DAC Digital Analogic Converter

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "DAC Digital Analogic Converter"

Transcript

1 DAC Digital Analogic Converter Osserviamo lo schema elettrico riportato qui a lato, rappresenta un convertitore Digitale-Analogico a n Bit. Si osservino le resistenze che di volta in volta sono divise per 2, nel passaggio da una resistenza superiore a quella successiva inferiore. Le resistenze da un lato sono tutte collegate tra loro e collegate all ingresso invertente dell operazionale mentre dall altro capo sono collegate a commutatori che permettono il collegamento a un potenziale di riferimento V o o al potenziale di massa. Lo schema è un convertitore Corrente-Tensione, ciò significa che in qualche modo dobbiamo calcolare la corrente che è generata in funzione delle posizioni occupate dai commutatori e, quindi, calcolare l uscita che altro non è la tensione ai capi di R f. Osserviamo che se una resistenza viene commutata sul potenziale di massa, questa resistenza non ha più alcun effetto sullo schema. Infatti, se da un lato il commutatore collega la resistenza a massa, l altro capo della resistenza si trova già collegato al morsetto invertente dell operazionale che, come si vede dallo schema e per il principio della massa virtuale, si trova a potenziale nullo (massa virtuale). Quindi questa particolare resistenza non fornisce alcun contributo alla corrente generale in quanto sottoposta a una differenza di potenziale nulla. Detto questo, è intuitivo che la prima resistenza rappresenta l ingresso di un bit meno significativo (LSB) in quanto il contributo alla corrente generale è la metà di quella generata dalla resistenza successiva. Mentre è ¼ della corrente generata dalla resistenza ancora successiva. Ovviamente l ultima resistenza, poiché è divisa per un fattore 2 n-1 genera una corrente che è esattamente 2 n-1 volte quella generata della prima resistenza. Quindi, nell ordine indicato in figura, le resistenze vanno da una LS(B) a quella più significativa, cioè MS(B). In parentesi la B ricorda l analogia con i corrispondenti bit. I commutatori rappresentano gli ingressi binari: l ingresso B 0 è collegato alla resistenza R/2 0 ; l ingresso B 1 è collegato alla resistenza R/2 1, e così via di seguito. In generale possiamo dire che l ingresso B i è collegato alla resistenza R/2 i. Possiamo anche pesare che l ingresso B i altro non è che un coefficiente che può assumere solo due valori: 0 oppure 1, a secondo che il relativo commutatore sia collegato a massa o al potenziale di riferimento V 0. Calcoliamo i vari contributi alla corrente generale delle resistenze: !"$%&%'()*'% Nelle espressioni delle correnti riportate sopra, il coefficiente B i rappresenta il valore del bit i-esimo, con i che assume valore tra 0 e n-1. In altre parole determina se c è o non c è il contributo della corrente dovuto a quel bit, visto che può essere 0 oppure 1. Calcoliamo la corrente totale.,--, Pag. 1

2 Ossia: Mettendo a fattore:,--,.,--, / 0 L ultima espressione è semplicemente un modo compatto di scrivere la formula. L espressione racchiusa tra parentesi altro non è che un numero tra 0 e (2 n -1). Se indichiamo con N x tale numero si ha: Da questa formula si comprende che la corrente totale dovuta alla presenza di tutti i bit è: 1 Calcoliamo l uscita dell operazionale. Come abbiamo detto il circuito è un convertitore Corrente-Tensione. Pertanto dobbiamo calcolare l uscita dell operazionale per un dato numero qualsiasi N x. Pertanto abbiamo: Ossia: %*' %*' %*' Sostituendo a N x il suo valore massimo 2 n -1 si ottiene la massima tensione di uscita: $53 Il segno meno che appare nella formula può essere risolto o con una tensione di riferimento negativa oppure facendo seguire all operazionale un circuito amplificatore con guadagno -1. Il valore massimo calcolato ci permette di ricavare il valore di fondo scala. Il valore massimo è per definizione: $53 8 Dove V FSR è la tensione di fondo scala e Q rappresenta la risoluzione o quanto del DAC. La risoluzione è la minima variazione della tensione d uscita quando l ingresso passa da una configurazione binaria a quella successiva. Quindi, per confronto con la precedente espressione, possiamo ricavare: 1 Ed anche : 8 Si osservi che la risoluzione può essere espressa in termini di tensione di fondo scala: Ossia: 8 8 Il principale inconveniente di questo schema è la grande disomogeneità dei valori dei resistori. Ad esempio, un DAC a 12 bit se pensiamo di prendere un valore di 1K-Ohm per il resistore MSB, il valore del resistore LSB deve essere dell ordine di 2 12 volte il valore per la resistenza MSB, ossia dell ordine del M-Ohm. Valori troppo diversi che comportano problemi di instabilità del circuito nella conversione. Lo schema va bene per DAC con n piccolo (3,). Pag. 2

3 Calcoliamo la corrente che viene generata per una data configurazione dei bit. Si ha: Uno schema perfettamente equivalente può essere realizzato con i resistori i cui valori non si dimezzano, come nello schema appena trattato, ma bensì raddoppiano ad ogni passaggio successivo. Osserviamo lo schema riportato qui a lato. I valori dei resistori sono presi in modo che dal passaggio di un bit al successivo, iniziando dall alto, i valori raddoppiano. La prima resistenza è assunta 2R, la seconda R, la terza 8R, ecc. ecc. L ultima resistenza sarà 2 n R. In questo caso la resistenza determina il bit LSB e MSB. Infatti, poiché il contributo alla corrente generale è più alto nella prima resistenza, cioè quella di valore 2R, questo valore determina il bit MSB, mentre l ultima resistenza, quella 2 n R, individua il bit LSB.,,- L espressione calcolata fornisce la corrente dovuta alla configurazione dei bit in ingresso dovuto al numero N x. Si possono mettere a fattore alcuni termini. Infatti:.,,- / Conviene riscrivere l espressione facendo in modo che le potenze del 2 compaiano al numeratore. Infatti, mettendo in evidenza 2 n si ha:.,,- / Da cui si vede che l espressione in parentesi è proprio il numero N x. Per cui si ha: Questa espressione rappresenta la corrente fornita dal circuito per una configurazione binaria in ingresso. La corrente totale è Scriviamo adesso l espressione dell uscita dell operazionale. Ossia, ricordando che è un convertitore I-V: L uscita assume valore massimo: %*' % $53 % Da questa espressione possiamo ricavare la tensione di fondo scala e la risoluzione. Ossia: 8 % Bisogna ricordare che V max = V FSR Q. Pag. 3

