Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione)

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione)"

Transcript

1 Esame di Teoria dei Circuiti - 6 luglio 009 Soluzione) Esercizio 1 C T V C T 1 Con riferimento al circuito di figura si assumano i seguenti valori: r 1kΩ, C 1µF 10 6 F, 4V, ma. Per t < t 0 0sec l interruttore T 1 è chiuso, l interruttore T è aperto ed il circuito è a regime. All istante t t 0 l interruttore T 1 si apre, mentre all istante t t 1 1msec 10 3 sec l interruttore T si chiude. Determinare l andamento della tensione V C t). Soluzione Per t < 0 l interruttore T 1 è chiuso e T è aperto. In questa configurazione si calcoli la tensione V C0 ai capi della capacità all istante t 0. Il circuito si semplifica come segue: I C C V C0 Per via dell ipotesi che il circuito sia a regime, I C 0 e la tensione V C0 è data da V C0 V All istante t t 0 0sec l interruttore T 1 si apre. Il circuito da esaminare diventa il seguente: V C I C C dove I C. Si tratta quindi di una carica a corrente costante, in cui la tensione ai capi della capacità vale V C t) V C0 1 C t 0 dτ V C0 C t All istante t t 1 1msec l interruttore T 1 si chiude. In questo istante comincia un secondo transitorio, il cui valore iniziale della tensione della capacità è dato dal valore raggiunto in t 1 V C0 V C t 1 ) V C0 C t 1 4V Per calcolare il transitorio di carica, si ricorra all equivalente di Thevenin del circuito conneso alla capacità. Si supponga quindi di sostituire alla capacità stessa un generatore ideale di corrente I e di calcolare la tensione V ai suoi capi. 1

2 R I 1 1) ) I R3 I R V R V V I0 Il bilancio delle correnti al nodo 1) I I R assieme al bilancio delle tensioni alla maglia formata da, e permette di calcolare e quindi V R I R I I V R I) I I Analogamente, dal bilancio delle correnti al nodo ) I R3 I e dal bilancio delle tensioni alla magila formata da,, e si ha I R3 V I0 r I I ) V I0 V I0 r I I ) V V R V I0 I r I I ) r r I R }{{ R } 1 R }{{ } V eq) V R eq) 1kΩ Per t > t 1 la tensione V C t) è data quindi da con τ R eq) C 1msec. V C t) V eq) V C0 V eq)) e tt 1 τ

3 Esercizio αi R3 I 1 I R I R3 I V β 1 V I x ri R Con riferimento al circuito di figura si assumano i seguenti valori: 1kΩ, 3kΩ, kω, α, β 7 8, r 1kΩ, 5kΩ, V, 5mA. Calcolare: la descrizione del due porte tramite matrice delle conduttanze quale valore della corrente del generatore I x rende nulla la potenza erogata o dissipata) dal generatore di tensione, qualora si supponga di collegare al due porte calcolato al punto precedente il generatore alla porta 1, ed i generatori I x, la resistenza alla porta, come mostrato in figura. Soluzione Per trovare la matrice delle conduttanze si supponga di collegare al due porte i due generatori ideali di tensione V 1 e V e di calcolarne le correnti I 1 e I. αi R3 1) I R I R3 ) I 1 I V 1 β V ri R Si noti che i tre generatori di tensione V 1, V e ri R formano un albero; tramite essi è quindi possibile esprimere tutte le tensioni del circuito e quindi le correnti delle tre resistenze. V 1 I R V 1 ri R I R V 1/ 1 r/ V 1 r I R3 ri R V rv 1 r) V Le correnti I 1 e I sono date rispettivamente dal bilancio della correnti ai nodi 1) e ). I 1 I R αi R3 V 1 V 1 r α rv 1 r) V ) 1 1 r αr V 1 α V r) }{{}}{{} 11 1mΩ 1 1 1mΩ 1 3

4 rv 1 I αi R3 β I R3 α 1) r) α 1) V β V 1 β α 1)r V 1 α 1 r) }{{}}{{} 1 1mΩ 1 V 1 mω1 Per il secondo punto dell esercizio, il circuito da considerare è il seguente, dove si è indicato con V 1) e I1) ) la tensione e la corrente alla porta 1 di, e con V e I) tensione e corrente alla porta. I 1) V 1) V ) I ) 1) I R4 I x I V0 Dal bilancio delle correnti al nodo 1) si ottiene La tensione V 1) I ) I R4 I x 1 V 1) V ) I I x si può ricavare dall equazione costitutiva di 11 V 1) 1V ) V 1) 1 V ) mentre la tensione V ) si può ricavare dal bilancio delle tensioni alla maglia costituita da, e la porta di V ) I R4 I Sostituendo queste due espressioni nel bilancio delle correnti al nodo 1) si ottiene I I0 1 ) 1 I ) I ) I I x I I I I x I 11 I x Imporre che abbia potenza nulla significa imporre che P I 0 ovvero che I x

