistema dinamico nonlineare ẋ = y x 2, ẏ = x + y 2, Si determinino i punti di equilibrio, si caratterizzi

Dettagli

PARTE 3: Funzioni di più variabili e funzioni vettoriali

PARTE 3: Funzioni di più variabili e funzioni vettoriali PROGRAMMA di Fondamenti di Analisi Matematica 2 (Versione estesa del 14/1/ 10) A.A. 2009-2010, canali 1 e 2, proff.: Francesca Albertini e Monica Motta Ingegneria gestionale, meccanica e meccatronica,

Dettagli

19.2 Teoremi di stabilità

19.2 Teoremi di stabilità 19. STABILITÀ DEI PUNTI DI EQUILIBRIO 189 Osservazione 19.8 Sotto le ipotesi del lemma 19.6, si ha lim t + ϕ(t, x) = x 0, ma non necessariamente il punto x 0 è asintoticamente stabile. In altre parole

Dettagli

Analisi Matematica T_2 (prof.g.cupini) A.A CdL Ingegneria Automaz./Energ.Elettrica - Univ.Bologna REGISTRO DELLE LEZIONI

Analisi Matematica T_2 (prof.g.cupini) A.A CdL Ingegneria Automaz./Energ.Elettrica - Univ.Bologna REGISTRO DELLE LEZIONI Analisi Matematica T_2 (prof.g.cupini) A.A.2014-2015 - CdL Ingegneria Automaz./Energ.Elettrica - Univ.Bologna REGISTRO DELLE LEZIONI Lu, 23 febbraio 2015 Presentazione del corso. Curve parametriche: definizione.

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Prima Prova di Esonero [ ]

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA. Prima Prova di Esonero [ ] Corsi di laurea in Matematica e Fisica - Anno Accademico 017/18 FM10 / MA Prima Prova di Esonero [9-4-018] 1. Un punto materiale di massa m si muove in una dimensione sotto l effetto di una forza posizionale,

Dettagli

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà)

Foglio di Esercizi 5 Meccanica Razionale a.a. 2017/18 Canale A-L (P. Buttà) Foglio di Esercizi 5 Meccanica Razionale a.a. 017/18 Canale A-L (P. Buttà) Esercizio 1. Su un piano orizzontale sono poste due guide immateriali circolari di centri fissi O 1 e O e uguale raggio r; sia

Dettagli

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti:

Esempi. In R 2, le coppia (2, 5) è combinazione lineare dei vettori (0, 1) e (1, 1). Infatti: Combinazioni lineari [Abate, 4.2] Sia V uno spazio vettoriale e v 1, v 2,..., v n dei vettori di V. Diremo che un vettore w V è combinazione lineare dei vettori v 1,..., v n se esistono a 1, a 2,..., a

Dettagli

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1].

4 Funzioni continue. Geometria I 27. Cfr: Sernesi vol II, cap I, 4 [1]. Geometria I 27 4 Funzioni continue Cfr: Sernesi vol II, cap I, 4 [1]. Le funzioni continue tra spazi topologici si dicono anche mappe. Si può dimostrare, esattamente come in (2.10) e in (1.10), che vale

Dettagli

1 Il Teorema della funzione implicita o del Dini

1 Il Teorema della funzione implicita o del Dini 1 Il Teorema della funzione implicita o del Dini Ricordiamo che dato un punto x R n, un aperto A R n che contiene x si dice intorno (aperto) di x. Teorema 1.1. (I Teorema del Dini) Sia f : A (aperto) R

Dettagli

ANALISI MATEMATICA 2 A.A. 2015/16

ANALISI MATEMATICA 2 A.A. 2015/16 ANALISI MATEMATICA 2 SCHEMA PROVVISORIO DELLE LEZIONI A.A. 2015/16 1 Distribuzione degli argomenti Argomento lezioni tot Calcolo differenziale 12 12 Forme differenziali lineari 4 16 Funzioni implicite

