I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA. Indice Il sistema decimale... 3

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA. Indice Il sistema decimale... 3"

Transcript

1 I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA Indice Il sistema decimale... 3 Il sistema binario... 4 Il sistema esadecimale... 4 Conversioni numeriche... 5 Passaggio da un numero in base dieci ad un numero in base... 5 Metodo delle divisioni successive... 5 NUMERAZIONE ESADECIMALE... 6 OPERAZIONI NEL SISTEMA DI NUMERAZIONE BINARIA... 7 Aritmetica Binaria... 7 La somma... 7 Il prodotto... 8 La sottrazione... 9 La divisione Numerazione «modulo z» Numeri binari negativi Il linguaggio della logica Osservazione: Proposizioni semplici e composte Operazione di negazione NOT Prodotto logico AND La disgiunzione esclusiva OR

2 La disgiunzione esclusiva XOR LEGGE DI DE MORGAN... 0 ESEMPI... 3 Esempio XOR... 3 Operazione l ogica OR;... 4 Operazione logica AND... 4 Somma Aritmetica... 5 Esercizi sulla logica... 6 La Codifica dei Caratteri... 7 Codifica delle immagini Codifica dei filmati Codifica dei suoni In caso di errori di battitura o se si volesse contribuire a migliorare la seguente guida contattare: o all indirizzo mail

3 Introduzione Per sistema di numerazione si intende un insieme di simboli di rappresentazione di insiemi ( gruppi) di oggetti e di regole per contare ed eseguire operazioni. Nel corso della storia l uomo seppe inventare mezzi pratici che gli permisero di designare, prima oralmente e poi per iscritto, insiemi con molti oggetti con pochi simboli. A tal fine gli fu necessaria una scala convenzionale di simboli, che ora noi chiamiamo base. Dieci simboli noi diciamo base dieci. Alla base dieci, che l uomo primitivo ha scelto per ovvie ragioni antropomorfiche, sono state fatte diverse critiche a partire dal seicento e molti hanno proposto basi alternative da adottare. Blaise Pascal, che sembra sia stato il primo a realizzare che un qualunque numero intero maggiore di 1 può essere usato come base, avrebbe scelto la base 1; E. Wiegel proponeva invece, a partire dal 1673, la base 4; il re Carlo XII di Svezia pensò, all inizio del settecento, di introdurre la base 8 nel suo regno ecc. Il sistema decimale Ritengo si possa supporre che l essere umano, per esigenze naturali, iniziò a contare usando le dita delle mani definendo così un primo insieme di numeri (costituito da dieci cifre) che venne definito naturale 0,1,,3,4,5,6,7,8,9 Ma aggiungendo un ulteriore oggetto ai nove oggetti scoprì che, per contarli tutti, le dieci cifre non gli bastavano. Per questo, e per non creare nuovi simboli, convenne di rappresentare la nuova cifra utilizzando quelle a sua disposizione. Quindi per identificare il decimo oggetto ripartì dalla cifra zero e gli aggiunse un uno creando la cifra 10 che chiamò dieci. Quindi con due cifre si identificavano insiemi di oggetti numericamente superiori a 9. Ma con quale regola si doveva procedere per identificare l undicesimo oggetto il dodicesimo,... Si convenne che man mano che si aggiungevano oggetti, per la prima cifra a destra del 10, si scorreva l insieme dei numeri naturali; per cui l undicesimo oggetto era indicato dalla cifra 11, il dodicesimo dalla cifra 1 e così via fino al diciannovesimo. Per rappresentare il ventesimo oggetto si applicava la regola appena definita e il primo numero a sinistra del dieci si incrementava di 1 divenendo mentre si riportava a zero la cifra a destra per cui il venti veniva indicato con 0. Si passò così dai numeri naturali ( insieme finito) all insieme dei numeri interi positivi ( insieme infinito). Tali numeri si possono rappresentare su una retta. Fissando una origine e riportando un segmento unitario tante volte quanto è il numero. Si scoprì allora la possibilità di rappresentare anche numeri negativi ( minori di zero) nacque così l insieme dei numeri interi relativi ( numeri con segno). 3