5 I x ma Esercizio 3 V 3 1) V 4 R 5 R 6 V V 1 R 8 R 7 R 9 V 1 Con riferimento al circuito di figura si assumano i seguenti valori:... R 9 1kΩ, 4V, V 1 1V, 6mA. Si supponga inoltre che gli amplificatori operazionali siano ideali e che lavorino sempre nella zona ad alto guadagno. Calcolare le tensioni di uscita degli operazionali V1, V, V3 e V4. Soluzione Si considerino i versi delle correnti come indicato in figura. Inoltre, si esamini l operazionale 1. Per via del corto circuito virtuale ai suoi ingressi, si ha V 1 0 V 1. Ne segue che V 1 V 1 V 1 V 1 1V Anche per l operazionale si ha V 0 V. Inoltre, poiché gli ingressi dell operazionale non assorbono corrente, si ha I R5. Ne segue che V V R 5I R5 R 5 6V La condizione di corto circuito virtuale per gli ingressi dell operazionale 3 determina V 4 : V 3 V3 V 3 I R I R3 V 4 V 3 I R I R3 1 ) 1V A determinare V3 è invece la condizione di corto circuito virtuale per gli ingressi dell operazionale 4 V4 V 3 I R 1 R ) V 4 5

6 unita al bilancio delle correnti al nodo 1) V 3 V 4 I R4 I R6 I R8 I R9 V V 4 R 6 V3 1 R 6 R 8 R 9 ) 1 R 6 R 8 R 9 1 V 1 V 4 ) V 4 V 4 R 8 R 9 V1 V R 8 R 6 ) V1 V 14V R 8 R 6 6

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione)

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione) Esame di Teoria dei Circuiti 25 Febbraio 20 Soluzione) Esercizio I I R R I R2 R 2 V 3 I 3 V V 2 αi R βi R2 V I Con riferimento al circuito di figura si assumano i seguenti valori: R = kω, R 2 = kω, = 2

Dettagli

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3

Dettagli

4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α

4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α Esame di Teoria dei Circuiti 4 Luglio 202 () Esercizio I R R I R3 R 3 I 2 V αi R V 4 I 4 βi R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 0 Ω R R 3 kω, 5 kω,, α /2, β 2, V

Dettagli

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione)

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione) Esame di eoria dei Circuiti 15 ennaio 2015 (Soluzione) Esercizio 1 I 1 R 2 I R2 R 4 αi R2 βi R3 + V 3 I 3 R 1 V 2 I 4 I R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 3/2 3/2

Dettagli

Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton

Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton Teoria dei Circuiti Esercitazione di Laboratorio Due-porte e circuiti equivalenti di Thevenin e Norton Esercizio 1? Si determini tramite misure la descrizione del due porte tramite matrice resistenza o

Dettagli

Laurea di I Livello in Ingegneria Informatica

Laurea di I Livello in Ingegneria Informatica Laurea di I Livello in Ingegneria Informatica Sede di Mantova TEORIA DEI CIRCUITI II prova in itinere 3.2.2003 Problema I Nel circuito indicato in figura si ha v 1 = 10 cos (1000 t sec ) V Determinare

Dettagli

UNIVERSITÀ DEGLI STUDI DEL SANNIO

UNIVERSITÀ DEGLI STUDI DEL SANNIO UNIVERSITÀ DEGI STUDI DE SANNIO ORSI DI AUREA IN ING. ENERGETIA, INFORMATIA E TEEOMUNIAZIONI D Prova scritta di Elettrotecnica Teoria dei ircuiti 26/01/2006 Proff. D. Davino e. Visone ognome: Nome: Matr.

Dettagli

1. Serie, parallelo e partitori. ES Calcolare la

1. Serie, parallelo e partitori. ES Calcolare la Maffucci: ircuiti in regime stazionario ver-00 Serie, parallelo e partitori S - alcolare la vista ai morsetti - e quella vista ai morsetti -D S alcolare la resistenza uivalente vista ai capi del generatore

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria

Università degli Studi di Bergamo Facoltà di Ingegneria Università degli Studi di Bergamo Facoltà di Ingegneria Piatti Marina _ RISOLUZIONE TEMA D ESAME CORSO DI ELETTROTECNICA A.A. 1995/96 SCRITTO 26 SETTEMBRE 1996_ Esercizio n 1 Dato il circuito in figura,