4 Lo schema che segue è quello di un convertitore DAC con rete a scala, detto anche a commutazione di tensione. Osserviamo lo schema e cerchiamo di capire come è stato realizzato. Tutte le resistenze che possono essere collegate a massa hanno un valore pari a 2R. Tutte le altre hanno valore R. L operazione è in configurazione di adattatore di impedenza, per cui può far seguito un amplificatore. La tensione V o è la tensione di riferimento. I commutatori permettono di collegare le resistenze 2R o al valore della tensione di riferimento V 0 oppure a massa. Supponiamo che tutti i commutatori sono messi in modo che le resistenze 2R risultino collegate a massa. Si nota subito che il nodo A presenta due resistenze da 2R in parallelo: al nodo A è come se vi fosse una sola resistenza di valore R. In questo caso al nodo B fanno capo una resistenza da 2R, che tramite il commutatore è collegata a massa, e una serie di due resistenze di valore R collegate verso massa. Questo significa che al nodo B è come se vi fosse una sola resistenza R collegata verso massa. Continuando l analisi, possiamo dire che ogni nodo vede sottostante la sua posizione una sola resistenza di valore R, se tutti i commutatori sottostanti sono orientati verso massa. Nel caso che tutti i commutatori sono orientati verso massa, al nodo D vi è una sola resistenza di valore R sottoposta ad una tensione nulla. In quest ultimo caso l uscita V out è nulla. Sulla base di quanto detto cerchiamo di calcolare il contributo alla tensione di uscita in funzione di ciascun commutatore. Supponiamo che il solo commutatore indicato con B 1 è commutato verso la tensione di riferimento V 0 mentre tutti gli altri sono commutati verso massa. Per l analisi fatta prima, possiamo dire che sotto il noto C vi è una sola resistenza di valore R, essendo i commutatori orientati verso massa. Quindi il circuito si trasforma come quello riportato qui a lato. In questo caso possiamo ricavare il contributo di questo primo ingresso binario. E intuitivo che tale contributo è: Si osservi che il valore di ½ è stato scritto sotto forma di potenza del 2. Calcoliamo il contributo del secondo bit, indicato con B 2. In questo caso dobbiamo considerare che il primo commutatore è orientato verso massa, quindi la resistenza da 2R al nodo D è collegata a massa. Sempre dal nodo D esce una resistenza di valore R e al nodo C vi è una resistenza di 2R collegata alla tensione V 0 e, per l analisi fatta in precedenza, due resistenze di valore R messe in serie con collegamento a massa, come si vede dalla schema riportato qui a lato. Non è difficile dimostrare che il potenziale nel punto D è pari a ¼ della tensione di riferimento V 0, ossia: Questo risultato è vero perche guardando nel nodo C la rete elettrica è equivalente ad un generatore di valore pari a V o /2 con una resistenza in serie di valore pari a R (Thevenin). Da questi due risultati appena scritti possiamo ricavare l espressione generale del contributo relativo al bit B i. Ossia: Osserviamo adesso che la rete resistiva è una rete lineare, ciò vuol dire che per essa vale il principio di sovrapposizione degli effetti. Quindi, se in ingresso abbiamo un numero generico N x = (B o,b 1,B 2 B n-1 ), possiamo ricavare l espressione della tensione di uscita sommando semplicemente i vari contributi. Ossia: %*' 9 9, Pag.

5 In questa espressione abbiamo supposto il caso generale di n ingressi binari. Mettiamo in evidenza il Valore V 0 e seguiamo qualche passaggio matematico: %*' : 9 9,-- ; In questa espressione oltre a mettere in evidenza V 0 abbiamo anche moltiplicato e diviso per uno stesso numero senza cambiale il valore dell espressione. Moltiplichiamo 2 n che sta al numeratore per ciascun addendo dell espressione. Si ha: %*'. 9 9,-- / Dall espressione in parentesi ci accorgiamo che il valore del bit B n non è il MSB ma, bensì, è il valore LSB, poiché è legato alla potenza 2 0. Mentre B 1 è il MSB perché è legato al peso più grande, ossia 2 n-1. Quindi, cambiando semplicemente nome agli indici, possiamo scrivere: %*'. 9 9,-- / In questa espressione si riconosce facilmente che tra parentesi vi è l espressione binaria di un numero N x che può assumere valore tra 0 e 2 n-1, con n il numero di bit di ingresso al DAC. L espressione del valore massimo che assume l uscita, quando tutti i coefficienti B i valgono 1, è: $53. / Da questa espressione possiamo calcolare sia la tensione di fondo scala che la risoluzione o quanto Q: $53 8 Ossia : E quindi: 8 Pag. 5

