62 CAPITOLO 3. STATISTICA DESCRITTIVA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "62 CAPITOLO 3. STATISTICA DESCRITTIVA"

Transcript

1 62 CAPITOLO 3. STATISTICA DESCRITTIVA Raccogliamo su una popolazione di n individui i dati relativi a m caratteri (variabili) e riportiamoli in una matrice, dove le righe (n) sono relative ad individui diversi e le colonne (m) sono relative a caratteri diversi. x 11 x 12 x 1m x 21 x 22 x 2m X := (3.11)... x n1 x n2 x nm La costruzione della matrice ha senso, ovviamente, quando prendiamo in considerazione solo variabili numeriche. Esempi. Peso, altezza, età di un gruppo di persone; peso, dimensioni, porosità di un campione di laterizi, etc... È evidente che per ciascuna variabile (ovvero, per ogni colonna j) ha senso calcolare la media, la varianza e la deviazione standard: µ j := x j = 1 n n x ij ; σ 2 j := V ar[x j ] = 1 n 1 n (x ij µ j ) 2 ; := Std[x j ] = V ar[x j ], Se indichiamo con X h la variabile corrispondente all h esima colonna della matrice (3.11), possiamo definire la covarianza fra due caratteri qualunque (diciamo il j esimo e l l esimo): Cov[X j, X l ] := 1 La definizione implica ovviamente che Qundi, ad esempio (x ij µ j )(x il µ l ). Cov[X j, X j ] = V ar[x j ]. c 11 := Cov[X 1, X 1 ] = V ar[x 1 ] = 1 e per la simmetria della covarianza, i.e. Cov[X j, X l ] = Cov[X l, X j ] (x i1 µ 1 ) 2

2 3.3. CAMPIONI MULTIVARIATI, PCA E CLUSTERING 63 avremo, ad esempio c 12 := Cov[X 1, X 2 ] = c 21 = 1 (x i1 µ 1 )(x i2 µ 2 ). La matrice costruita con le covarianze c ij è dunque una matrice (k k), simmetrica, dove sulla diagonale compaiono le varianze dei caratteri in esame: c jj = Cov[X j, X j ] = V ar[x j, X j ]. c 11 c 12 c 1k c 12 c 22 c 2k... c k1 c k2 x kk (3.12) La matrice dei dati X può essere riportata ad una versione standardizzata, in modo da rendere le variabili adimensionali e a media nulla: x ij y ij := x ij x j, dove è la deviazione standard della variabile j esima. La matrice Y sostituisce la X e i dati standardizzati Y J sostituiscono i dati reali X j, j = 1, 2,..., k. Verifichiamo che gli Y J abbiano media nulla e varianza unitaria: Ȳ j := 1 n y ij = 1 n σ 2 j = V ar[y j ] := 1 poiché Ȳj = 0. Avremo quindi x ij µ j = 1 n ( x ij (y ij Ȳj) 2 = 1 n µ j ) y 2 ij = 0. V ar[y j ] = 1 y 2 ij = 1 (x ij µ j ) 2 σ 2 j = 1 ()σ 2 j (x ij µ j ) 2 = ()σ2 j ()σ 2 j = 1. Dalla matrice dei dati standardizzati Y, possiamo costruire la matrice di covarianza Cov[Y h, Y l ], che risulterà essere una matrice quadrata e simmetrica di dimensioni k k (k è il numero di variabili misurate sugli n individui). Esempio

3 64 CAPITOLO 3. STATISTICA DESCRITTIVA Consideriamo una matrice di covarianza per le variabili standardizzate Y h (h è l h simo carattere, h=1,2,...,k.), vettori di dimensione n, pari al numero di individui del campione: C Y := Cov[Y h, Y m ], h, m = 1, 2,..., k. Se indichiamo con Y (e con Y t la sua trasposta) la matrice (n k) dei dati standardizzati, e quindi a media nulla, è facile verificare che C Y = 1 Y t Y. Costruiamo, a titolo di esempio, una matrice C Y ad hoc, una matrice di piccole dimensioni (3 3), che abbia un paio di autovalori grandi: C Y = (3.13) Utilizzando Matlab, con l istruzione eig(c Y ), otteniamo gli autovalori di C Y : eig(c Y ) = (9, 7, 1), con due autovalori molto maggiori del terzo. Cerchiamo adesso una matrice U, ortogonale, che faccia passare dalle variabili standardizzate, ma fra loro correlate, Y (matrice n k), alla matrice di variabili Z, delle stesse dimensioni, ma di variabili standardizzate e incorrelate. Cerchiamo quindi di trovare delle combinazioni lineari delle Y che producano delle nuove variabili Z incorrelate: Z = Y U Z t = U t Y t. (3.14) Le nuove variabili Z, in quanto combinazione lineare delle variabili standardizzate Y hanno ancora media nulla. La matrice di covarianza per i vettori Z l, l = 1, 2,..., k, è ancora esprimibile come Abbiamo quindi, usando la (3.14): C Z := Cov[Z i, Z j ] = 1 Zt Z. C Z = 1 Zt Z = 1 Zt Y U = 1 U t Y t Y U = U t C Y U. (3.15) Consideriamo la seguente matrice ortogonale: U = (3.16)