Dettagli

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge Esercizio 1 Il circuito in figura è costituito da un generatore di f.e.m Ɛ=10 V, una resistenza R= 10 kω e tre condensatori C 1 = 10 pf, C 2 = 20 pf e C 3. Il condensatore C 3 è a facce piane e parallele

Dettagli

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge

Quando si chiude l interruttore nel punto A, il condensatore inizia a caricarsi seguendo la legge Esercizio 1 Il circuito in figura è costituito da un generatore di f.e.m Ɛ=10 V, una resistenza R= 10 kω e tre condensatori C 1 = 10 pf, C 2 = 20 pf e C 3. Il condensatore C 3 è a facce piane e parallele

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria v 5 mh 6 Ω Ω µf Ω Esercizio. alcolare la tensione v un i- stante dopo la chiusura dell interruttore T (t =). Si supponga che il circuito sia in regime stazionario

Dettagli

Transitori del secondo ordine

Transitori del secondo ordine Università di Ferrara Corso di Teoria dei circuiti Transitori del secondo ordine Si consideri il circuito in figura e si supponga che all istante la corrente della serie e la tensione sul condensatore

Dettagli

Esempi per ingressi costanti

Esempi per ingressi costanti Esempi di analisi di transitori Esempi per ingressi costanti 45 Un alimentatore con tensione V 0 e resistenza R carica un condensatore C, inizialmente scarico. Quanto vale l energia erogata dal generatore?

Dettagli

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2014/15 - Prova n.

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2014/15 - Prova n. Cognome Nome Matricola Firma 1 Parti svolte: E1 E2 E3 D Esercizio 1 V G1 1 I G6 2 ri 4 5 3 4 Supponendo noti i parametri dei componenti, illustrare il procedimento di risoluzione del circuito rappresentato

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I prova in itinere 1 Novembre 008 SOLUZIONE - 1 - D1. (punti 8 ) Rispondere alle seguenti domande: punto per ogni risposta corretta, - 0.5 per ogni risposta

Dettagli

Contenuti dell unità + C A0 L

Contenuti dell unità + C A0 L 1 ontenuti dell unità Questa unità considera problemi di transitorio in reti: 1) contenenti un solo elemento reattivo (1 condensatore oppure 1 induttore) a) alimentate da generatori costanti in presenza

Dettagli

Transitori nelle reti ad una costante di tempo. Lezione 6 1

Transitori nelle reti ad una costante di tempo. Lezione 6 1 Transitori nelle reti ad una costante di tempo Lezione 6 1 Circuito con amplificatore Calcolare v(t) vt () = v(0 ), t< 0 [ ] t τ vt () = v(0 ) V e + V, t> 0 + Continuità della tensione sul condensatore

Dettagli

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ 9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta

Dettagli

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria

UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria UNIVERSITA DEGLI STUDI DI BERGAMO Facoltà di Ingegneria Corso di Elettrotecnica A.A. 2001/2002 Prova scritta del 4 settembre 1999 Esercizio n 1 Data la rete in figura, determinare tutte le correnti (4

Dettagli

Soluzione di circuiti RC ed RL del primo ordine

Soluzione di circuiti RC ed RL del primo ordine Principi di ingegneria elettrica Lezione 11 a parte 2 Soluzione di circuiti RC ed RL del primo ordine Metodo sistematico Costante di tempo Rappresentazione del transitorio Metodo sistematico per ricavare

Dettagli

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 603 Crema email:

Dettagli

Esercizi & Domande per il Compito di Elettrotecnica del 17 settembre 2003

Esercizi & Domande per il Compito di Elettrotecnica del 17 settembre 2003 Esercizi & Domande per il Compito di Elettrotecnica del 7 settembre 003 ESERCIZIO v a i a i b v b R v 0 Nel circuito in figura determinare il valore di v o e i o Si ponga: R 6kΩ, R kω, e i o R v o ; i

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è P 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni Soluzione del Problema 1 In circuito da considerare per il calcolo della tensione equivalente di Thevenin è il seguente: I 0 a La caduta di potenziale sulla resistenza è nulla, poiché il morsetto a è aperto.