6 Lo schema di un convertitore DAC con rete a scala e a commutazione di corrente è lo schema che segue. In linea di principio è molto simile a quello studiato in precedenza. I resistore con valori da 2R sono solo quelli che possono essere collegati a massa. Tutti gli altri resistori hanno valore R. Come per lo schema studiato in precedenza, anche qui vale la regola che se i commutatori sono orientati verso la massa la resistenza che si vede dal nodo è R. Quindi, se per ipotesi i commutatori sono tutti orientati verso massa, al nodo A è collegato una sola resistenza di valore R. Bisogno osservare che a differenza dello schema precedente i commutatori possono collegare gli ingressi binari una volta a massa reale e una volta alla massa virtuale dell operazionale, come si vede dallo schema. Quindi, sia che i commutatori siano orientato verso massa reale o virtuale risultano sempre orientati verso massa. Questo significa che la tensione di riferimento V o vede una sola resistenza di valore R e, pertanto, a prescindere dalla posizione dei commutatori si genere una corrente costante di valore pari a V o /R. Calcoliamo il contributo di corrente dato dal primo ingresso binario. Supponiamo che il commutatore B 1 è orientato verso massa virtuale, e tutti gli altri a massa reale. In questo caso nel nodo A fanno capo due resistenze di uguale valore 2R, come è evidente dall analisi dello schema elettrico. Poiché abbiamo detto che nel nodo A entra una corrente pari a V 0 /R, è evidente che questa si divide in due parti: una metà fluisce verso la massa reale e un altra metà fluisce verso l operazionale. Possiamo, quindi, scrivere: Calcoliamo il contributo del secondo ingresso binario. Se il solo commutatore B 2 è orientato verso la massa virtuale allora una metà della corrente I 1 fluisce attraverso la resistenza 2R per raggiungere l operazionale e l altra metà fluisce verso il nodo C. Il contributo di corrente dovuto a questo commutatore è: Con lo stesso ragionamento si può calcolare il contributo generico del commutatore binario B i : < < < E necessario fare una precisazione. I contributi calcolati, I 1, I 2 ecc.ecc, sono contributi che esistono sempre, a prescindere dalla posizione dei commutatori. Questi fanno sì da convogliare le quantità di corrente o nell operazione oppure verso massa, a secondo dei valori assunti da B i. L espressione della corrente che entra nell operazionale può essere scritta come segue:.= > /0 < < L espressione in parentesi può essere modificata nel seguente modo: <1? > A? / Nell ultima espressione si riconosce il numero binario N x. Per poterlo riconoscere facilmente è sufficiente cambiare il nome ai commutatori binari: B n diventa B 0, B n-1 diventa B 1 ecc. ecc. fino a B 0 che diventa B n-1. Quindi possiamo scrivere: Questa espressione rappresenta la corrente che entra nell operazionale in funzione della combinazione binaria dei commutatori. Calcoliamo la tensione di uscita, considerato che il circuito è un convertitore Corrente-Tensione. Si ha BCD E.= > / E Pag. 6

7 Questa è la tensione in funzione del numero N x che in forma binaria mettiamo in ingresso. Calcoliamo il valore massimo: $53 Ricordando la relazione: $53 8 Possiamo scrivere: E quindi in definitiva: $53. /. 8 / Ed anche: 8 Pag. 7

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 -

Collegamento generatori di tensione. Collegamento parallelo. Sia dato il sistema di figura 1: Fig. 1 - Collegamento generatori di tensione Collegamento parallelo Sia dato il sistema di figura : Fig. - vogliamo trovare il bipolo equivalente al parallelo dei tre generatori di tensione, il bipolo, cioè, che

Dettagli

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

IL TEOREMA DI THEVENIN

IL TEOREMA DI THEVENIN IL TEOREMA DI THEVENIN Il teorema di Thevenin si usa per trovare più agevolmente una grandezza (corrente o tensione) in una rete elettrica. Enunciato: una rete elettrica vista a una coppia qualsiasi di

Dettagli

AMPLIFICATORE DIFFERENZIALE

AMPLIFICATORE DIFFERENZIALE AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso

Dettagli

Convertitori D/A. Convertitori Digitale-Analogico. D/A: Misura Prestazioni. D/A Ideale. Caratteristica. Lucidi del Corso di Microelettronica Parte 7

Convertitori D/A. Convertitori Digitale-Analogico. D/A: Misura Prestazioni. D/A Ideale. Caratteristica. Lucidi del Corso di Microelettronica Parte 7 Convertitori D/A Un convertitore D/A prende in ingresso un numero digitale (rappresentato da una stringa di 1 e 0) e lo converte in un valore analogico (tipicamente una tensione) proporzionale tramite

Dettagli

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis

CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis CORSO DI FISICA ASPERIMENTALE II ESERCIZI SU RESISTENZE IN SERIE E PARALLELO Docente: Claudio Melis 1) Un generatore di tensione reale da 20 V provvisto di resistenza interna r pari a 2 Ω è connesso in

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di

Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di Convertitore D/A Un convertitore D/A o digitale/analogico è un dispositivo che ha lo scopo di trasformare un dato digitale in una grandezza analogica, in generale una tensione. Naturalmente vi deve essere

Dettagli

Elettronica Amplificatore operazionale ideale; retroazione; stabilità

Elettronica Amplificatore operazionale ideale; retroazione; stabilità Elettronica Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Amplificatore operazionale

Dettagli

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO.

x 2 + (x+4) 2 = 20 Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati per le EQUAZIONI di PRIMO GRADO. EQUAZIONI DI SECONDO GRADO Un'equazione del tipo x 2 + (x+4) 2 = 20 è un'equazione DI SECONDO GRADO IN UNA INCOGNITA. Alle equazioni di secondo grado si possono applicare i PRINCIPI di EQUIVALENZA utilizzati

Dettagli

6. Generatori di corrente controllati

6. Generatori di corrente controllati 6. Generatori di corrente controllati 6.1 Generatori con un solo operazionale In molte applicazioni è utile poter disporre di generatori di corrente controllati in tensione. Un modo semplice, ad esempio,

Dettagli

Lezione 2: Amplificatori operazionali. Prof. Mario Angelo Giordano

Lezione 2: Amplificatori operazionali. Prof. Mario Angelo Giordano Lezione 2: Amplificatori operazionali Prof. Mario Angelo Giordano L'amplificatore operazionale come circuito integrato è uno dei circuiti lineari maggiormente usati. L'amplificatore operazionale è un amplificatore

Dettagli

4 Amplificatori operazionali

4 Amplificatori operazionali 4 Amplificatori operazionali 4.1 Amplificatore operazionale: caratteristiche, ideale vs. reale - Di seguito simbolo e circuito equivalente di un amplificatore operazionale. Da notare che l amplificatore

