Dimensione: px
Iniziare la visualizzazioe della pagina:

Download ""

Transcript

1 8(+#.%09:;<%:% 8(+#.%0901.)#'2',(3'").%1'%%?"1.55'%1')(?','% % :;=%65>"+'#?'%@(#,A%1'%'1.)#'2',(3'").%BC8%

2 8(+#.%09:;<%;% Gli algoritmi di identificazione MEP si dividono in due grandi categorie: Algoritmi batch: si tratta di algoritmi in cui i dati osservati vengono elaborati tutti insieme e la determinazione del modello viene quindi effettuata una volta acquisiti tutti i dati Algoritmi ricorsivi: si tratta di algoritmi in cui i dati osservati vengono elaborati una alla volta magari contestualmente alla fase di acquisizione nel loro ordine temporale

3 Algoritmo di identificazione dei minimi quadrati batch 8(+#.%09:;<%D% Ricordiamo che il primo passo e` quello di stabilire la famiglia di modelli da utilizzare alla quale poi corrisponde una famiglia di predittori Consideriamo modelli di tipo ARX: per semplicita` d ora in avanti non indichiamo piu`

4 8(+#.%09:;<%E% Applichiamo la teoria della stima ai minimi quadrati. Quindi: E` fondamentale osservare come il predittore abbia una struttura lineare rispetto al vettore dei parametri incogniti

5 8(+#.%09:;<%F% L errore di predizione e`: dove e` la variabile misurata in uscita dal sistema che viene identificato e che viene predetta all istante dal predittore Si considera la funzione di costo quadratica:

6 8(+#.%09:;<%G% Obiettivo del problema delle regressione lineare sara` quindi quello di minimizzare l errore determinando un vettore per cui questo minimo venga raggiunto Si definisce la funzione di costo quadratica Stimatore ai minimi quadrati

7 8(+#.%09:;<%H% Indicando con la componente i-esima del vettore ed osservando che

8 Imponendo 8(+#.%09:;<%I% convertendo l uguaglianza tra vettori riga in un uguaglianza tra vettori colonna si puo` mettere in evidenza il vettore : Equazioni normali dei minimi quadrati (q eqz. in q incognite) Se e` non singolare Formula dei minimi quadrati

9 Verifichiamo che sia un minimo valutando la definitezza della matrice simmetrica 8(+#.%09:;<%J% si ha e`una matrice simmetrica e semidefinita positiva e` un minimo locale di

10 8(+#.%09:;<%:K% Considerando quindi la forma quadratica si hanno i due casi possibili:

11 8(+#.%09:;<%::% Quindi: Se unico minimo globale Se e` uno degli infiniti minimi globali La condizione e` detta condizione di identificabilita`

12 L algoritmo dei MQ e` riferito ai modelli ARX per comodita`. Pero` cio` che conta e` la linearita` nei parametri. Esempio 8(+#.%09:;<%:;% Si supponga che il sistema da identificare sia descritto da un modello XAR: in cui solo il parametro e` incognito. E questo modello ha la struttura di un ARX(1,2):

13 8(+#.%09:;<%:D% Tuttavia identificare il modello di partenza in questo modo e` poco efficiente in quanto: non si usa l informazione per cui. Inoltre i parametri dipendono in realta` da uno solo ed anche questa informazione non viene utilizzata. Infine stimare tre parametri per ottenerne uno non e` efficiente. Riscriviamo il modello cosi`: Ponendo (sono ambedue quantita` note): con ed ora si procede nel modo consueto

14 8(+#.%09:;<%:E% Esempio Si supponga che il sistema da identificare sia descritto da un modello non lineare: in realta`, ponendo si ottiene la struttura lineare ed ora si procede nel modo consueto

15 Analisi asintotica dell algoritmo MQ batch 8(+#.%09:;<%:F% Abbiamo visto che in generale per i metodi MEP sotto opportune ipotesi la stima converge asintoticamente all insieme dei minimi della funzione La funzione del sistema vero si puo` valutare solo conoscendo il modello Supponiamo che significa supporre che esista che: il che, nel nostro caso, (parametrizzazione vera) tale Se e` stabile (zeri di con ) allora la stazionarieta` di e di implica la stazionarieta` di

16 L errore di predizione e`: 8(+#.%09:;<%:G% Ma trasposto da cui: e` uno scalare per cui coincide con il suo Se Se L algoritmo MQ converge q.c. alla parametrizzazione vera Non si e`in condizioni di identificabilita`

17 8(+#.%09:;<%:H% Valutiamo ora la varianza asintotica della stima: non dipende da per grande, la varianza della stima e` Passando alle media empiriche: Attenzione: la vale solo nell ipotesi

18 Procedura operativa di identificazione dei MQ batch 8(+#.%09:;<%:I% Si fissa l ordine del modello ARX da identificare A partire dai dati e si costruisce il vettore Si opera un test di singolarita` sulla matrice Se si calcola Si valuta l incertezza della stima e` una valutazione campionaria di dove Si valuta la bianchezza dell errore di predizione che e`fondamentale per verificare l adeguatezza del modello scelto (complessita` e struttura). il

19 Persistente eccitazione 8(+#.%09:;<%:J% Analizziamo la matrice e per fissare le idee focalizziamo l analisi al caso ARX(1,1): Si noti come gli elementi della matrice siano divergenti per