4 3.3. CAMPIONI MULTIVARIATI, PCA E CLUSTERING 65 U è stata ottenuta come prodotto di due matrici di rotazione attorno a due assi non ortogonali (vedere gli angoli di Eulero). U = U 1 U 2 dove e U 1 = = U 2 = Osserviamo che, sempre utilizzando Matlab, = det U = 1. Se diagonalizziamo C Y, otteniamo: C Z = U t C Y U = (3.17) Possiamo adesso vedere come risulta la composizione diz in termini delle Y. La matrice dei dati standardizzati e incorrelati Z si ottiene dalla matrice dei dati standardizzati Y per mezzo del prodotto con la matrice ortogonale U: Z = Y U Vediamo che tipo di matrice di dati può generare una matrice di covarianza 3 3 e consideriamo una matrice di dati 2 3, ovvero una matrice dove sono rilevati tre caratteri diversi su due individui: z 11 z 12 z 13 Z = z 21 z 22 z 23

5 66 CAPITOLO 3. STATISTICA DESCRITTIVA Analogamente per la matrice Y avremo y 11 y 12 y 13 Y = y 21 y 22 y 23 Per effettuare il calcolo Y U con più semplicità possiamo scrivere U, definita in (3.16), come u 11 u 12 u 13 U = u 21 u 22 u 23 u 31 u 32 u 33 La variabile Z 1 è quella che ha varianza più grande (9) e corrisponde alla prima colonna della matrice Z: Z 1 = z 11 z 21 Calcolando esplicitamente z 11 = u 11 y 11 + u 21 y 12 + u 31 y 13 che, riassunta in termini vettoriali dà: z 21 = u 11 y 21 + u 21 y 22 + u 31 y 23 Z 1 = u 11 Y 1 + u 21 Y 2 + u 31 Y 3 = 0.5Y Y 2. Procedendo in modo del tutto analogo per abbiamo Z 2 = Z 2 = u 12 Y 1 + u 22 Y 2 + u 32 Y 3 = 0.75Y Y 2 0.5Y 3. z 12 z 22

1 Richiami di algebra lineare

1 Richiami di algebra lineare 1 Richiami di algebra lineare Definizione 11 (matrici e vettori) Una matrice A e un insieme di numeri A hk, h = 1,, m, k = 1,, n, ordinati in base alla coppia di indici h e k nel modo seguente A 1 A n

Dettagli

Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2009/2010.

Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2009/2010. Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2009/2010 Statistica Esercitazione 4 12 maggio 2010 Dipendenza in media. Covarianza e

Dettagli

Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione

Statistica. Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza e correlazione Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2010/2011 Statistica Esercitazione 4 17 febbraio 2011 Medie condizionate. Covarianza

Dettagli

9.3 Il metodo dei minimi quadrati in formalismo matriciale

9.3 Il metodo dei minimi quadrati in formalismo matriciale 9.3. IL METODO DEI MINIMI QUADRATI IN FORMALISMO MATRICIALE 121 9.3 Il metodo dei minimi quadrati in formalismo matriciale Per applicare il MMQ a funzioni polinomiali, ovvero a dipendenze di una grandezza

Dettagli

Analisi delle componenti principali

Analisi delle componenti principali Analisi delle componenti principali Serve a rappresentare un fenomeno k-dimensionale tramite un numero inferiore o uguale a k di variabili incorrelate, ottenute trasformando le variabili osservate Consiste

Dettagli

Prodotto scalare e matrici < PX,PY >=< X,Y >

Prodotto scalare e matrici < PX,PY >=< X,Y > Prodotto scalare e matrici Matrici ortogonali Consideriamo in R n il prodotto scalare canonico < X,Y >= X T Y = x 1 y 1 + +x n y n. Ci domandiamo se esistono matrici P che conservino il prodotto scalare,

Dettagli

Sistemi lineari. Sia A R m n, x R n Ax = b è un vettore di m componenti. a m,1 x 1 + a m,2 x a m,n x n = b m

Sistemi lineari. Sia A R m n, x R n Ax = b è un vettore di m componenti. a m,1 x 1 + a m,2 x a m,n x n = b m 1 Sistemi lineari. Sia A R m n, x R n Ax = b è un vettore di m componenti. Numero di operazioni per calcolare b: m n moltiplicazioni m (n 1) addizioni. a 1,1 x 1 + a 1,2 x 2 +... + a 1,n x n = b 1 a 2,1

Dettagli

b vettore(termine noto) y* proiezione ortogonale di b

b vettore(termine noto) y* proiezione ortogonale di b Carla Guerrini 1 Sistemi sovradeterminati Sia A una matrice m n ove m > n sia b R m trovare una soluzione del sistema sovradeterminato Ax = b significa cercare di esprimere un vettore di R m come combinazione