Dettagli

Michele Scarpiniti. L'Amplificatore Operazionale

Michele Scarpiniti. L'Amplificatore Operazionale Michele Scarpiniti L'Amplificatore Operazionale MICHELE SCARPINITI L Amplificatore Operazionale Versione 1.0 Dipartimento DIET Università di Roma La Sapienza via Eudossiana 18, 00184 Roma L AMPLIFICATORE

Dettagli

METODO DI CAVALIERI-SIMPSON (o delle parabole) (per il calcolo approssimato 1 di integrali definiti)

METODO DI CAVALIERI-SIMPSON (o delle parabole) (per il calcolo approssimato 1 di integrali definiti) METODO DI CVLIERI-SIMPSON (o delle parabole) (per il calcolo approssimato di integrali definiti) ssieme ai metodi dei Rettangoli e dei Trapezi costituisce l insieme dei metodi di Integrazione Numerica

Dettagli

RESISTENZE IN SERIE. Applichiamo un generatore di tensione Vg ai capi di due resistenze collegate in serie. V 2 R2

RESISTENZE IN SERIE. Applichiamo un generatore di tensione Vg ai capi di due resistenze collegate in serie. V 2 R2 RESSTENZE N SERE Date due o più resistenze, si dice che queste sono collegate in serie quando, a due a due, hanno una estremità in comune Circuito con resistori in serie ista di due resistori collegati

Dettagli

L amplificatore operazionale

L amplificatore operazionale L amplificatore operazionale terminali di input terminale di output Alimentazioni: massa nodo comune L amplificatore operazionale ideale Applichiamo 2 tensioni agli input 1 e 2 L amplificatore è sensibile

Dettagli

Elettronica II Alcune architetture di convertitori A/D e D/A p. 2

Elettronica II Alcune architetture di convertitori A/D e D/A p. 2 Elettronica II Alcune architetture di convertitori A/D e D/A Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema email: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

SISTEMI LINEARI MATRICI E SISTEMI 1

SISTEMI LINEARI MATRICI E SISTEMI 1 MATRICI E SISTEMI SISTEMI LINEARI Sistemi lineari e forma matriciale (definizioni e risoluzione). Teorema di Rouché-Capelli. Sistemi lineari parametrici. Esercizio Risolvere il sistema omogeneo la cui

Dettagli

Componenti in corrente continua

Componenti in corrente continua Ogni componente reale utilizzato in un circuito è la realizzazione approssimata di un elemento circuitale ideale. Nello studio dei sistemi in cc gli elementi più importanti sono : esistore Generatori campione

Dettagli

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ESERCIZIO 1 Dopo aver risolto il circuito lineare tempo-invariante mostrato Fig. 1.1, calcolare la potenza erogata/assorbita da ogni componente. Fig. 1.1

Dettagli

Teoremi Thevenin/Norton

Teoremi Thevenin/Norton Teoremi Thevenin/Norton IASSUNTO Il carico Teorema di Thevenin Come calcolare V Th ed Th conoscendo il circuito Come misurare V Th ed Th Esempi Generatore di tensione ideale e reale Teorema di Norton Generatore

Dettagli

Le configurazioni della reazione

Le configurazioni della reazione Capitolo 2 Le configurazioni della reazione Nel capitolo precedente si è visto che la reazione ha effetto diametralmente opposto tra l amplificatore non invertente (par. 9.5) e quello invertente (par.

Dettagli

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n

SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n SPAZI E SOTTOSPAZI 1 SOTTOSPAZI E OPERAZIONI IN SPAZI DIVERSI DA R n Spazi di matrici. Spazi di polinomi. Generatori, dipendenza e indipendenza lineare, basi e dimensione. Intersezione e somma di sottospazi,

Dettagli

5.12 Applicazioni ed esercizi

5.12 Applicazioni ed esercizi 138 5.12 pplicazioni ed esercizi pplicazione 1 1. Trovare il numero dei nodi e dei rami nel circuito in figura. 1 2 3 H 4 C D E 8 G 7 F 6 5 punti 1 e 2 costituiscono un unico nodo; lo stesso per i punti

Dettagli

Elettronica Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Elettronica Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Elettronica Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Risoluzione

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dei numeri relativi

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dei numeri relativi Codice BCD Prima di passare alla rappresentazione dei numeri relativi in binario vediamo un tipo di codifica che ha una certa rilevanza in alcune applicazioni: il codice BCD (Binary Coded Decimal). È un

Dettagli

Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - +

Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + Appunti di ELETTRONICA Amplificatore operazionale (amp. Op oppure A. O.) - + µa741 Cos'è l'amplificazione: Amplificare un segnale significa aumentarne il livello e di conseguenza la potenza. Il fattore

Dettagli

1. CONVERSIONE ANALOGICO DIGITALE: SCHEMA, FUNZIONALITÀ E CARATTERISTICA DELL ADC

1. CONVERSIONE ANALOGICO DIGITALE: SCHEMA, FUNZIONALITÀ E CARATTERISTICA DELL ADC 1. CONVERSIONE ANALOGICO DIGITALE: SCHEMA, FUNZIONALITÀ E CARATTERISTICA DELL ADC I dati numerici sono codificati, nei sistemi di elaborazione, in forma binaria. Per fissare le idee facciamo riferimento

Dettagli

APPUNTI SULL AMPLIFICATORE OPERAZIONALE IDEALE

APPUNTI SULL AMPLIFICATORE OPERAZIONALE IDEALE PPUNTI SULL MPLIFICTOE OPEZIONLE IDELE DVIDE TMBUCHI Sommario. In queste dispense vengono sintetizzate le principali configurazioni di utilizzazione di un amplificatore operazionale. Si analizzano le proprietá

Dettagli

Convertitori Digitale-Analogico

Convertitori Digitale-Analogico Convertitori Digitale-Analogico Lucidi del Corso di Microelettronica Parte 7 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica (EOLAB) Convertitori D/A

Dettagli

INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi.