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

. Applicando la KT al percorso chiuso evidenziato si ricava v v v v4 n Applicando la KC al nodo si ricava: i i i4 i n i i : n i v v v v 4 : n i 4 v v i i.7 Dalla relazione tra le correnti del trasformatore

Dettagli

Analisi delle reti. Calcolare la tensione ai capi A e B del seguente circuito, applicando il teorema di Millman: R 1

Analisi delle reti. Calcolare la tensione ai capi A e B del seguente circuito, applicando il teorema di Millman: R 1 2 nalisi delle reti sercitazioni aggiuntive sercizio 2 Calcolare la tensione ai capi e del seguente circuito, applicando il teorema di Millman: 0 [v] [] [] 0 [Ω] 2 20 [Ω] saminando il circuito si osserva,

Dettagli

Problema 1. la corrente iniziale nel circuito (cioè non appena il circuito viene chiuso)

Problema 1. la corrente iniziale nel circuito (cioè non appena il circuito viene chiuso) ESERCIZI SUI CIRCUITI RC Problema 1 Due condensatori di capacità C = 6 µf, due resistenze R = 2.2 kω ed una batteria da 12 V sono collegati in serie come in Figura 1a. I condensatori sono inizialmente

Dettagli

Esercizio svolto 1 Dati: R 1

Esercizio svolto 1 Dati: R 1 Esercizio svolto = 4 = = I G = 4A = Determinare la corrente I e le potenze rispettivamente erogate dal generatore Ig e dal generatore αi. Per trovare la grandezza pilota uso la sovrapposizione degli effetti.

Dettagli

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLISTUDIDIPAVIA Laurea in Ingegneria Elettronica e Informatica 7.09.0 Problema L interruttore indicato nel circuito in figura commuta nell istante t 0 dalla posizione AA alla posizione BB. Determinare le espressioni delle tensioni v (t) ev (t) per ogni istante di

Dettagli

Esercitazione 5. Elettrotecnica 1. Esercitazione 5. Politecnico di Torino CeTeM. Esercizio 1. di Calcolare i l ; v c ; l dt. dv ; c all istante t = 0

Esercitazione 5. Elettrotecnica 1. Esercitazione 5. Politecnico di Torino CeTeM. Esercizio 1. di Calcolare i l ; v c ; l dt. dv ; c all istante t = 0 Esercizio 1 di Calcolare i l ; v c ; l dt dv ; c all istante t = 0 + dt Risposta: i l (0 + )= i l (0 - )=0.8A ; v c (0 + )= v c (0 - di )=0V ; l dv + = 16/375 ; c + = 16/25 dt 0 dt 0 Esercizio 2 Calcolare

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Teoria dei Circuiti Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione V, una resistenza R ed una capacità C. I

Dettagli

V N I N. (figura - 5.1a)

V N I N. (figura - 5.1a) ESECZO 5.: Data la rete di figura 5., ottenuta dal collegamento di un trasformatore e di una resistenza, si desidera determinare il valore della resistenza equivalente sentita fra i morsetti in ingresso

Dettagli

Introduzione e richiami Simulatore PSPICE Tipi di amplificatori e loro parametri. Amplificatori Operazionali e reazione negativa

Introduzione e richiami Simulatore PSPICE Tipi di amplificatori e loro parametri. Amplificatori Operazionali e reazione negativa Amplificatori e doppi bipoli Amplificatori e doppi bipoli ntroduzione e richiami Simulatore PSPCE Tipi di amplificatori e loro parametri Amplificatori AC e differenziali Amplificatori Operazionali reali

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica UNIVESITÀ DEGLI STUDI DI PAVIA CAMPI ELETTOMAGNETICI E CICUITI I 23.01.2015 Problema 1 Con riferimento al circuito in figura, determinare le espressioni di i L (t) e v C (t) (per ogni istante di tempo

Dettagli

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1

ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ELETTROTECNICA T - A.A. 2014/2015 ESERCITAZIONE 1 ESERCIZIO 1 Dopo aver risolto il circuito lineare tempo-invariante mostrato Fig. 1.1, calcolare la potenza erogata/assorbita da ogni componente. Fig. 1.1

Dettagli

Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/ Appello 09 Febbraio 2012

Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/ Appello 09 Febbraio 2012 Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/2011 3 Appello 09 Febbraio 2012 Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) Esercizio 1. R 1 = 20 kω, R 2

Dettagli

ESERCIZI svolti e non

ESERCIZI svolti e non ESERCIZI svolti e non Qualche ragionamento non ti convince? Qualche calcolo non torna? Consultami all indirizzo: sendtowally@virgilioit pag 1 di 7 Settore e I circuiti elettrici in corrente continua e

Dettagli

Esercizi: circuiti dinamici con generatori costanti

Esercizi: circuiti dinamici con generatori costanti ezione Esercizi: circuiti dinamici con generatori costanti ezione n. Esercizi: circuiti dinamici con generatori costanti. Esercizi con circuiti del I ordine in transitorio con generatori costanti. ircuiti..