20 8(+#.%09:;<%;K% Notiamo che e quindi puo` essere invertibile solo se (un solo parametro da stimare). Fissata la complessita` del modello, la numerosita` dei dati deve comunque essere sufficientemente elevata E` conveniente quindi definire

21 Nel caso ARX(1,1) in esame: 8(+#.%09:;<%;:% dove Nel caso generale : dove e cosi` via

22 8(+#.%09:;<%;;% La definitezza positiva di e` quindi la condizione da soddisfare per avere stima unica almeno per un numero di dati sufficientemente elevato Consideriamo il test di Sylvester: una matrice quadrata simmetrica e` definita positiva se e solo se tutti i minori principali sono positivi, ovvero se e solo se

23 Quindi ovvero e` condizione necessaria affinche` sia invertibile 8(+#.%09:;<%;D% In generale, per un generico, si ha: che e` una matrice di Toeplitz (gli elementi sulle diagonali coincidono) e dipende solo da cioe` dalle condizioni sperimentali. Definizione. Il segnale d ingresso di ordine se e` non singolare. e` persistentemente eccitante Condizione necessaria per poter identificare un modello e` che il segnale sia persistentemente eccitante di ordine Nota. Dal test di Sylvester e` evidente che se allora e` p.e. di ordine e` p.e. di ordine

24 8(+#.%09:;<%;E% Problema della identificabilita` coi MQ nel caso di modelli ARX Analizzare l identificabilita` di un certo sistema tramite una data famiglia di modelli significa analizzare la cardinalita` dell insieme In generale: Condizioni sperimentali Struttura famiglia di modelli cardinalita` Nel nostro caso vogliamo analizzare l identificabilita` di un certo sistema tramite una data famiglia di modelli

25 Condizioni sperimentali 8(+#.%09:;<%;F% Anche se non e` detto che (cioe` che contenga un solo elemento). Esempio banale e supponiamo che nelle condizioni sperimentali in cui si opera l identificazione si abbia Evidentemente qualunque scelta di e` ammissibile per cui e` costituito da un infinita` di elementi.

26 Quindi: 8(+#.%09:;<%;G% Se le condizioni sperimentali possono essere progettate bisogna far si` che sia sufficientemente ricco in modo da garantire che contenga un solo elemento). Se per contro non e` possibile progettare le condizioni sperimentali bisogna ridurre la complessita` dei modelli (ovvero il numero di parametri) limitandosi di conseguenza ad identificare solo cio` che e` effettivamente identificabile Nel nostro caso, sufficientemente ricco significa p.e. di ordine Osserviamo che e` p.e. di ordine arbitrario in quanto in questo caso e` una matrice diagonale. Non e` detto peraltro che si tratti necessariamente della scelta migliore. L importante e` costruire segnali con un spettro adatto a sollecitare tutti i modi del sistema.

27 Struttura della famiglia di modelli 8(+#.%09:;<%;H% Supponiamo che ma che la famiglia scelta abbia una complessita` maggiore di quella del sistema Esempio Evidentemente, comunque si costruiscano le condizioni sperimentali, sara` necessariamente costituito da un numero infinito di elementi in quanto puo` essere descritto da un infinita` di modelli appartenenti alla famiglia in cui vi siano fattori in comune. La famiglia non deve essere sovraparametrizzata Nel nostro caso strutturale significa avere non avere identificabilita` singolare nonostante

28 8(+#.%09:;<%;I% Riassumendo e` fattori comuni tra p.e. di ordine senza e La stima converge alla parametrizzazione vera Se p.e. di ordine e la stima non converge anche per alti valori di probabilmente la complessita` del modello va ridotta. Se la stima converge ma l errore di predizione non e` bianco significa che la famiglia di modelli e` inadeguata per cui o si aumenta l ordine dei modelli o se ne cambia la tipologia.

29 Esempio notevole 8(+#.%09:;<%;J% Si supponga che il sistema da identificare sia descritto da un ARMAX(1,1,1): in cui i processi e sono supposti scorrelati. Scegliamo la famiglia di modelli ARX(1,1): ed usiamo l algoritmo MQ per identificare il sistema con un modello ARX. La teoria asintotica assicura la convergenza ad uno dei punti di minimo della funzione

30 8(+#.%09:;<%DK% Ma dipende da e quindi, viste le ipotesi, si ha e quindi Poi

31 Ora, utilizzando l informazione sul sistema vero si ottiene: 8(+#.%09:;<%D:%

32 Pertanto: 8(+#.%09:;<%D;% e quindi l errore di stima del parametro vero, a parita` di, e` inversamente proporzionale al rapporto segnale rumore. Inoltre il valore vero puo` ottenersi solo per o per, e quindi solo nel caso in cui il modello ARMAX e` in realta` ARX. Vediamo l errore di predizione: che non e` bianco, a meno che non sia

8(+#.%0901.)#'2',(3'").%1'%% A"1.55'%1')(A','% :;=%>.#"1'%+',"+?'7'%%

8(+#.%0901.)#'2',(3').%1'%% A1.55'%1')(A','% :;=%>.#1'%+',+?'7'%% 8(+#.%09:;@8% %!"#$%&'($)%&*$%+&,$)-&)(&.&(&)/0-1%-23) (-++&(-),4%$+&(&#"&-.5-)%&*$%+&,-3) (&.&(&)/0-1%-2)4+'4+&3)#%-1&4.'4)+'$*-+2*$)

Dettagli

Parte I Identificazione di modelli dinamici. 6: Teoria della stima e caratteristiche degli stimatori. Parte I 6, 1