INSIEME N. L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. INSIEME N L'insieme dei numeri naturali (N) è l'insieme dei numeri interi e positivi. N = {0;1;2;3... Su tale insieme sono definite le 4 operazioni di base: l'addizione (o somma), la sottrazione, la moltiplicazione

Dettagli

Collegamento di resistenze

Collegamento di resistenze Collegamento di resistenze Resistenze in serie Vogliamo calcolare la resistenza elettrica del circuito ottenuto collegando tra loro più resistenze in serie. Colleghiamo a una pila di forza elettromotrice

Dettagli

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi Esperimentazioni di Fisica 3 Appunti sugli. Amplificatori Differenziali M De Vincenzi 1 Introduzione L amplificatore differenziale è un componente elettronico che (idealmente) amplifica la differenza di

Dettagli

Il problema del carico

Il problema del carico Il problema del carico Si consideri un circuito composto (per il momento) da sole resistenze e generatori di tensione. Si immagini di collegare tra due punti A e B del circuito una resistenza c che chiameremo

Dettagli

Metodi per la risoluzione di sistemi lineari

Metodi per la risoluzione di sistemi lineari Metodi per la risoluzione di sistemi lineari Sistemi di equazioni lineari. Rango di matrici Come è noto (vedi [] sez.0.8), ad ogni matrice quadrata A è associato un numero reale det(a) detto determinante

Dettagli

CONSIGLI PER LA RISOLUZIONE DEI CIRCUITI ELETTRICI

CONSIGLI PER LA RISOLUZIONE DEI CIRCUITI ELETTRICI CONSIGLI PER L RISOLUZIONE DEI CIRCUITI ELETTRICI In questa lezione lo scopo è quello di mostrare che, con i principi e i teoremi proposti, si possono ottenere i risultati richiesti. Per mostrare l efficacia

Dettagli

Elettronica Circuiti con amplificatori operazionali; comparatore; conversione analogico-digitale

Elettronica Circuiti con amplificatori operazionali; comparatore; conversione analogico-digitale Elettronica Circuiti con amplificatori operazionali; comparatore; conversione analogico-digitale Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica

Dettagli

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni

Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Risoluzione dei circuiti elettrici col metodo dei sistemi di equazioni Definizioni e breve richiamo alle principali leggi dei circuiti elettrici Risolvere un circuito elettrico significa determinare i

Dettagli

Sistemi di 1 grado in due incognite

Sistemi di 1 grado in due incognite Sistemi di 1 grado in due incognite Problema In un cortile ci sono polli e conigli: in totale le teste sono 7 e zampe 18. Quanti polli e quanti conigli ci sono nel cortile? Soluzione Indichiamo con e con

Dettagli

Elettronica analogica: cenni

Elettronica analogica: cenni Elettronica analogica: cenni VERSIONE 23.5.01 valle del componente di acquisizione dati nella struttura funzionale di un sistema di misura: misurando x y y z sens elab pres ambiente w abbiamo già considerato

Dettagli

RETI LINEARI R 3 I 3 R 2 I 4

RETI LINEARI R 3 I 3 R 2 I 4 RETI LINERI 1 Leggi di Kirchoff. Metodo delle correnti di maglia R 1 R 3 I 1 I 3 E 1 J 1 J 2 J 3 I 2 I 4 R 4 I 5 R 5 I 6 R 6 J 4 R 7 Il calcolo delle correnti e delle differenze di potenziale in un circuito

Dettagli

Amplificatore differenziale con operazionale: studio e simulazione

Amplificatore differenziale con operazionale: studio e simulazione Amplificatore differenziale con operazionale: studio e simulazione A cura del prof: Ing. Fusco Ferdinando Indice STUDIO TEORICO pag.3 PROVA SIMULATA pag.9 PROVA PRATICA IN LABORATORIO pag.14 RIFERIMENTI

Dettagli

I RADICALI QUADRATICI

I RADICALI QUADRATICI I RADICALI QUADRATICI 1. Radici quadrate Definizione di radice quadrata: Si dice radice quadrata di un numero reale positivo o nullo a, e si indica con a, il numero reale positivo o nullo (se esiste) che,

Dettagli

Esercizi svolti di aritmetica

Esercizi svolti di aritmetica 1 Liceo Carducci Volterra - Classi 1A, 1B Scientifico - Francesco Daddi - 15 gennaio 29 Esercizi svolti di aritmetica Esercizio 1. Dimostrare che il quadrato di un numero intero che finisce per 25 finisce

Dettagli

Circuiti per l Elaborazione del Segnale: Capacità Commutate

Circuiti per l Elaborazione del Segnale: Capacità Commutate Circuiti per l Elaborazione del Segnale: Capacità Commutate Lucidi del Corso di Microelettronica Parte 6 Università di Cagliari Dipartimento di Ingegneria Elettrica ed Elettronica Laboratorio di Elettronica

Dettagli

APPUNTI DI ELETTRONICA AMPLIFICATORE OPERAZIONALE L amplificatore operazionale ideale

APPUNTI DI ELETTRONICA AMPLIFICATORE OPERAZIONALE L amplificatore operazionale ideale APPUNTI DI ELETTONICA AMPLIFICATOE OPEAZIONALE L amplificatore operazionale ideale Lo schema seguente è lo schema circuitale dell amplificatore operazionale (A.O.): vd v v A ( v v ) dove: è la tensione

Dettagli

a rappresenta l intercetta o termine noto della retta, ossia il valore della y quando x = 0.

a rappresenta l intercetta o termine noto della retta, ossia il valore della y quando x = 0. Esercitazioni sulla prima parte delle lezioni di Micro Richiamo di Analisi Matematica La forma funzionale più semplice è la retta, la quale può essere genericamente descritta dalla seguente relazione:

Dettagli

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara

Sistemi lineari. Lorenzo Pareschi. Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara Sistemi lineari Lorenzo Pareschi Dipartimento di Matematica & Facoltá di Architettura Universitá di Ferrara http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Lorenzo Pareschi (Univ. Ferrara)

Dettagli

Collaudo statico di un ADC

Collaudo statico di un ADC Collaudo statico di un ADC Scopo della prova Verifica del funzionamento di un tipico convertitore Analogico-Digitale. Materiali 1 Alimentatore 1 Oscilloscopio 1 Integrato ADC 0801 o equivalente Alcuni

Dettagli

L insieme dei numeri Relativi (Z)

L insieme dei numeri Relativi (Z) L insieme dei numeri Relativi (Z) L esigenza dei numeri relativi Due precise situazioni ci spingono ad ampliare l'insieme de numeri naturali (N): una di carattere pratico, un'altra di carattere più teorico.