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle da un altra angolazione.. Determinare

Dettagli

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con

= elemento che compare nella seconda riga e quinta colonna = -4 In generale una matrice A di m righe e n colonne si denota con Definizione di matrice Una matrice (di numeri reali) è una tabella di m x n numeri disposti su m righe e n colonne. I numeri che compaiono nella tabella si dicono elementi della matrice. La loro individuazione

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Algebra lineare e geometria AA Appunti sul cambio di base in uno spazio vettoriale

Algebra lineare e geometria AA Appunti sul cambio di base in uno spazio vettoriale Algebra lineare e geometria AA. -7 Appunti sul cambio di base in uno spazio vettoriale Matrice di un applicazione lineare Siano V e W due spazi vettoriali su un campo K {R, C}, entrambi finitamente generati,

Dettagli

Esercizi sulle coniche (prof.ssa C. Carrara)

Esercizi sulle coniche (prof.ssa C. Carrara) Esercizi sulle coniche prof.ssa C. Carrara Alcune parti di un esercizio possono ritrovarsi in un altro esercizio, insieme a parti diverse. È un occasione per affrontarle più volte.. Stabilire il tipo di

Dettagli

Statistica. Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate. Covarianza e correlazione

Statistica. Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate. Covarianza e correlazione Corso di Laurea in Scienze dell Organizzazione Facoltà di Sociologia, Università degli Studi di Milano-Bicocca a.a. 2011/2012 Statistica Esercitazione 4 15 maggio 2012 Connessione. Medie condizionate.

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

Vettori e Matrici. Corso di Calcolo Numerico. 24 Aprile 2018

Vettori e Matrici. Corso di Calcolo Numerico. 24 Aprile 2018 Vettori e Matrici 24 Aprile 2018 Richiami In MATLAB, ogni variabile ha una struttura di tipo vettoriale o array. Un array è un insieme di valori ordinati, cioè memorizza più dati all interno di una struttura

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

ANALISI MULTIDIMENSIONALE DEI DATI (AMD)

ANALISI MULTIDIMENSIONALE DEI DATI (AMD) ANALISI MULTIDIMENSIONALE DEI DATI (AMD) L Analisi Multidimensionale dei Dati (AMD) è una famiglia di tecniche il cui obiettivo principale è la visualizzazione, la classificazione e l interpretazione della

Dettagli

Varianza totale e generalizzata Analisi Esplorativa

Varianza totale e generalizzata Analisi Esplorativa Varianza totale e generalizzata Analisi Esplorativa Aldo Solari 1 / 49 1 Varianza totale 2 Varianza generalizzata 3 Appendice 2 / 49 Variabilità Nel caso p = 1, la variabilità (o dispersione) presente

Dettagli

3. Elementi di Algebra Lineare.

3. Elementi di Algebra Lineare. CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari 3. Elementi di Algebra Lineare. 1 Sistemi lineari Sia A IR m n, x IR n di n Ax = b è un vettore di m componenti.

Dettagli

Statistica per l Impresa

Statistica per l Impresa Statistica per l Impresa a.a. 2017/2018 Tecniche di Analisi Multidimensionale L analisi delle componenti principali 14 maggio 2018 Introduzione L Obiettivo dell ACP L Analisi delle Componenti Principali

Dettagli

LeLing12: Ancora sui determinanti.

LeLing12: Ancora sui determinanti. LeLing2: Ancora sui determinanti. Ārgomenti svolti: Sviluppi di Laplace. Prodotto vettoriale e generalizzazioni. Rango e determinante: i minori. Il polinomio caratteristico. Ēsercizi consigliati: Geoling

Dettagli

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a

APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof. F.Podestà, a.a APPUNTI SULLA DIAGONALIZZAZIONE Corso Prof FPodestà, aa 003-004 Sia V uno spazio vettoriale e sia f : V V una applicazione lineare una tale applicazione da uno spazio vettoriale in se stesso è chiamata

Dettagli

A =, c d. d = ad cb. c d A =

A =, c d. d = ad cb. c d A = Geometria e Algebra (II), 271112 1 Definizione D ora innanzi, al posto di dire matrice quadrata di tipo n n o matrice quadrata n n diremo matrice quadrata di ordine n o in breve matrice di ordine n Il

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Teoria dei Fenomeni Aleatori AA 01/13 Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza

Dettagli

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari

Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Elementi di Algebra Lineare Matrici e Sistemi di Equazioni Lineari Antonio Lanteri e Cristina Turrini UNIMI - 2016/2017 Antonio Lanteri e Cristina Turrini (UNIMI - 2016/2017 Elementi di Algebra Lineare

Dettagli

Analisi statistica e matematico-finanziaria II. Alfonso Iodice D Enza Università degli studi di Cassino e del Lazio Meridionale

Analisi statistica e matematico-finanziaria II. Alfonso Iodice D Enza Università degli studi di Cassino e del Lazio Meridionale delle sui delle Analisi statistica e matematico-finanziaria II Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino e del Lazio Meridionale sulle particolari ali dei dati Outline