Dettagli

Endomorfismi simmetrici

Endomorfismi simmetrici Endomorfismi simmetrici Endomorfismo simmetrico: Dato uno spazio vettoriale metrico V e un endomorfismo T appartenente a V. L endomorfismo si definisce simmetrico se e solo se (T(v),v2)=(v,T(v2)) per ogni

Dettagli

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero

IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero IL TEOREMA DEGLI ZERI Una dimostrazione di Ezio Fornero Il teorema degli zeri è fondamentale per determinare se una funzione continua in un intervallo chiuso [ a ; b ] si annulla in almeno un punto interno

Dettagli

Prova Scritta di di Meccanica Analitica. 8 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale

Prova Scritta di di Meccanica Analitica. 8 Giugno Problema 1. Si consideri un punto materiale di massa unitaria soggetto ad un potenziale Prova Scritta di di Meccanica Analitica 8 Giugno 018 Problema 1 Si consideri un punto materiale di massa unitaria soggetto ad un potenziale V (x) = x x4 Schematizzare lo spazio delle fasi calcolando i

Dettagli

FORMALISMO LAGRANGIANO PER SISTEMI VINCOLATI (Schema del contenuto delle lezioni e riferimenti bibliografici)

FORMALISMO LAGRANGIANO PER SISTEMI VINCOLATI (Schema del contenuto delle lezioni e riferimenti bibliografici) FORMALISMO LAGRANGIANO PER SISTEMI VINCOLATI (Schema del contenuto delle lezioni e riferimenti bibliografici) 1. Vincoli e principio di D Alembert (vd. Fasano Marmi cap 1 (o anche Dell Antonio cap. 6,

Dettagli

TC. Trasformazioni canoniche

TC. Trasformazioni canoniche TC. Trasformazioni canoniche Funzione generatrice Consideriamo le equazioni di Hamilton: q h = H, ṗ h = H (TC.1) per le variabili canoniche q h, p h, relative ad un hamiltoniana generica H(q h, p h, t),

Dettagli

INDICE. 1 Ouverture 1

INDICE. 1 Ouverture 1 INDICE 1 Ouverture 1 1.1 Sistemi dinamici ed equazioni differenziali 1 Lo spazio delle fasi e la cinematica (2) Le equazioni differenziali e la dinamica (3) 1.2 I primi esempi 5 Il decadimento radioattivo

Dettagli

Registro dell insegnamento. Emanuele Paolini

Registro dell insegnamento. Emanuele Paolini UNIVERSITÀ DEGLI STUDI DI FIRENZE Registro dell insegnamento Anno Accademico 2009/2010 Facoltà: Insegnamento: Ingegneria (Università di Pisa) Analisi Matematica II e Complementi di Analisi Matematica Settore:..........................

Dettagli

11 Piccole oscillazioni attorno a posizioni stabili

11 Piccole oscillazioni attorno a posizioni stabili 11 Piccole oscillazioni attorno a posizioni stabili Consideriamo un sistema con l gradi di libertà descrivibile mediante le coordinate lagrangiane (q 1,..., q l ). Supponiamo che i vincoli siano lisci

Dettagli

Funzioni di n variabili a valori vettoriali

Funzioni di n variabili a valori vettoriali Funzioni di n variabili a valori vettoriali Ultimo aggiornamento: 22 maggio 2018 1 Differenziale per funzioni da R n in R k Una funzione F : A R n R k può essere vista come una k-upla di funzioni scalari

Dettagli

Cognome Nome Matricola Codice ESEMPIO 1

Cognome Nome Matricola Codice ESEMPIO 1 Cognome Nome Matricola Codice ESEMPIO 1 [1]. (***) Definizione di derivata di una funzione in un punto. Sia A R N ; sia a A; sia f : A R M ; sia f differenziabile in a; allora la derivata di f in a è...