Dettagli

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5.

A.A CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. A.A. 2015-2016. CORSO DI ALGEBRA 1. PROFF. P. PIAZZA, E. SPINELLI. SOLUZIONE ESERCIZI FOGLIO 5. Esercizio 5.1. Determinare le ultime tre cifre di n = 13 1625. (Suggerimento. Sfruttare il Teorema di Eulero-Fermat)

Dettagli

Regola del partitore di tensione

Regola del partitore di tensione Regola del partitore di tensione Se conosciamo la tensione ai capi di una serie di resistenze e i valori delle resistenze stesse, è possibile calcolare la caduta di tensione ai capi di ciascuna R resistenza,

Dettagli

LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE

LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE Partitore di tensione 2 legge kirkoff Partitore di corrente 1 legge kirkoff Principio di sovrapposizione degli effetti Legge di Thevenin Legge di

Dettagli

Amplificatori in classe A con accoppiamento capacitivo

Amplificatori in classe A con accoppiamento capacitivo Ottobre 00 Amplificatori in classe A con accoppiamento capacitivo amplificatore in classe A di Fig. presenta lo svantaggio che il carico è percorso sia dalla componente di segnale, variabile nel tempo,

Dettagli

Corso di Metodi di Trattamento del Segnale INTRODUZIONE AGLI AMPLIFICATORI OPERAZIONALI

Corso di Metodi di Trattamento del Segnale INTRODUZIONE AGLI AMPLIFICATORI OPERAZIONALI Corso di Metodi di Trattamento del Segnale INTRODUZIONE AGLI AMPLIFICATORI OPERAZIONALI RETROAZIONE (FEEDBACK) S in + + G S out! S out = G!( S in + "S ) out S out = G 1! "G S G in! = G 1" #G G! = G 1 "

Dettagli

INTENSITÀ DI CORRENTE E LEGGI DI OHM

INTENSITÀ DI CORRENTE E LEGGI DI OHM QUESITI 1 INTENSITÀ DI CORRENTE E LEGGI DI OHM 1. (Da Veterinaria 2014) Un filo di alluminio ha una sezione di 1,0 x 10-6 m 2. Il filo è lungo 16,0 cm ed ha una resistenza pari a 4,0 x 10-3 Ω. Qual è la

Dettagli

Le equazioni e i sistemi di primo grado

Le equazioni e i sistemi di primo grado Le equazioni e i sistemi di primo grado prof. Roberto Boggiani Isiss Marco Minghetti 1 settembre 009 Sommario In questo documento verrà trattato in modo semplice e facilmente comprensibile la teoria delle

Dettagli

Soluzioni delle Esercitazioni VIII 21-25/11/2016. = lnx ln1 = lnx. f(t)dt.

Soluzioni delle Esercitazioni VIII 21-25/11/2016. = lnx ln1 = lnx. f(t)dt. Esercitazioni di Matematica Esercitazioni VIII -5//6 Soluzioni delle Esercitazioni VIII -5//6 A. Funzione integrale. La funzione integrale di f nell intervallo [, ] è per definizione F() = dt con [,].

Dettagli

Disequazioni - ulteriori esercizi proposti 1

Disequazioni - ulteriori esercizi proposti 1 Disequazioni - ulteriori esercizi proposti Trovare le soluzioni delle seguenti disequazioni o sistemi di disequazioni:. 5 4 >. 4. < 4. 4 9 5. 9 > 6. > 7. < 8. 5 4 9. > > 4. < 4. < > 9 4 Non esitate a comunicarmi

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

4 0 = 4 2 = 4 4 = 4 6 = 0.

4 0 = 4 2 = 4 4 = 4 6 = 0. Elementi di Algebra e Logica 2008. Esercizi 4. Gruppi, anelli e campi. 1. Determinare la tabella additiva e la tabella moltiplicativa di Z 6. (a) Verificare dalla tabella moltiplicativa di Z 6 che esistono

Dettagli

Laboratorio 5B 2015. Visto un esempio di video realizzato a scuola, informato sulla possibilità di realizzarne altri in orario scolastico.

Laboratorio 5B 2015. Visto un esempio di video realizzato a scuola, informato sulla possibilità di realizzarne altri in orario scolastico. ///--- inizio lezione di Martedì 20140916 Laboratorio 5B 2015 Visto un esempio di video realizzato a scuola, informato sulla possibilità di realizzarne altri in orario scolastico. Resistenze Se abbiamo

Dettagli

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006

QUANTITA DI MOTO Corso di Fisica per Farmacia, Facoltà di Farmacia, Università G. D Annunzio, Cosimo Del Gratta 2006 QUANTITA DI MOTO DEFINIZIONE(1) m v Si chiama quantità di moto di un punto materiale il prodotto della sua massa per la sua velocità p = m v La quantità di moto è una grandezza vettoriale La dimensione

Dettagli

Problema n 1 Sulla risoluzione di circuiti applicando i principi di Kirchhoff

Problema n 1 Sulla risoluzione di circuiti applicando i principi di Kirchhoff Problema n 1 Sulla risoluzione di circuiti applicando i principi di Kirchhoff primo principio di Kirchhoff "principio dei nodi " - la sommatoria di tutte le correnti che confluiscono in un nodo (siano

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 2

Un ripasso di aritmetica: Conversione dalla base 10 alla base 2 Un ripasso di aritmetica: Conversione dalla base 10 alla base 2 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base due sarà del tipo: c m c m-1... c 1 c 0 (le c i sono cifre