Dettagli

Calcolando l equivalente Thevenin: = R 1A E 2. R eq = R R 2 = 5Ω (2) Calcolando la retta di carico: v nl = R eq i nl (3)

Calcolando l equivalente Thevenin: = R 1A E 2. R eq = R R 2 = 5Ω (2) Calcolando la retta di carico: v nl = R eq i nl (3) lettrotecnica ed lettronica Applicata - Aerospaziali Zich, 17 luglio 017 Appello, Tempo: 105 minuti isolvere riportando i passaggi principali e le soluzioni numeriche. Cognome Nome Matricola Posizione

Dettagli

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame Prova n 1: Per il seguente circuito determinare: 1. R B1, R E tali che: I C = 0,5 ma; V E = 5 V; 2. Guadagno di tensione a piccolo segnale v out /v s alle medie frequenze; 3. Frequenza di taglio inferiore;

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 2)

Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizio 7: Verificare il bilancio delle potenze. Nota. l ramo costituito dal generatore di corrente in serie al resistore ha come caratteristica

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTOTECNICA (0 CFU) CS INGEGNEIA MATEMATICA I prova in itinere 20 Novembre 2009 SOLUZIONI - - D. (punti 4 ) ) Spiegare cosa si intende per DUALITA nello studio dei circuiti elettrici. 2) Scrivere per

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 22.0.206 Problema Con riferimento al circuito in figura, nel quale entrambi gli interruttori si aprono all istante t = 0, determinare l espressione di i(t) (per ogni istante di tempo t) e rappresentarne

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni 28.01.2011 Problema 1 Con riferimento al circuito in figura, determinare le espressioni di i L (t) ev C (t) (per ogni istante di tempo t) e rappresentarne graficamente l andamento temporale. Dati: I 0

Dettagli

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio

Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Appunti tratti dal videocorso di Elettrotecnica 1 del prof. Graglia By ALeXio Parte f Variabili di stato In un dato istante di tempo, l energia immagazzinata nell elemento reattivo (condensatore od induttore)

Dettagli

Effetti della reazione sui parametri

Effetti della reazione sui parametri Effetti della reazione sui parametri Analizziamo come la reazione interviene sui parametri dello amplificatore complessivo, se questo è realizzato con un Amplificatore Operazionale reazionato. A d R 1

Dettagli

Le configurazioni della reazione

Le configurazioni della reazione Capitolo 2 Le configurazioni della reazione Nel capitolo precedente si è visto che la reazione ha effetto diametralmente opposto tra l amplificatore non invertente (par. 9.5) e quello invertente (par.

Dettagli

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo Esercitazione 3 Biagio Provinzano Aprile 005 Esercizio I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo V A, β = 00, V BE = 0.7V in zona attiva ed infine Cπ = C µ =0pF.

Dettagli

V V I 1 R 21 I 1 + R 12 I 2

V V I 1 R 21 I 1 + R 12 I 2 ESECZO 6.0: Assegnata la rete lineare passiva Due - porta di figura 6.0, nota come doppio bipolo, si determini il Quadripolo equivalente a parametri (equivalente Thévenin) detto anche formulazione controllata

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 2)

Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizio 7: Verificare il bilancio delle potenze. Nota. l ramo costituito dal generatore di corrente in serie al resistore ha come caratteristica

Dettagli

Esercizi di Elettrotecnica

Esercizi di Elettrotecnica Esercizi di Elettrotecnica Circuiti in corrente continua Parte 1 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 24-5-2011) Circuiti in corrente continua - 1 1 Esercizio n. 1 R 1 = 10 R 2

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e delle Telecomunicazioni 6.0.0 Problema Dopo aver rappresentato la parte di circuito evidenziata dal rettangolo tratteggiato con un generatore

Dettagli

Esercizi di Elettrotecnica

Esercizi di Elettrotecnica Esercizi di Elettrotecnica Transitori Circuiti del ordine www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 25--29) Transitori Circuiti del ordine Esercizio n. i i 4 R 4 = 3 Ω = 3 Ω = 3 Ω R

Dettagli

CAPITOLO 5 Analisi dei transitori Paragrafo 5.2: Scrittura delle equazioni differenziali per circuiti contenenti condensatori e induttori

CAPITOLO 5 Analisi dei transitori Paragrafo 5.2: Scrittura delle equazioni differenziali per circuiti contenenti condensatori e induttori CAPITOLO 5 Analisi dei transitori Paragrafo 5.2: Scrittura delle equazioni differenziali per circuiti contenenti condensatori e induttori Problema 5.1 L=0.9 mh, Vs=12 V, R 1 = 6 kω, R 2 = 6 kω, R 3 = 3

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 6.0.0 Problema Dopo aver rappresentato la parte di circuito evidenziata dal rettangolo tratteggiato con un generatore equivalente di Thevenin o di Norton, si determini, per ogni istante di tempo, l espressione

Dettagli

Reti elettriche: definizioni

Reti elettriche: definizioni TEORIA DEI CIRCUITI Reti elettriche: definizioni La teoria dei circuiti è basata sul concetto di modello. Si analizza un sistema fisico complesso in termini di interconnessione di elementi idealizzati.