Parte I Identificazione di modelli dinamici. 6: Teoria della stima e caratteristiche degli stimatori. Parte I 6, 1 Parte I 6, 1 Parte I Identificazione di modelli dinamici 6: Teoria della stima e caratteristiche degli stimatori Generalita` Parte I 6, 2 In generale abbiamo: dove sono i dati osservati e` la quantita`

Dettagli

Metodi di identificazione

Metodi di identificazione Metodi di identificazione Metodo di identificazione LS per sistemi ARX Sia yt un processo ARX generico con parametri ignoti: S: yt= B z A z ut 1 1 A z et ota: scegliere ut 1 è la scelta più generica possibile,

Dettagli

Parte I Identificazione di modelli dinamici. 5: Analisi di sistemi dinamici alimentati da processi stazionari. Parte I 5, 1

Parte I Identificazione di modelli dinamici. 5: Analisi di sistemi dinamici alimentati da processi stazionari. Parte I 5, 1 Parte I 5, 1 Parte I Identificazione di modelli dinamici 5: Analisi di sistemi dinamici alimentati da processi stazionari Parte I 5, 2 Consideriamo un sistema dinamico lineare tempo-invariante con funzione

Dettagli

PROBLEMI SULL IDENTIFICAZIONE COL METODO PEM

PROBLEMI SULL IDENTIFICAZIONE COL METODO PEM PROBLEMI SULL IDENTIFICAZIONE COL METODO PEM G. Picci 12 gennaio 2012 N.B. : Quando serve la dizione rumore bianco è da interpretare secondo il contesto come processo i.i.d. Il processo di ingresso si

Dettagli

Processo di identificazione

Processo di identificazione Processo di identificazione Problemi a scatola trasparente il modello viene ottenuto partendo dalla descrizione delle parti costituenti il sistema e delle leggi che lo regolano. Il problema dell identificazione

Dettagli

Metodi computazionali per i Minimi Quadrati

Metodi computazionali per i Minimi Quadrati Metodi computazionali per i Minimi Quadrati Come introdotto in precedenza si considera la matrice. A causa di mal condizionamenti ed errori di inversione, si possono avere casi in cui il e quindi S sarebbe

Dettagli

A =, c d. d = ad cb. c d A =

A =, c d. d = ad cb. c d A = Geometria e Algebra (II), 271112 1 Definizione D ora innanzi, al posto di dire matrice quadrata di tipo n n o matrice quadrata n n diremo matrice quadrata di ordine n o in breve matrice di ordine n Il

Dettagli

Appunti su Indipendenza Lineare di Vettori

Appunti su Indipendenza Lineare di Vettori Appunti su Indipendenza Lineare di Vettori Claudia Fassino a.a. Queste dispense, relative a una parte del corso di Matematica Computazionale (Laurea in Informatica), rappresentano solo un aiuto per lo

Dettagli

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (Prof. S. Bittanti) Ingegneria Informatica 10 CFU. Appello 11 Settembre 2014 Cognome Nome Matricola

IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (Prof. S. Bittanti) Ingegneria Informatica 10 CFU. Appello 11 Settembre 2014 Cognome Nome Matricola IDENTIFICAZIONE DEI MODELLI E ANALISI DEI DATI (Prof. S. Bittanti) Ingegneria Informatica 10 CFU. Appello 11 Settembre 2014 Cognome Nome Matricola......... Verificare che il fascicolo sia costituito da

Dettagli

Lezione 13 Maggio Ricapitolazione del Controllo Ottimo LQ

Lezione 13 Maggio Ricapitolazione del Controllo Ottimo LQ PSC: Progettazione di sistemi di controllo III rim. 2007 Lezione 13 Maggio 16 Docente: Luca Schenato Stesori: Comin, Dal Bianco,Fabris, Parmeggiani 13.1 Ricapitolazione del Controllo Ottimo LQ Ripassiamo

Dettagli

Controllo Adattativo

Controllo Adattativo Corso di Robotica 2 Controllo Adattativo Prof. Alessandro De Luca A. De Luca Motivazioni e approccio necessità dell adattamento nella legge di controllo incertezza sui parametri dinamici del robot scarsa

Dettagli

Metodo degli Elementi finiti: elementi monodimensionali Risoluzione di casi con più elementi

Metodo degli Elementi finiti: elementi monodimensionali Risoluzione di casi con più elementi Metodo degli Elementi finiti: elementi monodimensionali Risoluzione di casi con più elementi 1 Metodo degli Elementi finiti: elementi monodimensionali Risoluzione di casi con più elementi 2 Metodo degli

Dettagli

7.9 Il caso vincolato: vincoli di disuguaglianza

7.9 Il caso vincolato: vincoli di disuguaglianza 7.9 Il caso vincolato: vincoli di disuguaglianza Il problema con vincoli di disuguaglianza: g i (x) 0, i = 1,..., p, (51) o, in forma vettoriale: g(x) 0, può essere trattato basandosi largamente su quanto

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 2: soluzioni Corso di Geometria 2- BIAR, BSIR Esercizi 2: soluzioni Esercizio Calcolare il determinante della matrice 2 3 : 3 2 a) con lo sviluppo lungo la prima riga, b) con lo sviluppo lungo la terza colonna, c)

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

Note sull algoritmo di Gauss

Note sull algoritmo di Gauss Note sull algoritmo di Gauss 29 settembre 2009 Generalità Un sistema lineare di m equazioni in n incognite x,..., x n è un espressione del tipo: a x + a 2 x 2 + + a n x n = b a 2 x + a 22 x 2 + + a 2n