Dettagli

Scheda n. 9: PCA - parte prima

Scheda n. 9: PCA - parte prima Scheda n. 9: PCA - parte prima November 22, 2008 1 Introduzione Supponiamo di esaminare n variabili aleatorie (gaussiane -anche se questa richiesta non è necessaria-) X 1,..., X n. Un esempio possono essere

Dettagli

Possiamo scrivere le tre precedenti espressioni in un'unica equazione matriciale:

Possiamo scrivere le tre precedenti espressioni in un'unica equazione matriciale: A1. Considerazioni sul cambio di un sistema di riferimento cartesiano ortogonale Sia xyz un sistema di riferimento cartesiano ortogonale di origine O e di riferimento cartesiano pure di origine O. un secondo

Dettagli

Nozioni e Richiami di Algebra Lineare

Nozioni e Richiami di Algebra Lineare Nozioni e Richiami di Algebra Lineare Chiara Giusy Genovese Università di Bologna Scuola di Economia, Management e Statistica CLAMEP Statistica per l analisi dei dati 11 Novembre 2014 Indice Introduzione

Dettagli

c) Ancora in corrispondenza allo stesso valore di p e ponendo Y = minorazione, fornita dalla diseguaglianza di Chebichev, per la probabilita

c) Ancora in corrispondenza allo stesso valore di p e ponendo Y = minorazione, fornita dalla diseguaglianza di Chebichev, per la probabilita Laurea Triennale in Matematica Corso di Calcolo delle Probabilita I A.A. 00/00 (Docenti: M. Piccioni, F. Spizzichino) a prova di esonero 6 giugno 00 Risolvere almeno tre dei seguenti esercizi.. Indichiamo

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 3: soluzioni Corso di Geometria - BIAR, BSIR Esercizi : soluzioni Rango e teorema di Rouché-Capelli Esercizio. Calcolare il rango di ciascuna delle seguenti matrici: ( ) ( ) ( ) A =, A =, A =, A 4 = ( ). a a a Soluzione.

Dettagli

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 7 settembre 2015

Corso di Laurea in Matematica - Esame di Geometria 1. Prova scritta del 7 settembre 2015 Corso di Laurea in Matematica - Esame di Geometria 1 Prova scritta del 7 settembre 215 Cognome Nome Numero di matricola Voto ATTENZIONE. Riportare lo svolgimento completo degli esercizi. corretti, non

Dettagli

LeLing9: Prodotto tra matrici.

LeLing9: Prodotto tra matrici. Geometria Lingotto LeLing9: Prodotto tra matrici Ārgomenti svolti: Prodotto tra matrici Dimostrazione del teorema del rango L algebra delle matrici quadrate: Il prodotto tra matrici non e commutativo Rotazioni

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

Laboratorio di Calcolo Numerico Laboratorio 8: Vettori e Matrici

Laboratorio di Calcolo Numerico Laboratorio 8: Vettori e Matrici Laboratorio di Calcolo Numerico Laboratorio 8: Vettori e Matrici Claudia Zoccarato E-mail: claudia.zoccarato@unipd.it Dispense: Moodle Dipartimento ICEA 03 Maggio 2017 Richiami In MATLAB, ogni variabile

Dettagli

1 Equazioni parametriche e cartesiane di sottospazi affini di R n

1 Equazioni parametriche e cartesiane di sottospazi affini di R n 2 Trapani Dispensa di Geometria, Equazioni parametriche e cartesiane di sottospazi affini di R n Un sottospazio affine Σ di R n e il traslato di un sottospazio vettoriale. Cioe esiste un sottospazio vettoriale

Dettagli

Analisi Multivariata Prova intermedia del 20 aprile 2011

Analisi Multivariata Prova intermedia del 20 aprile 2011 Analisi Multivariata Prova intermedia del 20 aprile 20 Esercizio A Sia X N 3 (µ, Σ) con µ = [ 3,, 4] e 2 0 Σ = 2 5 0 0 0 2 Quali delle seguenti variabili casuali è indipendente? Motivare la risposta. A.

Dettagli

1. Si scriva una function Matlab che implementa il seguente metodo di punto fisso

1. Si scriva una function Matlab che implementa il seguente metodo di punto fisso Domanda 1 1. Si scriva una function Matlab che implementa il seguente metodo di punto fisso x n+1 = x n f(x n), n = 0, 1, 2,... K dove x 0 è il punto iniziale, f(x) = x 3 cos(x) e K è una costante assegnata.