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 4 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 4 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 4 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 5.2, 5.3

Dettagli

DIARIO DELLE LEZIONI DEL CORSO DI MECCANICA RAZIONALE A.A. 2013/2014 CORSO DI LAUREA IN INGEGNERIA MECCANICA

DIARIO DELLE LEZIONI DEL CORSO DI MECCANICA RAZIONALE A.A. 2013/2014 CORSO DI LAUREA IN INGEGNERIA MECCANICA DIARIO DELLE LEZIONI DEL CORSO DI MECCANICA RAZIONALE A.A. 2013/2014 CORSO DI LAUREA IN INGEGNERIA MECCANICA DANIELE ANDREUCCI DIP. SCIENZE DI BASE E APPLICATE PER L INGEGNERIA UNIVERSITÀ LA SAPIENZA VIA

Dettagli

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame

Corso di Laurea in Ingegneria Gestionale - Sede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Corso di Laurea in Ingegneria Gestionale - ede di Fermo Anno Accademico 2009/2010 Matematica 2 Esercizi d esame Nome... N. Matricola... Fermo, gg/mm/aaaa 1. tabilire l ordine di ciascuna delle seguenti

Dettagli

Corso di teoria dei Sistemi Dinamici e di Meccanica superiore A.A e seguenti. Esercizi

Corso di teoria dei Sistemi Dinamici e di Meccanica superiore A.A e seguenti. Esercizi Corso di teoria dei Sistemi Dinamici e di Meccanica superiore A.A. 2007 2008 e seguenti. Esercizi 1 Si consideri l isomorfismo tra V V e Hom(V,V ) definito dalla estensione lineare di: v 1 v 2 φ v1 v 2

Dettagli

Tabella 1: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale

Tabella 1: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma Meccanica Razionale 1: Scritto Generale Tabella 1: Best 5 out of 6 es.1 es.2 es.3 es.4 es.5 es.6 somma 5 5 5 5 5 5 30 Meccanica Razionale 1: Scritto Generale 02.02.2011 Cognome e nome:....................................matricola:......... 1.

Dettagli

Funzioni implicite e teorema del Dini

Funzioni implicite e teorema del Dini Funzioni implicite e teorema del Dini Il succo dell argomento può essere presentato così. Sia f una funzione a valori reali, definita in un aperto G del piano euclideo R 2 e sufficientemente buona; consideriamo

Dettagli

Funzioni di più variabli: dominio, limiti, continuità

Funzioni di più variabli: dominio, limiti, continuità Funzioni di più variabli: dominio, limiti, continuità Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Funzioni di più variabli Analisi Matematica B 1 /

Dettagli

Funzioni di più variabli: dominio, limiti, continuità

Funzioni di più variabli: dominio, limiti, continuità Funzioni di più variabli: dominio, limiti, continuità Riccarda Rossi Università di Brescia Analisi Matematica B Riccarda Rossi (Università di Brescia) Funzioni di più variabli Analisi Matematica B 1 /

Dettagli

Operazioni elementari sui sistemi di erenziali

Operazioni elementari sui sistemi di erenziali Capitolo 3 Operazioni elementari sui sistemi di erenziali 3.1 Derivate lungo le soluzioni Uno strumento fondamentale nello studio delle proprietà di un sistema differenziale è la derivata di opportune

Dettagli

Il teorema di Lagrange e la formula di Taylor

Il teorema di Lagrange e la formula di Taylor Il teorema di Lagrange e la formula di Taylor Il teorema del valor medio di Lagrange, valido per funzioni reali di una variabile reale, si estende alle funzioni reali di più variabili. Come si vedrà, questo

Dettagli

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2 0.1 FUNZIONI DI DUE VARIABILI REALI Sia A R 2. Una applicazione f : A R si chiama funzione reale di due variabili reali ESEMPI: 1. La funzione affine di due variabili reali: 2. f(x, y) = ax + by + c f(x,

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Prova Scritta di di Meccanica Analitica. 7 Giugno 2017

Prova Scritta di di Meccanica Analitica. 7 Giugno 2017 Prova Scritta di di Meccanica Analitica 7 Giugno 217 Problema 1 1) Si consideri un pendolo di massa m e lunghezza l il cui punto di aggancio si muove di moto uniformente accelerato lungo l asse orizzontale

Dettagli

FM210 - Fisica Matematica 1 Tutorato VI - Roberto Feola (soluzioni degli esercizi)