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

MOSFET o semplicemente MOS

MOSFET o semplicemente MOS MOSFET o semplicemente MOS Sono dei transistor e come tali si possono usare come dispositivi amplificatori e come interruttori (switch), proprio come i BJT. Rispetto ai BJT hanno però i seguenti vantaggi:

Dettagli

Geometria Analitica Domande e Risposte

Geometria Analitica Domande e Risposte Geometria Analitica Domande e Risposte A. Il Piano Cartesiano. Qual è la formula della distanza tra due punti nel piano cartesiano? Per calcolare la formula della distanza tra due punti nel piano cartesiano

Dettagli

1. Serie, parallelo e partitori. ES Calcolare la

1. Serie, parallelo e partitori. ES Calcolare la Maffucci: ircuiti in regime stazionario ver-00 Serie, parallelo e partitori S - alcolare la vista ai morsetti - e quella vista ai morsetti -D S alcolare la resistenza uivalente vista ai capi del generatore

Dettagli

Esercizi sulle radici

Esercizi sulle radici Esercizi sulle radici Semplificazione Per semplificare una radice utilizzando, quando necessario, i valori assoluti, dobbiamo ricordare che se una radice ha indice pari, il suo radicando (il numero che

Dettagli

VERIFICA SISTEMI E AUTOMAZIONE CLASSE VEL ALUNNO:... Punteggio 1 punto per ogni risposta/ esercizio corrett, tranne il secondo che vale 2

VERIFICA SISTEMI E AUTOMAZIONE CLASSE VEL ALUNNO:... Punteggio 1 punto per ogni risposta/ esercizio corrett, tranne il secondo che vale 2 VERIFICA SISTEMI E AUTOMAZIONE CLASSE VEL 23 10 2013 ALUNNO:... Punteggio 1 punto per ogni risposta/ esercizio corrett, tranne il secondo che vale 2 1 - La funzione del nodo di confronto all interno dei

Dettagli

Laboratorio di metodi di acquisizione dati. Giorgio Maggi

Laboratorio di metodi di acquisizione dati. Giorgio Maggi Laboratorio di metodi di acquisizione dati Giorgio Maggi Sommario La conversione Digitale analogica I vari tipi di ADC L SNR e ENOB Il Time to Digital converter L Input-Output Register Il sistema di acquisizione

Dettagli

Disequazioni di secondo grado

Disequazioni di secondo grado Disequazioni di secondo grado. Disequazioni Definizione: una disequazione è una relazione di disuguaglianza tra due espressioni. Detti p() e g() due polinomi definiti in un insieme A, una disequazione

Dettagli

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b

LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione

Dettagli

Rappresentazioni numeriche

Rappresentazioni numeriche Rappresentazioni numeriche Un numero è dotato di un valore una rappresentazione La rappresentazione di un numero è il sistema che utilizziamo per indicarne il valore. Normalmente è una sequenza (stringa)

Dettagli

Esercizi svolti sulla parabola

Esercizi svolti sulla parabola Liceo Classico Galilei Pisa - Classe a A - Prof. Francesco Daddi - 19 dicembre 011 Esercizi svolti sulla parabola Esercizio 1. Determinare l equazione della parabola avente fuoco in F(1, 1) e per direttrice

Dettagli

per la matrice R, e: I 1 = G 11 V 1 + G 12 V 2, I 2 = G 21 V 1 + G 22 V 2,

per la matrice R, e: I 1 = G 11 V 1 + G 12 V 2, I 2 = G 21 V 1 + G 22 V 2, 100 Luciano De Menna Corso di Elettrotecnica Il caso N = 2 è particolarmente interessante tanto da meritare un nome speciale: doppio bipolo I parametri indipendenti saranno tre: R 11, R 22 ed R 12 =R 21

Dettagli

Rs Afe. δ1 δ2 δ3 Rs. Vs R1

Rs Afe. δ1 δ2 δ3 Rs. Vs R1 Dato il circuito in figura funzionante in regime stazionario, sono noti: Rs = 7.333 Ω, R = 2 Ω, R3 = 7 Ω, δ = mm, δ2 =.3 mm, δ3 =.5 mm, Α = 8 cm 2, N = 00, = 500, V = 30 V. Si consideri la permeabilità

Dettagli

Appunti sui Codici di Reed Muller. Giovanni Barbarino

Appunti sui Codici di Reed Muller. Giovanni Barbarino Appunti sui Codici di Reed Muller Giovanni Barbarino Capitolo 1 Codici di Reed-Muller I codici di Reed-Muller sono codici lineari su F q legati alle valutazioni dei polinomi sullo spazio affine. Per semplicità

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

I.I.S.S. G. GALILEI A. SANI -ELETTRONICA Classe:5 - A\EN Data : 19\09\15 Elettronica - Gruppo n 4 : Salzillo_Pinna- Luogo: IISS GalileiSani -LT

I.I.S.S. G. GALILEI A. SANI -ELETTRONICA Classe:5 - A\EN Data : 19\09\15 Elettronica - Gruppo n 4 : Salzillo_Pinna- Luogo: IISS GalileiSani -LT NOME: Marco COGNOME: Salzillo TITOLO: AMPLIFICATORE OPERAZIONALE NON INVERTENTE OBBIETTIVO: REALIZZARE UN CIRCUITO OPERAZIONALE NON INVERTENTE CHE AMPLIFICA DI 11,7dB CIRCUITO TEORICO: CIRCUITO APPLICATIVO:

Dettagli

Materiale didattico > Uso delle basette per montaggi senza saldature

Materiale didattico > Uso delle basette per montaggi senza saldature Esercitazione 3 Convertitore D/A e A/D con rete di peso Scopo dell esercitazione Gli obiettivi di questa esercitazione sono: - Verificare il funzionamento di un convertitore D/A a 4 bit, - Individuare

Dettagli

1 L estrazione di radice

1 L estrazione di radice 1 L estrazione di radice Consideriamo la potenza 3 2 = 9 di cui conosciamo: Esponente 3 2 = 9 Valore della potenza Base L operazione di radice quadrata consiste nel chiedersi qual è quel numero x che elevato

Dettagli

Definizione. Il valore assoluto lascia inalterato ciò che è già positivo e rende positivo ciò che positivo non è.