Dettagli

ed un operazione di moltiplicazione per scalari reali u u 2u

ed un operazione di moltiplicazione per scalari reali u u 2u Geometria e Algebra (II), 0... Consideriamo il piano della geometria euclidea, intuitivamente inteso, e sia un punto fissato in esso. Sull insieme P dei vettori del piano applicati nel punto sono definite

Dettagli

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza

Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza Corso di Laurea in Ingegneria Informatica e Automatica (M-Z) Università di Roma La Sapienza CALCOLO DELLE PROBABILITÀ E STATISTICA ESAME DEL 16/06/2016 NOME: COGNOME: MATRICOLA: Esercizio 1 Cinque lettere

Dettagli

Altre trasformazioni elementari

Altre trasformazioni elementari Altre trasformazioni elementari Si possono definire altri tipi di trasformazioni elementari Analogamente alle trasformazioni di Gauss, esse danno luogo a fattorizzazioni Trasformazione elementari di Givens

Dettagli

Fattorizzazione QR e matrici di Householder

Fattorizzazione QR e matrici di Householder Fattorizzazione QR e matrici di Householder ottobre 009 In questa nota considereremo un tipo di fattorizzazione che esiste sempre nel caso di matrici quadrate non singolari ad entrate reali. Definizione

Dettagli

Nel modello omoschedastico la varianza dell errore non dipende da i ed è quindi pari a σ 0.

Nel modello omoschedastico la varianza dell errore non dipende da i ed è quindi pari a σ 0. Regressione [] el modello di regressione lineare si assume una relazione di tipo lineare tra il valore medio della variabile dipendente Y e quello della variabile indipendente X per cui Il modello si scrive

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Teoria dei Fenomeni Aleatori AA 01/13 Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza

Dettagli

Vettore (o matrice) casuale (o aleatorio): vettore (o matrice) i cui elementi sono variabili aleatorie

Vettore (o matrice) casuale (o aleatorio): vettore (o matrice) i cui elementi sono variabili aleatorie Variabili (vettori e matrici) casuali Variabile casuale (o aleatoria): Variabile che può assumere un insieme di valori ognuno con una certa probabilità La variabile aleatoria rappresenta la popolazione

Dettagli

Alfonso Iodice D Enza

Alfonso Iodice D Enza Strumenti quantitativi per l economia e la finanza I Alfonso Iodice D Enza iodicede@unicas.it Università degli studi di Cassino e del Lazio Meridionale ali dei Il coefficiente () Statistica 1 / 50 Outline

Dettagli

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 19 Ottobre

Esercizi Di Geometria 1 (BAER) Canale 1 Da consegnare Lunedi 19 Ottobre Esercizi Di Geometria (BAER Canale Da consegnare Lunedi 9 Ottobre SETTIMANA 3 (2 8 Ottobre Moltiplicazione di matrici Gli esercizi sono presi dal libro Intorduction to Linear Algebra di Serge Lang Esercizio

Dettagli

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im

Definizione 1. Una matrice n m a coefficienti in K é una tabella del tipo. ... K m, detto vettore riga i-esimo, ed a im APPUNTI ed ESERCIZI su matrici, rango e metodo di eliminazione di Gauss Corso di Laurea in Chimica, Facoltà di Scienze MM.FF.NN., UNICAL (Dott.ssa Galati C.) Rende, 23 Aprile 2010 Matrici, rango e metodo

Dettagli

Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 4 luglio 2016 Parte B Tema B1

Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello 4 luglio 2016 Parte B Tema B1 Università degli Studi di Bergamo Scuola di Ingegneria Corso di Geometria e Algebra Lineare Appello luglio 6 Parte B Tema B Tempo a disposizione: due ore. Calcolatrici, libri e appunti non sono ammessi.

Dettagli

Elementi di Algebra Lineare

Elementi di Algebra Lineare Elementi di Algebra Lineare Corso di Calcolo Numerico, a.a. 2009/2010 Francesca Mazzia Dipartimento di Matematica Università di Bari 13 Marzo 2006 Francesca Mazzia (Univ. Bari) Elementi di Algebra Lineare

Dettagli

Analisi della correlazione canonica

Analisi della correlazione canonica Analisi della correlazione canonica Su un collettivo di unità statistiche si osservano due gruppi di k ed m variabili L analisi della correlazione canonica ha per obiettivo lo studio delle relazioni di

Dettagli

Appunti di Geometria - 2

Appunti di Geometria - 2 Appunti di Geometria - Samuele Mongodi - s.mongodi@sns.it Cambi di base e applicazioni lineari Richiami Sia V uno spazio vettoriale di dimensione n sul campo K, con base assegnata e,..., e n } (ad esempio

Dettagli

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016

FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 27 GIUGNO 2016 FONDAMENTI DI ALGEBRA LINEARE E GEOMETRIA INGEGNERIA CHIMICA E DEI MATERIALI 7 GIUGNO 06 MATTEO LONGO Ogni versione del compito contiene solo due tra i quattro esercizi 6-7-8-9. Esercizio. Considerare

Dettagli

0 0 c. d 1. det (D) = d 1 d n ;

0 0 c. d 1. det (D) = d 1 d n ; Registro Lezione di Algebra lineare del 23 novembre 216 1 Matrici diagonali 2 Autovettori e autovalori 3 Ricerca degli autovalori, polinomio caratteristico 4 Ricerca degli autovettori, autospazi 5 Matrici

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER 6-7 Canale A-K Esercizi 8 Esercizio Si consideri il sottospazio (a) Si trovi una base ortonormale di U (b) Si trovi una base ortonormale di U U = L v =, v, v 3 = (c) Si scriva la matrice

Dettagli

MATRICI. Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: a 2 m. a n m) i j R, 1 i n, 1 j m.