Dettagli

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esonero del 14 giugno 2006

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esonero del 14 giugno 2006 Esonero del 14 giugno 2006 Dato il circuito di figura C 2 R 3 OP v IN C 1 v o in cui = =0.5K!, R 3 =250!, C 1 =1µF, C 2 =1nF e v IN (V) 2 1 2 t (µs) 2 determinare l evoluzione temporale di V 0, supponendo

Dettagli

Tre resistenze in serie

Tre resistenze in serie Tre resistenze in serie Un circuito è formato da tre resistenze collegate in serie a una batteria da 24,0 V. La corrente nel circuito è di 0,0320 A. Sapendo che R 1 = 250,0 Ω e R 2 = 150,0 Ω, calcola a)il

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001 Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. / Esame del gennaio Soluzione a cura di: Bellini Matteo Es. n Data la rete in figura determinare tutte le correnti

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria Esercizio. Determinare la costante di tempo del circuito di figura per k =.5 Ω,.5 Ω, Ω. τ = ms,.5 ms, 6 ms. Ω Ω.5 Ω i [A] k i [V] mh V Il circuito contiene un

Dettagli

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2018/19 - Prova n.

Elettrotecnica - Modulo 1 - Ing. Biomedica, Ing. Elettronica per l Energia e l Informazione A.A. 2018/19 - Prova n. Cognome Nome Matricola Firma 1 Parti solte: E1 E2 E3 D Esercizio 1 R 4 I I 1 G8 Q I 2 V 2 V 1 V G9 11 Esercizio 2 R 5 R 6 R 7 R 1 C 1 R 2 C 2 i 2 G i 2 r 0 R r21 r 22 C 3 Z Supponendo noti i parametri

Dettagli

Elettronica I Risposta dei circuiti RC e RL nel dominio del tempo; derivatore e integratore p. 2

Elettronica I Risposta dei circuiti RC e RL nel dominio del tempo; derivatore e integratore p. 2 Elettronica I isposta dei circuiti e L nel dominio del tempo; derivatore e integratore Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 613 rema e-mail: liberali@i.unimi.it

Dettagli

Elettrotecnica - A.A Prova n gennaio 2012

Elettrotecnica - A.A Prova n gennaio 2012 ognome Nome Matricola Firma 1 Parti svolte: E1 E2 D Esercizio 1 V G1 1 2 3 I G6 ri 2 4 7 8 E D Supponendo noti i valori delle resistenze, della tensione V G1, della corrente I G6 e del parametro di trasferimento

Dettagli

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica

UNIVERSITÀ DEGLI STUDI DI PAVIA Laurea in Ingegneria Elettronica e Informatica 18.01.013 Problema 1 Con riferimento al circuito in figura, nel quale l interruttore si chiude all istante t = 0, determinare l espressione di i 3 (t) per ogni istante di tempo t, e rappresentarne graficamente

Dettagli

Q = R = 11Ω; L = 1H; R 1 = 25Ω; L 1 = 10/3H; ω = 30rad/s; V 0 = 150V ; Le reattanze sono: X L1 = 1200V AR (4) La corrente I 0 e : = 10A (5)

Q = R = 11Ω; L = 1H; R 1 = 25Ω; L 1 = 10/3H; ω = 30rad/s; V 0 = 150V ; Le reattanze sono: X L1 = 1200V AR (4) La corrente I 0 e : = 10A (5) lettrotecnica ed lettronica Applicata - Aerospaziali Zich, 4 luglio 2017 Appello, Tempo: 105 minuti isolvere riportando i passaggi principali e le soluzioni numeriche. Cognome Nome Matricola Posizione

Dettagli

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Esercizio 1 (8 punti): A media frequenza possiamo approssimare il capacitore C E con un corto. L amplificazione pertanto è g m R C dove

Dettagli

Il problema del carico

Il problema del carico Il problema del carico Si consideri un circuito composto (per il momento) da sole resistenze e generatori di tensione. Si immagini di collegare tra due punti A e B del circuito una resistenza c che chiameremo

Dettagli

motivi, quali ad esempio: aumento della potenza richiesta dal carico oltre il valore nominale della potenza

motivi, quali ad esempio: aumento della potenza richiesta dal carico oltre il valore nominale della potenza MACCHINE ELETTRICHE TRASFORMATORE Inserzione in parallelo di due trasformatori Esercizio sul parallelo di due trasformatori Due o più trasformatori si dicono collegati in parallelo quando hanno i rispettivi