Dettagli

MATRICI E SISTEMI LINEARI

MATRICI E SISTEMI LINEARI MATRICI E SISTEMI LINEARI - PARTE I - Felice Iavernaro Dipartimento di Matematica Università di Bari 27 Febbraio 2006 Felice Iavernaro (Univ. Bari) Matrici e Sistemi lineari 27/02/2006 1 / 1 Definizione

Dettagli

Parte 3, 1. Stabilità. Prof. Thomas Parisini. Fondamenti di Automatica

Parte 3, 1. Stabilità. Prof. Thomas Parisini. Fondamenti di Automatica Parte 3, 1 Stabilità Parte 3, 2 Stabilità: - del movimento (vedere libro ma non compreso nel programma) - dell equilibrio - del sistema (solo sistemi lineari) Analizzeremo separatamente sistemi a tempo

Dettagli

Stabilità: Stabilità. Stabilità: il caso dei sistemi dinamici a tempo continuo. Stabilità dell equilibrio

Stabilità: Stabilità. Stabilità: il caso dei sistemi dinamici a tempo continuo. Stabilità dell equilibrio Parte 3, 1 Parte 3, 2 Stabilità: - del movimento (vedere libro ma non compreso nel programma) Stabilità - dell equilibrio - del sistema (solo sistemi lineari) Analizzeremo separatamente sistemi a tempo

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2014-2015 Metodi per similitudine Matrici simili hanno gli stessi autovalori. Consideriamo trasformazioni per

Dettagli

Stabilità per i sistemi dinamici a tempo discreto

Stabilità per i sistemi dinamici a tempo discreto Parte 3, 1 Stabilità per i sistemi dinamici a tempo discreto Parte 3, 2 Stabilità: Le definizioni delle proprietà di stabilità per i sistemi dinamici a tempo discreto sono analoghe a quelle viste per i

Dettagli

LeLing12: Ancora sui determinanti.

LeLing12: Ancora sui determinanti. LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling

Dettagli

Movimento dello stato nei sistemi lineari

Movimento dello stato nei sistemi lineari Parte 2, 1 Movimento dello stato nei sistemi lineari Parte 2, 2 Soluzione generale nel caso a tempo continuo Si consideri un sistema dinamico lineare libero (senza ingresso) Parte 2, 3 In generale abbiamo

Dettagli

Corso di Identificazione dei Modelli e Analisi dei Dati

Corso di Identificazione dei Modelli e Analisi dei Dati Corso di Identificazione dei Modelli e Analisi dei Dati Prof. Sergio Bittanti Esercitazione di Laboratorio A.A. 2010-11 Sistemi dinamici lineari a tempo discreto 1. Si consideri il sistema dinamico a tempo

Dettagli

Algebra delle matrici

Algebra delle matrici Algebra delle matrici Metodo di Gauss-Jordan per l inversione di una matrice. Nella lezione scorsa abbiamo visto che un modo per determinare l eventuale inversa di una matrice quadrata A consiste nel risolvere

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Brevi richiami su variabili aleatorie e processi stocastici

Brevi richiami su variabili aleatorie e processi stocastici Appendice Parte 9, 1 Brevi richiami su variabili aleatorie e processi stocastici Richiami di teoria della probabilita` Appendice Parte 9, 2 Esperimento casuale: analisi degli elementi caratteristici dei

Dettagli

Matematica per Analisi dei Dati,

Matematica per Analisi dei Dati, Matematica per Analisi dei Dati, 230209 1 Spazio vettoriale R n Sia n un intero positivo fissato Lo spazio vettoriale R n e l insieme delle n ple ordinate di numeri reali, che rappresenteremo sempre come

Dettagli

Corso di Calcolo Numerico

Corso di Calcolo Numerico Corso di Calcolo Numerico Dott.ssa M.C. De Bonis Università degli Studi della Basilicata, Potenza Facoltà di Ingegneria Corso di Laurea in Ingegneria Meccanica Risoluzione di Equazioni non lineari Sia

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Fabrizio Silvestri December 14, 010 Matrice Sia R il campo dei numeri reali. Si indica con R m n l insieme delle matrici ad elementi reali con m righe ed n colonne. Se A R n

Dettagli

Il metodo delle osservazioni indirette

Il metodo delle osservazioni indirette Il metodo delle osservazioni indirette Teoria della stima ai minimi quadrati Il criterio di massima verosimiglianza Sia data una grandezza η e si abbiano n osservazioni indipendenti l i (i=1,...,n) di

Dettagli

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g

LEZIONE 3. a + b + 2c + e = 1 b + d + g = 0 3b + f + 3g = 2. a b c d e f g LEZIONE 3 3.. Matrici fortemente ridotte per righe. Nella precedente lezione abbiamo introdotto la nozione di soluzione di un sistema di equazioni lineari. In questa lezione ci poniamo il problema di descrivere

Dettagli

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n

NOTE DI ALGEBRA LINEARE v = a 1 v a n v n, w = b 1 v b n v n NOTE DI ALGEBRA LINEARE 2- MM 9 NOVEMBRE 2 Combinazioni lineari e generatori Sia K un campo e V uno spazio vettoriale su K Siano v,, v n vettori in V Definizione Un vettore v V si dice combinazione lineare

Dettagli

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 2000 Tempo assegnato: 2 ore e 30 minuti

ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF. ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 2000 Tempo assegnato: 2 ore e 30 minuti ESAME DI GEOMETRIA E ALGEBRA INGEGNERIA INFORMATICA (PROF ACCASCINA) PROVA SCRITTA DEL 4 LUGLIO 000 Tempo assegnato: ore e 30 minuti PRIMO ESERCIZIO [7 punti] 1 Dimostrare che, per ogni naturale n, ciascuna

Dettagli

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan

Note per il corso di Geometria Corso di laurea in Ing. Edile/Architettura. 4 Sistemi lineari. Metodo di eliminazione di Gauss Jordan Note per il corso di Geometria 2006-07 Corso di laurea in Ing. Edile/Architettura Sistemi lineari. Metodo di eliminazione di Gauss Jordan.1 Operazioni elementari Abbiamo visto che un sistema di m equazioni

Dettagli

Sistemi II. Sistemi II. Elisabetta Colombo

Sistemi II. Sistemi II. Elisabetta Colombo Corso di Approfondimenti di Matematica per Biotecnologie, Anno Accademico 2011-2012, http://users.mat.unimi.it/users/colombo/programmabio.html 1 2 3 con R.C.+ o 1.10 Rango massimo e determinante con R.C.+

Dettagli

62 CAPITOLO 3. STATISTICA DESCRITTIVA

62 CAPITOLO 3. STATISTICA DESCRITTIVA 62 CAPITOLO 3. STATISTICA DESCRITTIVA Raccogliamo su una popolazione di n individui i dati relativi a m caratteri (variabili) e riportiamoli in una matrice, dove le righe (n) sono relative ad individui

Dettagli

, è Det(A) = a 11 a 22 a 12 a 21. ( il determinante della matrice che si ottiene da A. la 1 a riga e la 2 a colonna di A

, è Det(A) = a 11 a 22 a 12 a 21. ( il determinante della matrice che si ottiene da A. la 1 a riga e la 2 a colonna di A G Parmeggiani, 2/12/2013 Algebra Lineare 1 A, corso di laurea SGI, aa 2013/2014 Nota 4: Calcolo di determinanti Sia A una matrice quadrata di ordine n Il determinante di A è un numero che dipende da A

Dettagli

Matematica II

Matematica II Matematica II 29..0. Somma di due matrici. Siano m ed n due interi positivi fissati. Date due matrici A, B R m n di tipo m n, sommando a ciascun elemento di A il corrispondente elemento di B, si ottiene

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx

Serie di Fourier. Tra queste funzioni definiamo un prodotto scalare nel seguente modo: date f, g V poniamo f (x) g (x) dx. f (x) [g (x) + h (x)] dx Serie di Fourier Indichiamo con V l insieme delle funzioni f : R R che siano periodiche di periodo π, si abbia cioè f ( + π) = f (), e che risultino integrabili nell intervallo [, π]. Tra queste funzioni

Dettagli

Diagonalizzazione di matrici: autovalori, autovettori e costruzione della matrice diagonalizzante 1 / 13

Diagonalizzazione di matrici: autovalori, autovettori e costruzione della matrice diagonalizzante 1 / 13 Diagonalizzazione di matrici: autovalori, autovettori e costruzione della matrice diagonalizzante 1 / 13 Matrici diagonali 2 / 13 Ricordiamo che una matrice quadrata si dice matrice diagonale se a ij =

Dettagli

Fattorizzazione QR e matrici di Householder

Fattorizzazione QR e matrici di Householder Fattorizzazione QR e matrici di Householder ottobre 009 In questa nota considereremo un tipo di fattorizzazione che esiste sempre nel caso di matrici quadrate non singolari ad entrate reali. Definizione

Dettagli

Possiamo scrivere le tre precedenti espressioni in un'unica equazione matriciale:

Possiamo scrivere le tre precedenti espressioni in un'unica equazione matriciale: A1. Considerazioni sul cambio di un sistema di riferimento cartesiano ortogonale Sia xyz un sistema di riferimento cartesiano ortogonale di origine O e di riferimento cartesiano pure di origine O. un secondo

Dettagli

TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo

TOPOGRAFIA 2013/2014. Prof. Francesco-Gaspare Caputo TOPOGRAFIA 2013/2014 L operazione di misura di una grandezza produce un numero reale che esprime il rapporto della grandezza stessa rispetto a un altra, a essa omogenea, assunta come unità di misura. L

Dettagli

G. Parmeggiani, 17/5/2018 Algebra Lineare, a.a. 2017/2018, numero di MATRICOLA PARI

G. Parmeggiani, 17/5/2018 Algebra Lineare, a.a. 2017/2018, numero di MATRICOLA PARI G Parmeggiani, 17/5/2018 Algebra Lineare, aa 2017/2018, Scuola di Scienze - Corsi di laurea: Studenti: Statistica per l economia e l impresa Statistica per le tecnologie e le scienze numero di MATRICOLA

Dettagli

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 20: Stima puntuale. Stimatore lineare a MEQM. Esempi. Motivazioni

IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI. Lezione 20: Stima puntuale. Stimatore lineare a MEQM. Esempi. Motivazioni IDENTIFICAZIONE dei MODELLI e ANALISI dei DATI Lezione 20: Stima puntuale Motivazioni Stima puntuale Indice di qualitá della stima Stimatore a MEQM Stimatore lineare a MEQM Il caso gaussiano Esempi 20-1

Dettagli

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}.