MATRICI. Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: a 2 m. a n m) i j R, 1 i n, 1 j m. MATRICI Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: 11 a 12 a 1 3 a 1m A=(a a 21 a 2 3 a 2m con a a n1 a n2 a n 3 a nm i j R, 1 i n, 1 j m. per

Dettagli

3 Soluzione di sistemi lineari

3 Soluzione di sistemi lineari 3 Soluzione di sistemi lineari Prima di addentrarci nello studio dei metodi numerici, è doveroso introdurre le matrici e alcune strutture particolari di matrici nonchè alcuni concetti fondamentali quali

Dettagli

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA

IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Metodi per l Analisi dei Dati Sperimentali AA009/010 IL CRITERIO DELLA MASSIMA VEROSIMIGLIANZA Sommario Massima Verosimiglianza Introduzione La Massima Verosimiglianza Esempio 1: una sola misura sperimentale

Dettagli

Isometrie e cambiamenti di riferimento

Isometrie e cambiamenti di riferimento Isometrie e cambiamenti di riferimento Isometrie Le isometrie sono trasformazioni del piano o dello spazio che conservano angoli e distanze. Esempi sono le rotazioni del piano, le riflessioni in una retta

Dettagli

Distribuzione normale multidimensionale

Distribuzione normale multidimensionale Capitolo 2 Distribuzione normale multidimensionale La funzione di densità normale undimensionale ha la forma seguente Anderson, 1984 fx ce 1 2 Ax b2 ce 1 2 x bax b La costante di normalizzazione c è data

Dettagli

Algebra lineare e geometria AA Appunti sul cambio di base in uno spazio vettoriale

Algebra lineare e geometria AA Appunti sul cambio di base in uno spazio vettoriale Algebra lineare e geometria AA. 8-9 Appunti sul cambio di base in uno spazio vettoriale Matrice di un applicazione lineare Siano V e W due spazi vettoriali su un campo K {R, C}, entrambi finitamente generati,

Dettagli

Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari. MATLAB: Elementi di Algebra Lineare

Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari. MATLAB: Elementi di Algebra Lineare 1 Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari MATLAB: Elementi di Algebra Lineare 2 Elementi di Algebra Lineare. Una matrice è una tabella di numeri ordinata per righe

Dettagli

ESERCIZIO 1. X Y Tot Tot

ESERCIZIO 1. X Y Tot Tot ESERCIZIO 1 Per descrivere il numero di guasti mensili cui sono soggette le due parti A e B di un impianto industriale viene utilizzata la seguente distribuzione di probabilità: X Y 0 1 2 Tot. 0 0.2 0.1

Dettagli

Statistica computazionale. Informazioni sul docente. Parte I. Informazioni preliminari. Stefano Tonellato. Anno Accademico

Statistica computazionale. Informazioni sul docente. Parte I. Informazioni preliminari. Stefano Tonellato. Anno Accademico Statistica computazionale Stefano Tonellato Dipartimento di Statistica Università Ca Foscari Venezia Anno Accademico 2007-2008 sul docente Parte I preliminari Nome: Stefano Tonellato e-mail: stone@unive.it

Dettagli

Geometria BAER I canale Foglio esercizi 3

Geometria BAER I canale Foglio esercizi 3 Geometria BAER I canale Foglio esercizi 3 Esercizio. Discutere le soluzioni del seguente sistema lineare nelle incognite,, z al variare del parametro k. 3 + kz = k k + 3z = k k + z = Soluzione: Il determinante

Dettagli

Regressione & Correlazione

Regressione & Correlazione Regressione & Correlazione Monia Ranalli Ranalli M. Dipendenza Settimana # 4 1 / 20 Sommario Regressione Modello di regressione lineare senplice Stima dei parametri Adattamento del modello ai dati Correlazione

Dettagli

Il Modello della Analisi Fattoriale Esplorativa e i Metodi di Classificazione Automatica (Analisi di Raggruppamento)

Il Modello della Analisi Fattoriale Esplorativa e i Metodi di Classificazione Automatica (Analisi di Raggruppamento) Il Modello della Analisi Fattoriale Esplorativa e i Metodi di Classificazione Automatica (Analisi di Raggruppamento) Se all interno di un insieme di informazioni articolato in una matrice di dati X si

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER Canale A-K Esercizi 8 Esercizio. Si consideri il sottospazio U = L v =, v, v 3 =. (a) Si trovino le equazioni cartesiane ed una base ortonormale di U. (b) Si trovi una base ortonormale di