FM210 - Fisica Matematica 1 Tutorato VI - Roberto Feola (soluzioni degli esercizi) Corso di laurea in Matematica - Anno Accademico 011/01 FM10 - Fisica Matematica 1 Tutorato VI - Roberto Feola (soluzioni degli esercizi) Esercizio 1. Poniamo r = x e notiamo che l equazione che descrive

Dettagli

Domande da 6 punti. Prima parte del programma

Domande da 6 punti. Prima parte del programma Domande da 6 punti Prima parte del programma Domanda. Dare la definizione di arco di curva continua, di sostegno di una curva, di curva chiusa, di curva semplice e di curva piana fornendo qualche esempio.

Dettagli

20. Equazioni di campo per i fluidi

20. Equazioni di campo per i fluidi 20. Equazioni di campo per i fluidi Consideriamo un sistema Hamiltoniano con d gradi di libertà. Se x = x 1,...,x 2d è un sistema di coordinate canoniche le equazioni del moto si scrivono dx = J Se x =

Dettagli

II Dinamica del punto materiale e dei sistemi: Analisi qualitativa dei moti unidimensionali

II Dinamica del punto materiale e dei sistemi: Analisi qualitativa dei moti unidimensionali II Dinamica del punto materiale e dei sistemi: Analisi qualitativa dei moti unidimensionali conservativi. 1. Problema matematico, teorema di esistenza e unicita per i sistemi di equazioni di erenziali

Dettagli

Dinamica. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dinamica / 30

Dinamica. Basilio Bona. DAUIN-Politecnico di Torino. Basilio Bona (DAUIN-Politecnico di Torino) Dinamica / 30 Dinamica Basilio Bona DAUIN-Politecnico di Torino 2008 Basilio Bona (DAUIN-Politecnico di Torino) Dinamica 2008 1 / 30 Dinamica - Introduzione Se il compito della cinematica è descrivere il moto dei corpi,

Dettagli

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16

PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16 PROGRAMMA DI ANALISI MATEMATICA 2 Corsi di Laurea in Ing. Informatica (Prof. Ravaglia) Anno Accademico 2015/16 Simboli: I= introduzione intuitiva, D = definizione, T = teorema C = criterio deduttivo, d

Dettagli

Introduzione alla Fisica Moderna - a.a

Introduzione alla Fisica Moderna - a.a Introduzione alla Fisica Moderna - a.a. 015-16 7/9/016 Nome Cognome Matricola: 1) Si consideri il sistema di equazioni del primo ordine ẋ = y, ẏ = η y sin x, determinando i punti di equilibrio, il loro

Dettagli

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE Anno Accademico 2016/17 Registro lezioni del docente VENERONI MARCO

DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE Anno Accademico 2016/17 Registro lezioni del docente VENERONI MARCO DIPARTIMENTO DI INGEGNERIA INDUSTRIALE E DELL'INFORMAZIONE Anno Accademico 2016/17 Registro lezioni del docente VENERONI MARCO Attività didattica ANALISI MATEMATICA 2 [500121] Modulo: ANALISI MATEMATICA

Dettagli

FM210 / MA - Prima prova pre-esonero ( )

FM210 / MA - Prima prova pre-esonero ( ) FM10 / MA - Prima prova pre-esonero (4-4-018) 1. Una particella di massa m si muove in una dimensione sotto l effetto di una forza posizionale, come descritto dalla seguente equazione: mẍ = A x xx 0 3x

Dettagli

Corso di Matematica 3 o A.A. 2016/2017 Argomenti delle lezioni

Corso di Matematica 3 o A.A. 2016/2017 Argomenti delle lezioni Corso di Matematica 3 o A.A. 2016/2017 Argomenti delle lezioni 1 lezione. Martedí 27 settembre. 2 ore. Richiami sulle applicazioni lineari tra spazi vettoriali di dimensione finita. Il teorema di rappresentazione.