APPLICAZIONI. Im f = {b B a A tale che f (a) = b}. APPLICAZIONI Diremo applicazione (o funzione) da un insieme A ad un insieme B una legge f che associa ad ogni elemento a A uno ed un solo elemento b B. Scriviamo f : A B e il corrispondente o immagine

Dettagli

CORSO DI GEOMETRIA DETERMINANTE A.A. 2018/2019 PROF. VALENTINA BEORCHIA

CORSO DI GEOMETRIA DETERMINANTE A.A. 2018/2019 PROF. VALENTINA BEORCHIA CORSO DI GEOMETRIA DETERMINANTE AA 2018/2019 PROF VALENTINA BEORCHIA INDICE 1 Definizione induttiva di determinante 1 2 Caratterizzazione delle matrici quadrate di rango massimo 5 3 Regole di Laplace 6

Dettagli

ANALISI DI SERIE TEMPORALI CAOTICHE (1)

ANALISI DI SERIE TEMPORALI CAOTICHE (1) ANALISI DI SERIE TEMPORALI CAOTICHE (1) Problematiche Ricostruzione dello stato Dimensione di embedding C. Piccardi e F. Dercole Politecnico di Milano ver. 28/12/2009 1/15 Per studiare e comprendere appieno

Dettagli

! X (92) X n. P ( X n X ) =0 (94)

! X (92) X n. P ( X n X ) =0 (94) Convergenza in robabilità Definizione 2 Data una successione X 1,X 2,...,X n,... di numeri aleatori e un numero aleatorio X diremo che X n tende in probabilità a X escriveremo X n! X (92) se fissati comunque

Dettagli

Catene di Markov. 8 ottobre 2009

Catene di Markov. 8 ottobre 2009 Catene di Markov 8 ottobre 2009 Definizione 1. Si dice catena di Markov (finita) un sistema dotato di un numero finito n di stati {1, 2,..., n} che soddisfi la seguente ipotesi: la probabilità che il sistema

Dettagli

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria.

Riassumiamo le proprietà dei numeri reali da noi utilizzate nel corso di Geometria. Capitolo 2 Campi 2.1 Introduzione Studiamo ora i campi. Essi sono una generalizzazione dell insieme R dei numeri reali con le operazioni di addizione e di moltiplicazione. Nel secondo paragrafo ricordiamo

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica Appunti delle lezioni tenute dal Prof. A. Fonda Università di Trieste CdL Matematica a.a. 07/08 La derivata direzionale In questa sezione E sarà un sottoinsieme aperto di R N x 0 un

Dettagli

Equazioni differenziali Problema di Cauchy

Equazioni differenziali Problema di Cauchy Equazioni differenziali Problema di Cauch Primo esempio - Risolvere l equazione '( ) = g( ) con g( ) :[ a, b] R continua Teor. fondamentale del calcolo integrale ( ) = + g ( t )dt Primo esempio - Osserviamo

Dettagli

TEORIA DEI SISTEMI E DEL CONTROLLO LM in Ingegneria Informatica e Ingegneria Elettronica

TEORIA DEI SISTEMI E DEL CONTROLLO LM in Ingegneria Informatica e Ingegneria Elettronica TEORIA DEI SISTEMI E DEL CONTROLLO LM in Ingegneria Informatica e Ingegneria Elettronica http://www.dii.unimore.it/~lbiagiotti/teoriasistemicontrollo.html Stima dello stato in presenza di disturbi: il

Dettagli

Il problema della migliore approssimazione. Teorema 3.2 Il problema 3.1 ammette sempre almeno una soluzione.

Il problema della migliore approssimazione. Teorema 3.2 Il problema 3.1 ammette sempre almeno una soluzione. 3. Spazi di Hilbert Wir müssen wissen. Wir werden wissen. Noi abbiamo il dovere di conoscere. Alla fine conosceremo.) David Hilbert 1862-1943) Il problema della migliore approssimazione Problema 3.1 Migliore

Dettagli

3 Soluzione di sistemi lineari

3 Soluzione di sistemi lineari 3 Soluzione di sistemi lineari Prima di addentrarci nello studio dei metodi numerici, è doveroso introdurre le matrici e alcune strutture particolari di matrici nonchè alcuni concetti fondamentali quali

Dettagli

Rango di una matrice e teorema di Rouché-Capelli

Rango di una matrice e teorema di Rouché-Capelli Rango di una matrice e teorema di Rouché-Capelli Sappiamo che a una matrice m n, A, è associata l applicazione lineare L A : R n R m, L A (X) = AX, X R n. Definizione 1. Lo spazio nullo di A, N (A), è

Dettagli

Il metodo dei minimi quadrati

Il metodo dei minimi quadrati Il metodo dei minimi quadrati 1 Posizione del problema Introduciamo la problematica con un semplice esempio pratico. Supponiamo di avere a disposizione una certa quantità x di oggetti tutti uguali tra

Dettagli

VALIDAZIONE DEL MODELLO

VALIDAZIONE DEL MODELLO VALIDAZIONE DEL MODELLO Validazione del Modello Non è sufficiente stimare il vettore θ per dichiarare concluso il processo di identificazione. E necessario ottenere una misura della sua affidabilità L

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

Argomenti trattati nella settimana novembre Il libro cui faccio riferimento, se non specificato altrimenti, è Lang, Algebra lineare