Dettagli

Appendice 1. Spazi vettoriali

Appendice 1. Spazi vettoriali Appendice. Spazi vettoriali Indice Spazi vettoriali 2 2 Dipendenza lineare 2 3 Basi 3 4 Prodotto scalare 3 5 Applicazioni lineari 4 6 Applicazione lineare trasposta 5 7 Tensori 5 8 Decomposizione spettrale

Dettagli

Geometria BAER I canale Foglio esercizi 2

Geometria BAER I canale Foglio esercizi 2 Geometria BAER I canale Foglio esercizi 2 Esercizio 1. Calcolare il determinante e l inversa (quando esiste) della matrice ( ) cos θ sin θ R θ =, θ [0, 2π] sin θ cos θ Soluzione: Il determinante ( é cos

Dettagli

a a 1n A = a n1... a nn a 11 x a 1n x n = b 1 a n1 x a nn x n = b n ] sono determinati. 2- La matrice A = [ a ij

a a 1n A = a n1... a nn a 11 x a 1n x n = b 1 a n1 x a nn x n = b n ] sono determinati. 2- La matrice A = [ a ij Recupero. 2, Determinanti. 1. Determinanti Consideriamo una matrice A = a 11... a 1n.. a n1... a nn quadrata di ordine n ad elementi in R. Sappiamo che sono equivalenti la affermazioni 1- tutti i sistemi

Dettagli

Prodotti scalari e matrici

Prodotti scalari e matrici Prodotti scalari e matrici 1 Forme bilineari e matrici In questa sezione vogliamo studiare la corrispondenza biunivoca che esiste tra l insieme delle forme bilineari su di un certo spazio vettoriale V

Dettagli

Applicazioni lineari simmetriche e forme quadratiche reali.

Applicazioni lineari simmetriche e forme quadratiche reali. Applicazioni lineari simmetriche e forme quadratiche reali 1 Applicazioni lineari simmetriche Consideriamo lo spazio IR n col prodotto scalare canonico X Y = t XY = x 1 y 1 + + x n y n Definizione Un applicazione

Dettagli

Esercizi di Probabilità e Statistica

Esercizi di Probabilità e Statistica Esercizi di Probabilità e Statistica Samuel Rota Bulò 6 luglio 6 Vettori aleatori e funzioni di v.a. Esercizio Si lanciano due dadi equi. Qual è la probabilità che la somma sia? [ ] Siano X, X le v.a.

Dettagli

Risoluzione di sistemi lineari sparsi e di grandi dimensioni

Risoluzione di sistemi lineari sparsi e di grandi dimensioni Risoluzione di sistemi lineari sparsi e di grandi dimensioni Un sistema lineare Ax = b con A R n n, b R n, è sparso quando il numero di elementi della matrice A diversi da zero è αn, con n α. Una caratteristica

Dettagli

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se

Equivalentemente, le colonne di A sono linearmente indipendenti se e solo se Lezioni di Algebra Lineare. Versione novembre 2008 VI. Il determinante Il determinante det A di una matrice A, reale e quadrata, è un numero reale associato ad A. Dunque det è una funzione dall insieme

Dettagli

(P x) (P y) = x P t (P y) = x (P t P )y = x y.

(P x) (P y) = x P t (P y) = x (P t P )y = x y. Matrici ortogonali Se P è una matrice reale n n, allora (P x) y x (P t y) per ogni x,y R n (colonne) Dim (P x) y (P x) t y (x t P t )y x t (P t y) x (P t y), CVD Ulteriori caratterizzazioni delle matrici

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

Esercizi del 10 maggio 2012 da riconsegnare il 17 maggio 2012

Esercizi del 10 maggio 2012 da riconsegnare il 17 maggio 2012 Analisi Multivariata Esercizi del 10 maggio 2012 da riconsegnare il 17 maggio 2012 La Tabella 1 contiene la classificazione in base alla qualifica e all abitudine al fumo di 193 dirigenti e impiegati di

Dettagli

Esercizi di ripasso: geometria e algebra lineare.

Esercizi di ripasso: geometria e algebra lineare. Esercizi di ripasso: geometria e algebra lineare. Esercizio. Sia r la retta passante per i punti A(2,, 3) e B(,, 2) in R 3. a. Scrivere l equazione cartesiana del piano Π passante per A e perpendicolare

Dettagli

Parte 12b. Riduzione a forma canonica

Parte 12b. Riduzione a forma canonica Parte 2b. Riduzione a forma canonica A. Savo Appunti del Corso di Geometria 202-3 Indice delle sezioni. Coniche, 2. Esempio di riduzione, 4 3. Teoremi fondamentali, 6 4. Come determinare l equazione canonica,

Dettagli

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ.