Dettagli

Funzioni di R n a R m e la matrice Jacobiana

Funzioni di R n a R m e la matrice Jacobiana 0.1 Funzioni di R n a R m. Politecnico di Torino. Funzioni di R n a R m e la matrice Jacobiana Nota Bene: delle lezioni. Questo materiale non deve essere considerato come sostituto 0.1 Funzioni di R n

Dettagli

Dato un sistema hamiltoniano, con funzione di Hamilton H, cerchiamo una trasformazione

Dato un sistema hamiltoniano, con funzione di Hamilton H, cerchiamo una trasformazione 27 Capitolo 3 Teoria di Hamilton-Jacobi Hamilton [5] e Jacobi [6] hanno introdotto un equazione alle derivate parziali del primo ordine che oggi porta il loro nome. Descriviamo di seguito il procedimento

Dettagli

OPERAZIONI SU SPAZI DI HILBERT. Nel seguito introdurremo i concetti di prodotto diretto e somma diretta di due spazi di Hilbert.

OPERAZIONI SU SPAZI DI HILBERT. Nel seguito introdurremo i concetti di prodotto diretto e somma diretta di due spazi di Hilbert. 2/7 OPERAZIONI SU SPAZI DI HILBERT 11/12 1 OPERAZIONI SU SPAZI DI HILBERT Dati due spazi di Hilbert H (1) e H (2) si possono definire su di essi operazioni il cui risultato è un nuovo spazio di Hilbert

Dettagli

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA

Corsi di laurea in Matematica e Fisica - Anno Accademico 2017/18 FM210 / MA Corsi di laurea in Matematica e Fisica - Anno Accademico 07/8 FM0 / MA Seconda Prova di Esonero [8-5-08]. Un sistema meccanico è costituito da due sbarre uguali, rettilinee, omogenee, pesanti, di massa

Dettagli

Capitolo 10. I sistemi di equazioni differenziali Introduzione

Capitolo 10. I sistemi di equazioni differenziali Introduzione Capitolo 10 I sistemi di equazioni differenziali 10.1 Introduzione Ricordiamo dal corso di Analisi matematica 1 che si chiama equazione differenziale del primo ordine un equazione che ha per incognita

Dettagli

Analisi II, a.a Soluzioni 4

Analisi II, a.a Soluzioni 4 Analisi II, a.a. 17-18 Soluzioni 4 1) Consideriamo le curve in forma parametrica in R φ : R R, φ(t) = (cos t, cos(t)), φ : R R, φ(t) = (1 + cos t, sen t) φ :], π/[ R, φ(t) = (sen t, cos t) φ : R R, φ(t)

Dettagli

Modelli nello spazio degli stati

Modelli nello spazio degli stati Modelli nello spazio degli stati Modelli nello spazio degli stati Stato: informazione che riassume, in ogni istante, l effetto della storia passata del sistema sul suo comportamento futuro. x(t) stato

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A Compito di Fisica Ingegneria elettrica e gestionale Soluzioni fila A Massimo Vassalli 9 Aprile 008 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati sono

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito del

Analisi Matematica II Corso di Ingegneria Biomedica Compito del Analisi Matematica II Corso di Ingegneria Biomedica Compito del 7-- Esercizio. punti Data la funzione fx, y = log x + y x + y + x y i trovare tutti i punti critici; ii trovare massimo e minimo assoluti

Dettagli

Sistemi Dinamici e Meccanica Classica A/A Alcuni Esercizi

Sistemi Dinamici e Meccanica Classica A/A Alcuni Esercizi Sistemi Dinamici e Meccanica Classica A/A 2008 2009. Alcuni Esercizi G.Falqui, P. Lorenzoni, Dipartimento di Matematica e Applicazioni, Università di Milano Bicocca. Versione del 23 Dicembre 2008 con esercizi

Dettagli

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi:

Esempio. L immagine di f è l insieme dei vettori w = (w 1, w 2 ) R 2 che hanno w 1 = w 2. Quindi: Nucleo, immagine e loro proprietà [Abate, 5.2] Data una applicazione lineare f : V W, chiamiamo nucleo di f l insieme N(f) := { v V : f(v) = 0 W } Se S V è un sottoinsieme del dominio, indichiamo con f(s)

Dettagli