4 Successivamente questi insiemi si estesero con i numeri razionali ( numeri con la virgola con un numero di cifre decimali dopo la virgola- finito) e i numeri irrazionali ( numeri con parte decimale costituita da infinite cifre). L insieme costituito dai numeri interi + quelli razionali + quelli irrazionali (tutti rappresentabili su una retta) costituisce l insieme dei numeri reali. Essendo questo insieme costruito partendo da dieci cifre si definisce in base dieci. Possiamo costruire altri insiemi numerici come per esempio quello in base due costituito da due sole cifre lo zero e l uno ( 0,1) o l insieme in base sedici ( 0,1,,3,4,5,6,7,8,9,A,B,C,D, E, F). Il sistema binario La numerazione binaria, che adotta la base due e utilizza solo le cifre 0 e 1 è, oltre a quella decimale, di impiego piuttosto frequente. Si tratta di una numerazione semplicissima, la più arcaica e insieme la più moderna numerazione posizionale (il valore delle cifre dipende dalla posizione che occupano nel numero), tant è che la potenza del calcolo dei computer deriva proprio dall utilizzo del codice binario. Infatti questo sistema trova corrispondenza con i componenti elettronici che funzionano in on/off, cioè con le condizioni di acceso/spento oppure di si/no. Per spiegare l aritmetica binaria, il grande filosofo e matematico tedesco Leibniz, che è stato il primo sostenitore di questa numerazione, scrive nel 1703: Invece della progressione di dieci in dieci, impiego da molti anni la progressione più semplice di tutte, che va di due in due, ritenendo che sia perfettamente adeguata alla scienza dei numeri. Utilizzo solo due caratteri, 0 e 1 e poi, quando sono arrivato a due, ricomincio. Il sistema esadecimale Un altro sistema entrato nell uso comune in ambito informatico per esempio per il codice RGB (Red Green Blue -) è quello esadecimale, cioè in base 16, le cui 16 cifre sono: 0, 1,, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F in cui le lettere hanno, nel sistema decimale, i seguenti valori : A = 10, B = 11, C = 1, D = 13, E = 14, F = 15. Tali sistemi di numerazione sono sistemi posizionali, cioè il valore delle cifre dipende dalla posizione che occupano nel numero. Spostandosi a sinistra di una posizione il valore della cifra viene moltiplicato per dieci (nel caso di un sistema decimale) o per due (nel caso di un sistema binario) per sedici ( nel caso di sistema esadecimale). Esempio: 1 0 il numero 385 = ; il numero = il numero F AC = = = possiamo ottenere questo risultato trasformando, come vedremo più avanti, il numero esadecimale in binario e poi questo in decimale 4

5 F3AC = = Conversioni numeriche = = = 6380 Passaggio da un numero in base dieci ad un numero in base Metodo delle divisioni successive Il numero in base dieci viene diviso successivamente per fino a quando si ha quoziente zero. I resti, letti dal basso verso l alto, forniscono il numero su base Esempio nella sequenza dei numeri binary distinguiamo la cifra più significativa (MSB) e quella meno significativa ( LSB); con i seguenti significati: con MSB= More Significant Bit MSB LSB LSB= Last Significant Bit per convertire un numero in base nel corrispondente numero in base dieci si individua la posizione (peso) di ogni cifra binaria andando da destra verso sinistra posizione( o peso) quindi, partendo dal MSB si fa la somma di tutti i prodotti ottenuti moltiplicando ogni cifra binaria per la base elevata alla posizione (peso) che la cifra ha nel numero binario. Quindi : corrisponde a: = 37 5

6 In conclusione: un numero in forma binaria si esprime come una successione di cifre, che sono anche dette bit (in inglese «bit» significa «pezzetto» o «particella»). La cifra più a destra è quella «meno significativa» (LSB), cioè rappresenta quantità più piccole, quella più a sinistra è la «più significativa» (MSB). NUMERAZIONE ESADECIMALE Le cifre che definiscono la numerazione in base 16 sono: 1,,3,4,5,6,7,8,9,A,B,C,D,E,F Considerando i numeri da zero a 15 possiamo mettere in corrispondenza le numerazioni nelle tre basi viste: BASE 10 BASE BASE A B C D E F Rappresentazione dei numeri con la virgola 6