I. Foglio di esercizi su vettori linearmente dipendenti e linearmente indipendenti. , v 2 = α v 1 + β v 2 + γ v 3. α v 1 + β v 2 + γ v 3 = 0. + γ. ESERCIZI SVOLTI DI ALGEBRA LINEARE (Sono svolti alcune degli esercizi proposti nei fogli di esercizi su vettori linearmente dipendenti e vettori linearmente indipendenti e su sistemi lineari ) I. Foglio

Dettagli

9.3 Il metodo dei minimi quadrati in formalismo matriciale

9.3 Il metodo dei minimi quadrati in formalismo matriciale 8 CAPIOLO 9. IMA DEI PARAMERI MEODO DEI MINIMI QADRAI 9.3 Il metodo dei minimi quadrati in formalismo matriciale Nel caso si debba applicare il metodo minimi quadrati con molti parametri risulta vantaggioso

Dettagli

Parte 8. Prodotto scalare, teorema spettrale

Parte 8. Prodotto scalare, teorema spettrale Parte 8. Prodotto scalare, teorema spettrale A. Savo Appunti del Corso di Geometria 3-4 Indice delle sezioni Prodotto scalare in R n, Basi ortonormali, 4 3 Algoritmo di Gram-Schmidt, 7 4 Matrici ortogonali,

Dettagli

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3.

2 2 2 A = Il Det(A) = 2 quindi la conica è non degenere, di rango 3. Studio delle coniche Ellisse Studiare la conica di equazione 2x 2 + 4xy + y 2 4x 2y + 2 = 0. Per prima cosa dobbiamo classificarla. La matrice associata alla conica è: 2 2 2 A = 2 2 2 Il DetA = 2 quindi

Dettagli

I VETTORI GAUSSIANI E. DI NARDO

I VETTORI GAUSSIANI E. DI NARDO I VETTOI GAUSSIANI E. DI NADO. L importanza della distribuzione gaussiana I vettori di v.a. gaussiane sono senza dubbio uno degli strumenti più utili in statistica. Nell analisi multivariata, per esempio,

Dettagli

b = p + q l q Diciamo che p e la proiezione ortogonale di b su l, e che q e la proiezione ortogonale di b su l.

b = p + q l q Diciamo che p e la proiezione ortogonale di b su l, e che q e la proiezione ortogonale di b su l. Matematica II, 4... rtogonalita nel piano. Fissato nel piano un punto, consideriamo il piano vettoriale P. Diamo per intuitivamente nota la nozione di ortogonalita fra due vettori non nulli. Per convenzione,

Dettagli

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di:

Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: Sequenze (Sistemi) di Variabili Aleatorie Se consideriamo un numero di variabili aleatorie, generalmente dipendenti si parla equivalentemente di: N-pla o Sequenza di Variabili Aleatorie Sistema di Variabili

Dettagli

0.1 Forme quadratiche

0.1 Forme quadratiche 0.1. FORME QUADRATICHE 1 0.1 Forme quadratiche In questa sezione possiamo applicare il Teorema degli Assi Principali per giustificare alcune fatti che sono stati utilizzati nella riduzione a forma canonica

Dettagli

05. Determinare una base ortonormale per ognuno dei seguenti spazi vettoriali.

05. Determinare una base ortonormale per ognuno dei seguenti spazi vettoriali. T.1 BASI ORTONORMALI, MATRICI ORTOGONALI 01. Sia V il sottospazio di IR 3 generato dalla base B : (1, 0, 2), (0, 2, 1). Verificare che anche C : (1, 2, 1), (1, 4, 0) è base per V e ortonormalizzare le

Dettagli

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE

SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE SPAZI EUCLIDEI, APPLICAZIONI SIMMETRICHE, FORME QUADRATICHE. Esercizi Esercizio. In R calcolare il modulo dei vettori,, ),,, ) ed il loro angolo. Esercizio. Calcolare una base ortonormale del sottospazio

Dettagli

Statistical Process Control

Statistical Process Control Statistical Process Control ESERCIZI II Esercizio 1. Una ditta che produce schermi a cristalli liquidi deve tenere in controllo il numero di pixel non funzionanti. Vengono ispezionati venti schermi alla

Dettagli

Variabili casuali multidimensionali

Variabili casuali multidimensionali Capitolo 1 Variabili casuali multidimensionali Definizione 1.1 Le variabili casuali multidimensionali sono k-ple ordinate di variabili casuali unidimensionali definite sullo stesso spazio di probabilità.

Dettagli

Esercizi di statistica

Esercizi di statistica Esercizi di statistica Test a scelta multipla (la risposta corretta è la prima) [1] Il seguente campione è stato estratto da una popolazione distribuita normalmente: -.4, 5.5,, -.5, 1.1, 7.4, -1.8, -..

Dettagli

Computazione per l interazione naturale: Richiami di algebra lineare

Computazione per l interazione naturale: Richiami di algebra lineare Computazione per l interazione naturale: Richiami di algebra lineare Corso di Interazione uomo-macchina II Prof. Giuseppe Boccignone Dipartimento di Informatica Università di Milano boccignone@di.unimi.it

Dettagli

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2

1 Coniche. s (x, y, t ) (1) 1 (x, y, t )F r 2 1 Coniche Studieremo le curve nel piano euclideo, cioè nel piano con un sistema di riferimento cartesiano ortogonale fissato, oppure nel completamento proiettivo di questo piano, ottenuto con l introduzione

Dettagli