Dettagli

per la matrice R, e: I 1 = G 11 V 1 + G 12 V 2, I 2 = G 21 V 1 + G 22 V 2,

per la matrice R, e: I 1 = G 11 V 1 + G 12 V 2, I 2 = G 21 V 1 + G 22 V 2, 100 Luciano De Menna Corso di Elettrotecnica Il caso N = 2 è particolarmente interessante tanto da meritare un nome speciale: doppio bipolo I parametri indipendenti saranno tre: R 11, R 22 ed R 12 =R 21

Dettagli

1. Andamenti transitori di carica e scarica di un condensatore in termini di tensione e corrente

1. Andamenti transitori di carica e scarica di un condensatore in termini di tensione e corrente Risposte alle domande di teoria 1. Andamenti transitori di carica e scarica di un condensatore in termini di tensione e corrente Il transitorio è un processo elettrico che descrive tramite una funzione

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Giunzione pn

Dispositivi e Tecnologie Elettroniche. Esercitazione Giunzione pn Dispositivi e Tecnologie Elettroniche Esercitazione Giunzione pn Esercizio 1: testo Si consideri una giunzione brusca e simmetrica con drogaggio N A N D 10 17 cm 3 sezione trasversale A 0.5 mm 2 e lati

Dettagli

Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1

Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 000-000 M6.qxp 7-09-01 1005 Pagina 1 sercizi aggiuntivi Unità sercizi svolti sercizio 1 ipoli elettrici e loro collegamenti 1 Per il circuito di figura.1 calcolare la resistenza equivalente tra i morsetti

Dettagli

Circuiti con due generatori di tensione esercizio n. 2 principi di Kirchhoff

Circuiti con due generatori di tensione esercizio n. 2 principi di Kirchhoff ircuiti con due generatori di tensione esercizio n. alcolare le correnti che circolano nel circuito sotto riportato utilizzando i principi di Kirchhoff, la potenza erogata (o eventualmente assorbita) dai

Dettagli

Circuiti con due generatori di tensione esercizio n. 3 metodo dei potenziali di nodo

Circuiti con due generatori di tensione esercizio n. 3 metodo dei potenziali di nodo alcolare le correnti che circolano nel circuito sotto riportato utilizzando il metodo dei potenziali di nodo, la potenza erogata (o eventualmente assorbita) dai generatori di tensione ed e quella assorbita

Dettagli

Appunti di Elettronica I Lezione 4 Stella e triangolo; generatori controllati; generatore equivalente; principio di sovrapposizione degli effetti

Appunti di Elettronica I Lezione 4 Stella e triangolo; generatori controllati; generatore equivalente; principio di sovrapposizione degli effetti ppunti di Elettronica I Lezione 4 Stella e triangolo; generatori controllati; generatore equivalente; principio di sovrapposizione degli effetti Valentino Liberali Dipartimento di Tecnologie dell Informazione

Dettagli

Elettrotecnica Esercizi di riepilogo

Elettrotecnica Esercizi di riepilogo Elettrotecnica Esercizi di riepilogo Esercizio 1 I 1 V R 1 3 V 2 = 1 kω, = 1 kω, R 3 = 2 kω, V 1 = 5 V, V 2 = 4 V, I 1 = 1 m. la potenza P R2 e P R3 dissipata, rispettivamente, sulle resistenze e R 3 ;

Dettagli

Università degli studi di Bergamo Facoltà di Ingegneria

Università degli studi di Bergamo Facoltà di Ingegneria Università degli studi di ergamo Facoltà di Ingegneria Corso di elettrotecnica Soluzione tema d esame del 16 giugno 1998 Esercizio n 1 Data la rete in figura determinare le correnti I 1,I 2,I,I 5 e la

Dettagli

Analisi matematica del fenomeno transitorio RL. Transitorio di un circuito RL alimentato a tensione costante: i +

Analisi matematica del fenomeno transitorio RL. Transitorio di un circuito RL alimentato a tensione costante: i + Analisi matematica del fenomeno transitorio Transitorio di un circuito alimentato a tensione costante: i + C + v r v c Quando viene applicata ad un circuito una tensione costante si ottiene la seguente

Dettagli

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2014/15 - Prova n. 2-2 luglio 2015

Elettrotecnica - Ing. Aerospaziale, Ing. Meccanica A.A. 2014/15 - Prova n. 2-2 luglio 2015 ognome Nome Matricola Firma Parti svolte: E E D Esercizio I G 4 gv E 5 D 6 Supponendo noti i parametri dei componenti, illustrare il procedimento di risoluzione del circuito rappresentato in figura con

Dettagli

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari

7 Esercizi e complementi di Elettrotecnica per allievi non elettrici. Circuiti elementari 7 Esercizi e complementi di Elettrotecnica per allievi non elettrici Circuiti elementari Gli esercizi proposti in questa sezione hanno lo scopo di introdurre l allievo ad alcune tecniche, semplici e fondamentali,