Argomenti trattati nella settimana novembre Il libro cui faccio riferimento, se non specificato altrimenti, è Lang, Algebra lineare Argomenti trattati nella settimana 23-27 novembre 2009 Il libro cui faccio riferimento, se non specificato altrimenti, è Lang, Algebra lineare 1 Sistemi lineari; 2 applicazioni lineari; Sistemi lineari;

Dettagli

Statistica Inferenziale

Statistica Inferenziale Statistica Inferenziale Prof. Raffaella Folgieri Email: folgieri@mtcube.com aa 2009/2010 Riepilogo lezione 6 Abbiamo visto: Definizione di popolazione, di campione e di spazio campionario Distribuzione

Dettagli

Calcolo Numerico con elementi di programmazione

Calcolo Numerico con elementi di programmazione Calcolo Numerico con elementi di programmazione (A.A. 2014-2015) Appunti delle lezioni sui metodi numerici per la soluzione di sistemi lineari Metodi Iterativi la soluzione si ottiene tramite approssimazioni

Dettagli

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09)

ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09) ESERCITAZIONI DI INTRODUZIONE AGLI ALGORITMI (A.A. 08/09) DISPENSA N. 4 1. Ricerca Binaria Ricorsiva L algoritmo Ricerca Binaria risolve il problema della ricerca di una chiave in un vettore. È un esempio

Dettagli

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E

Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali. Esercitazione E Corso Integrato di Statistica Informatica e Analisi dei Dati Sperimentali A.A 2009-2010 Esercitazione E Scopo dell esercitazione Applicazioni del teorema del limite centrale. Rappresentazione delle incertezze

Dettagli

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni. 5. Rango Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof Fabio Perroni 5 Rango Definizione 1 Sia A M m,n (K) una matrice m n a coefficienti nel campo K Il rango

Dettagli

Capitolo 4: CAMBIAMENTO DI SISTEMA DI UNITÀ

Capitolo 4: CAMBIAMENTO DI SISTEMA DI UNITÀ Capitolo 4: CAMBIAMENTO DI SISTEMA DI UNITÀ 4.1 Grandezze fondamentali e derivate Come abbiamo già osservato la scelta di un Sistema di unità di misura è largamente arbitraria e dettata in gran parte da

Dettagli

SPAZI VETTORIALI CON PRODOTTO SCALARE A =

SPAZI VETTORIALI CON PRODOTTO SCALARE A = SPAZI VETTORIALI CON PRODOTTO SCALARE Esercizi Esercizio. Nello spazio euclideo standard (R 2,, ) sia data la matrice 2 3 A = 3 2 () Determinare una base rispetto alla quale A sia la matrice di un endomorfismo

Dettagli

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3

x1 + 2x 2 + 3x 3 = 0 nelle tre incognite x 1, x 2, x 3. Possiamo risolvere l equazione ricavando l incognita x 1 x 1 = 2x 2 3x 3 2r 1 3r 2 x 2 x 3 Matematica II -..9 Spazio delle soluzioni di un sistema lineare omogeneo.. Consideriamo l equazione lineare omogenea nelle tre incognite x, x, x 3. x + x + 3x 3 = Possiamo risolvere l equazione ricavando

Dettagli

v w u O Osserviamo che tale segmento ha la stessa lunghezza del vettore w tale che u+w = v cioe del vettore w = v u. Cosi si ha

v w u O Osserviamo che tale segmento ha la stessa lunghezza del vettore w tale che u+w = v cioe del vettore w = v u. Cosi si ha Matematica II, 708 Nel piano sia fissata una unita di misura Dati nel piano due vettori u, v applicati in uno stesso punto O, col termine distanza fra u e v intendiamo e col simbolo d(u, v) indichiamo

Dettagli

Lezione Risoluzione di sistemi

Lezione Risoluzione di sistemi Lezione Risoluzione di sistemi Sia AX = B un sistema di equazioni lineari, con la sua matrice completa associate (A B) Per la Proposizione sappiamo di poter trasformare con operazioni elementari di riga

Dettagli

Richiami di inferenza statistica. Strumenti quantitativi per la gestione. Emanuele Taufer

Richiami di inferenza statistica. Strumenti quantitativi per la gestione. Emanuele Taufer Richiami di inferenza statistica Strumenti quantitativi per la gestione Emanuele Taufer Inferenza statistica Inferenza statistica: insieme di tecniche che si utilizzano per ottenere informazioni su una

Dettagli

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004

Algebra Lineare. a.a Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/12/2004 Algebra Lineare. a.a. 004-05. Gruppo A-H. Prof. P. Piazza Soluzioni del compito pomeridiano del 6/1/004 Esercizio 1. Siano V e W due spazi vettoriali e sia F : V W un isomorfismo (quindi F è lineare e

Dettagli

Richiami di inferenza statistica Strumenti quantitativi per la gestione

Richiami di inferenza statistica Strumenti quantitativi per la gestione Richiami di inferenza statistica Strumenti quantitativi per la gestione Emanuele Taufer Inferenza statistica Parametri e statistiche Esempi Tecniche di inferenza Stima Precisione delle stime Intervalli

Dettagli

Statistica Applicata all edilizia: Stime e stimatori

Statistica Applicata all edilizia: Stime e stimatori Statistica Applicata all edilizia E-mail: orietta.nicolis@unibg.it 15 marzo 2011 Statistica Applicata all edilizia: Indice 1 2 Statistica Applicata all edilizia: Uno dei problemi principali della statistica