Definizione. Il valore assoluto lascia inalterato ciò che è già positivo e rende positivo ciò che positivo non è. VALORE ASSOLUTO Definizione a a, a, se a se a 0 0 Esempi.. 7 7. 9 9 4. x x, x, se x se x Il valore assoluto lascia inalterato ciò che è già positivo e rende positivo ciò che positivo non è. Utilizzando

Dettagli

Anno 3 Equazione dell'ellisse

Anno 3 Equazione dell'ellisse Anno Equazione dell'ellisse 1 Introduzione In questa lezione affronteremo una serie di problemi che ci chiederanno di determinare l equazione di un ellisse sotto certe condizioni. Al termine della lezione

Dettagli

Monomi L insieme dei monomi

Monomi L insieme dei monomi Monomi 10 10.1 L insieme dei monomi Definizione 10.1. Un espressione letterale in cui numeri e lettere sono legati dalla sola moltiplicazione si chiama monomio. Esempio 10.1. L espressione nelle due variabili

Dettagli

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA

SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA SOLUZIONI DEL 1 0 TEST DI PREPARAZIONE ALLA 1 a PROVA INTERMEDIA 1 Esercizio 0.1 Dato P (A) = 0.5 e P (A B) = 0.6, determinare P (B) nei casi in cui: a] A e B sono incompatibili; b] A e B sono indipendenti;

Dettagli

UNITÀ DIDATTICA 5 LA RETTA

UNITÀ DIDATTICA 5 LA RETTA UNITÀ DIDATTICA 5 LA RETTA 5.1 - La retta Equazione generica della retta Dalle considerazioni emerse nel precedente capitolo abbiamo compreso come una funzione possa essere rappresentata da un insieme

Dettagli

12BHD - Informatica - soluzioni Appendice D del quaderno di testo - v. 2.00

12BHD - Informatica - soluzioni Appendice D del quaderno di testo - v. 2.00 Esercizio 1 Semplificare la seguente espressione ooleana: a (b + c) + b (a + c) pplicando le proprietà dell algebra ooleana: [ a + b c ] a b + a c + a b + b c = a (b + b) + a c + b c = a 1 + a c + b c

Dettagli

4) 8 g di idrogeno reagiscono esattamente con 64 g di ossigeno secondo la seguente reazione:

4) 8 g di idrogeno reagiscono esattamente con 64 g di ossigeno secondo la seguente reazione: Esercizi Gli esercizi sulla legge di Lavoisier che seguono si risolvono ricordando che la massa iniziale, prima della reazione, deve equivalere a quella finale, dopo la reazione. L uguaglianza vale anche

Dettagli

Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così :

Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così : Un quaternione è un numero complesso con quattro componenti anziché due. Si scrive così : Q = q r + q i i + q j j + q k k ove le quantità q sono numeri reali e i, j e k sono tre unità immaginarie. Quando

Dettagli

Corso di Sistemi Prof. Aniello Celentano anno scolastico 2015/2016 ITIS G. Ferraris (NA)

Corso di Sistemi Prof. Aniello Celentano anno scolastico 2015/2016 ITIS G. Ferraris (NA) I Numeri complessi I numeri complessi sono costituiti da una coppia di numeri reali (a,b). Il numero reale a è la parte reale, mentre b è la parte immaginaria. La parte immaginaria è sempre accompagnata

Dettagli

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0.

ax 1 + bx 2 + c = 0, r : 2x 1 3x 2 + 1 = 0. . Rette in R ; circonferenze. In questo paragrafo studiamo le rette e le circonferenze in R. Ci sono due modi per descrivere una retta in R : mediante una equazione cartesiana oppure mediante una equazione

Dettagli

CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590

CIRCUITO DI CONDIZIONAMENTO PER IL TRASDUTTORE DI TEMPERATURA AD590 CIRCUITO DI CONDIZIONAMENTO PER IL ASDUTTORE DI TEMPERATURA AD590 Gruppo n 5 Urbini Andrea Marconi Simone Classe 5C 2001/2002 SPECIFICHE DEL PROGETTO: realizzare un circuito in grado di trasformare una

Dettagli

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1. Circuiti in corrente continua

Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1. Circuiti in corrente continua Corso di Laurea in Scienza dei Materiali Laboratorio di Fisica II ESPERIENZA DC1 Circuiti in corrente continua Scopo dell'esperienza 1. Utilizzo di voltmetro ed amperometro; 2. verifica della validità

Dettagli

Esercizi sulle equazioni logaritmiche

Esercizi sulle equazioni logaritmiche Esercizi sulle equazioni logaritmiche Per definizione il logaritmo in base a di un numero positivo x, con a > 0 e a 1, è l esponente che occorre dare alla base a per ottenere il numero x. In simboli log

Dettagli

Analizziamo ora il circuito in figura, dove Vin è un generatore di tensione alternata sinusoidale:

Analizziamo ora il circuito in figura, dove Vin è un generatore di tensione alternata sinusoidale: Raddrizzatore a doppia semionda: caso ideale Analizziamo ora il circuito in figura, dove Vin è un generatore di tensione alternata sinusoidale: Questa particolare struttura di collegamento di quattro diodi

Dettagli

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE A BJT AC180 SCHEMA

LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE A BJT AC180 SCHEMA ALUNNO: Fratto Claudio CLASSE: IV B Informatico ESERCITAZIONE N : 5 LABORATORIO DI ELETTRONICA OGGETTO: RILIEVO DELLA CURVA DI RISPOSTA IN FREQUENZA DI UN AMPLIFICATORE A BJT AC180 SCHEMA DATI: VIn = 20mV

Dettagli

La retta nel piano cartesiano

La retta nel piano cartesiano La retta nel piano cartesiano Se proviamo a disporre, sul piano cartesiano, una retta vediamo che le sue possibili posizioni sono sei: a) Coincidente con l asse delle y; b) Coincidente con l asse delle

Dettagli