Dettagli

Esercizi di Elettrotecnica

Esercizi di Elettrotecnica Esercizi di Elettrotecnica Ing. Carlo Forestiere carlo.forestiere@unina.it Corso di Laurea in Ingegneria Informatica Anno Accademico 2009-2010 Dipartimento di Ingegneria Elettrica Università degli studi

Dettagli

Misure su linee di trasmissione

Misure su linee di trasmissione Appendice A A-1 A-2 APPENDICE A. Misure su linee di trasmissione 1) Misurare, in trasmissione o in riflessione, la lunghezza elettrica TL della linea. 2) Dal valore di TL e dalla lunghezza geometrica calcolare

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 1)

Esercizi sulle reti elettriche in corrente alternata (parte 1) Esercizi sulle reti elettriche in corrente alternata (parte ) Esercizio : alcolare l andamento nel tempo delle correnti i, i 2 e i 3 del circuito in figura e verificare il bilancio delle potenze attive

Dettagli

G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3

G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3 CAPITOLO 3 Analisi delle reti resistive Paragrafi da 3.2 a 3.4: Analisi ai nodi e alle maglie Problema 3.1 Correnti di maglia: Correnti di lato in Fissa una direzione per la corrente in R 1 (ad esempio

Dettagli

{ v 1. { i 1. Doppi Bipoli. Matrice R (Rappresentazione controllata in corrente)

{ v 1. { i 1. Doppi Bipoli. Matrice R (Rappresentazione controllata in corrente) oppi ipoli I I 2 V V 2 Figura : Esempio di un doppio bipolo Matrice R (Rappresentazione controllata in corrente) Esempio a pagina 7 Per ricavare R ed si deve applicare un generatore di corrente tra i morsetti

Dettagli

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE

LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE LEGGI PER LE ANALISI E LA SINTESI DELLE RETI ELETTRICHE Partitore di tensione 2 legge kirkoff Partitore di corrente 1 legge kirkoff Principio di sovrapposizione degli effetti Legge di Thevenin Legge di

Dettagli

Circuiti con due generatori di tensione esercizio n. 5 metodo dei potenziali di nodo

Circuiti con due generatori di tensione esercizio n. 5 metodo dei potenziali di nodo ircuiti con due generatori di tensione esercizio n. alcolare le correnti che circolano nel circuito sotto riportato utilizzando il metodo dei potenziali di nodo, la potenza erogata (o eventualmente assorbita)

Dettagli

Esercitazione n 3: Amplificatore a base comune

Esercitazione n 3: Amplificatore a base comune Esercitazione n 3: Amplificatore a base comune 1) Per il circuito in Fig. 1 determinare il valore delle resistenze di polarizzazione affinché si abbia: I C = 0,2 ma; V C = 3 V; V E = 1,9 V. Sia noto che:

Dettagli

RETI LINEARI R 3 I 3 R 2 I 4

RETI LINEARI R 3 I 3 R 2 I 4 RETI LINERI 1 Leggi di Kirchoff. Metodo delle correnti di maglia R 1 R 3 I 1 I 3 E 1 J 1 J 2 J 3 I 2 I 4 R 4 I 5 R 5 I 6 R 6 J 4 R 7 Il calcolo delle correnti e delle differenze di potenziale in un circuito

Dettagli

Esercizi sulle reti elettriche in corrente continua

Esercizi sulle reti elettriche in corrente continua serizi sulle reti elettrihe in orrente ontinua serizio 1: eterminare la P erogata generatore, e la P R assorita resistore R del iruito in figura 4 Ω Ω Ω 15 Ω 5 Ω Ω R Ω 10 Ω Soluzione: P = 150 W P R =.08

Dettagli

5 - Reti di bipoli generici

5 - Reti di bipoli generici rincipio di equivalenza lettrotecnica 5 - eti di bipoli generici Due n-poli sono equivalenti se: 1) sono dotati dello stesso numero di morsetti, cosicché questi possono essere messi a due a due in corrispondenza;

Dettagli

Teoremi delle re* lineari

Teoremi delle re* lineari Teoremi delle re* lineari circuito o rete lineare se con-ene solo elemen- lineari e generatori indipenden- elemento ele2rico lineare se il rapporto eccitazione-risposta e lineare generatore indipendente

Dettagli

Fondamenti di Elettronica, Sez.1

Fondamenti di Elettronica, Sez.1 Fondamenti di Elettronica, Sez.1 Alessandra Flammini alessandra.flammini@unibs.it Ufficio 24 Dip. Ingegneria dell Informazione 030-3715627 Lunedì 16:30-18:30 Fondamenti di elettronica, A. Flammini, AA2018-2019

Dettagli