Dettagli

Forme bilineari simmetriche

Forme bilineari simmetriche Forme bilineari simmetriche Qui il campo dei coefficienti è sempre R Definizione 1 Sia V uno spazio vettoriale Una forma bilineare su V è una funzione b: V V R tale che v 1, v 2, v 3 V b(v 1 + v 2, v 3

Dettagli

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - CFU) COMPITO DI TEORIA DEI SISTEMI Giugno - A.A. - Esercizio. Si consideri il sistema a tempo continuo descritto dalle seguenti equazioni: x(t +

Dettagli

{Geometria per [Fisica e (Fisica e Astrofisica)]}

{Geometria per [Fisica e (Fisica e Astrofisica)]} {Geometria per [Fisica e (Fisica e Astrofisica)]} Foglio 9 - Soluzioni Esercizio (facoltativo) Un quadrato magico reale di ordine n è una matrice di M n n (R) tale che sommando gli elementi di ogni sua

Dettagli

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni 2. MATRICI

Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof. Fabio Perroni 2. MATRICI Corso di GEOMETRIA Dipartimento di Ingegneria ed Architettura Università degli Studi di Trieste Prof Fabio Perroni 2 MATRICI Siano m, n N \ {0}, sia K un campo Una matrice m n a coefficienti in K è una

Dettagli

Elementi di Teoria dei Sistemi

Elementi di Teoria dei Sistemi Parte 2, 1 Elementi di Teoria dei Sistemi Parte 2, 2 Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Ingresso Uscita Parte 2, 4 Cosa significa Dinamico?? e` univocamente determinata?

Dettagli

Algoritmo di stima minimi quadrati ricorsivi per sistemi con ingressi e uscite vettoriali

Algoritmo di stima minimi quadrati ricorsivi per sistemi con ingressi e uscite vettoriali Algoritmo di stima minimi quadrati ricorsivi per sistemi con ingressi e uscite vettoriali Lorenzo Magliocchetti Arrigo Marchiori Michele Marino Ottobre 2006 Sommario Lo scopo di questo documento è ricavare

Dettagli

Luigi Piroddi

Luigi Piroddi Automazione industriale dispense del corso (a.a. 2008/2009) 10. Reti di Petri: analisi strutturale Luigi Piroddi piroddi@elet.polimi.it Analisi strutturale Un alternativa all analisi esaustiva basata sul

Dettagli

Università di Siena. Teoria della Stima. Lucidi del corso di. Identificazione e Analisi dei Dati A.A

Università di Siena. Teoria della Stima. Lucidi del corso di. Identificazione e Analisi dei Dati A.A Università di Siena Teoria della Stima Lucidi del corso di A.A. 2002-2003 Università di Siena 1 Indice Approcci al problema della stima Stima parametrica Stima bayesiana Proprietà degli stimatori Stime

Dettagli

LEZIONE i i 3

LEZIONE i i 3 LEZIONE 5 51 Determinanti In questo lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

LEZIONE i 0 3 Le sottomatrici 2 2 di A sono. 1 2 i i 3. Invece (

LEZIONE i 0 3 Le sottomatrici 2 2 di A sono. 1 2 i i 3. Invece ( LEZIONE 6 6 Determinanti In questa lezione affronteremo da un punto di vista prettamente operativo la nozione di determinante, descrivendone le proprietà ed i metodi di calcolo, senza entrare nei dettagli

Dettagli

5.4.5 Struttura dell algoritmo ed esempi

5.4.5 Struttura dell algoritmo ed esempi CAPITOLO 5. IL METODO DEL SIMPLESSO 6 5.4.5 Struttura dell algoritmo ed esempi Come abbiamo già ampiamente osservato, la fase II del metodo del simplesso, a partire da una soluzione di base ammissibile,

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1)

Soluzioni. Foglio 1. Rette e piani. n x + c = 0. (1) Soluzioni Foglio 1. Rette e piani. Esercizio 1. Se n è la normale al piano, sia c = n x 0. Dimostriamo prima che se x π, allora x soddisfa Si ha Sostituendo dentro (1) si ottiene n x + c = 0. (1) x = x

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo

Elementi di Teoria dei Sistemi. Definizione di sistema dinamico. Cosa significa Dinamico? Sistema dinamico a tempo continuo Parte 2, 1 Parte 2, 2 Elementi di Teoria dei Sistemi Definizione di sistema dinamico Parte 2, 3 Sistema dinamico a tempo continuo Cosa significa Dinamico? Parte 2, 4? e` univocamente determinata? Ingresso

Dettagli

Nozioni e Richiami di Algebra Lineare

Nozioni e Richiami di Algebra Lineare Nozioni e Richiami di Algebra Lineare Chiara Giusy Genovese Università di Bologna Scuola di Economia, Management e Statistica CLAMEP Statistica per l analisi dei dati 11 Novembre 2014 Indice Introduzione

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI STABILITA NEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Università degli Studi di Roma La Sapienza

Università degli Studi di Roma La Sapienza Università degli Studi di Roma La Sapienza Dipartimento di Informatica e Sistemistica A. Ruberti Proff. Gianni Di Pillo and Laura Palagi Note per il corso di OTTIMIZZAZIONE (a.a. 2007-08) Dipartimento

Dettagli

05. Errore campionario e numerosità campionaria

05. Errore campionario e numerosità campionaria Statistica per le ricerche di mercato A.A. 01/13 05. Errore campionario e numerosità campionaria Gli schemi di campionamento condividono lo stesso principio di fondo: rappresentare il più fedelmente possibile,

Dettagli