7 OPERAZIONI NEL SISTEMA DI NUMERAZIONE BINARIA Aritmetica Binaria Le regole che caratterizzano l artimetica binaria sono analoghe alle regole che valgono nel sistema decimale, con il necessario adattamento derivante dall uso limitato ai due simboli 0 e 1. Le operazioni che si eseguono sui numeri sono ovviamente le quattro operazioni fondamentali: somma prodotto sottrazione divisione La somma L algoritmo della operazione di somma non cambia qualunque sia la base considerata. Soltanto che in base le combinazioni che possiamo fare con cifre sono solo 4 cioè che è come scrivere : ( base ) 0+0 = = = = 0 con riporto 1 quindi vi sono soltanto 4 regole base da ricordare, quelle sopra indicate. 10 In base dieci le combinazioni possibili con dieci cifre sono 10 = 100 per cui vi sono 100 regole base da rispettare. Osservazione: lo stesso numero risulta molto più esteso in base che non in base 10. Nei computer si utilizza la base perchè grazie alla loro velocità il numero delle cifre non incide molto sui tempi di calcolo incide invece molto il numero di regole che devono essere implementate per fare i calcoli in quanto queste vengono realizzate attraverso la circuiteria elettronica che per 100 regole sarebbe molto più complessa che per 4. Supponiamo di avere a disposizione soltanto 5 bit, possiamo allora operare su numeri binari con un massimo di 5 bit. Se il risultato di una operazione è un numero con più di 5 bit si genera un errore di overflow ( trabocco) Esempio: A = = 7 10 B = =

8 Il prodotto Analogo all'operazione di somma è il prodotto. Nel caso della base tutto si riduce a ricordare l'esiguo numero di * =4 regole, che sono: 0*0 = 0 0*1 = 0 1*0 = 0 1*1 = 1 In definitiva si hanno le regole seguenti: il prodotto per zero dà sempre come risultato zero; il prodotto per 1 dà sempre come risultato il numero stesso. Esempio: A = 1011 = B = 1101 = x altro esempio A = 1111 = B = 1111 = A B=15 15 = moltiplichiamo i due numeri binari, precisando che ogni riporto di uno lo indichiamo con un pallino 1111 x =

9 La sottrazione Nella sottrazione, il ruolo del riporto è assunto dal "prendere in prestito" quando si debba sottrarre 1 da 0 e valgono le seguenti regole: 0-0 = = = = 1 con prestito di 1 Esempio: A = 1100 = 1 10 B = 0011 = = Osservazioni: complemento a 1 di un numero binario: dicesi complemento a 1 di un numero binario l inversione dei suoi bit: esempio complemento a 1 di 1010 è 0101 complemento a di un numero binario: un metodo molto semplice per ottenere il complemento a di un numero binario consiste nell' invertire i singoli bit del numero al quale si vuole fare il complemento a e sommare 1 a questo numero. Esempio: Vogliamo fare il complemento a del numero 1001, invertiamo allora i singoli bit e otteniamo Sommiamo 1 a 0110 ottenendo 0111 (infatti il complemento a del numero 1001 è 0111 esiste un metodo ancora più semplice per ottenerte il complemento a di un numero binario esso consiste nel lasciare invariati i bit, del numero al quale si vuol fare il complemento a, a partire da destra fino al primo 1 e tutti gli altri invertirli. Esempio: Il complemento a del numero binario è , infatti a partire da destra (dall' LSB) lasciamo invariati i bit fino ad incontrare il primo 1, mentre tutti gli altri li invertiamo 9

10 La divisione La divisione è l'operazione più complessa del sistema binario (come nel sistema decimale) in quanto per effettuarla viene usato il metodo delle successive sottrazioni. Esempio: A = = B =1100 = : :1 10 Procedimento dell'operazione: si cerca la prima parte del dividendo che sia maggiore del divisore. Tale prima parte è nel nostro caso 10010, e dobbiamo scrivere 1 al quoziente, calcolando il resto come differenza Si ottiene 110. A questo punto "si abbassa" la cifra successiva del dividendo, cioè 1, ottenendo Il divisore 1100 "sta" nel 1101, ovviamente una volta e con resto 1. Il quoziente diviene 11 e abbassando la cifra successiva 1 si ha 11. Questa volta il divisore "non sta" in questa parte del dividendo e quindi si aggiunge uno 0 al quoziente, abbassando la cifra successiva. Questo è l'ultimo 0, che dà 110 nel dividendo. Di nuovo il 1100 non sta nel 110 e perciò si aggiunge un altro 0 al quoziente. Non essendoci più cifre da calare ciò significa che l'operazione è finita: quindi il quoziente è 1100 =1 10, il resto è 110 =6 10. Risultato :1 10 =1 10 con resto :1100 =1100 con resto Numerazione «modulo z». La nostra immaginazione ci consente di considerare l'esistenza di numeri arbitrariamente grandi, disposti su di una retta idealmente illimitata. Invece per «memorizzare» i numeri su un qualunque supporto fisico vanno adottate delle limitazioni (ad esempio, la lunghezza finita del righello su cui si riportano le tacche dei numeri, la grandezza della memoria elettronica, eccetera). In particolare, in un elaboratore elettronico occorre stabilire quanto spazio (cioè quanti bit) dedicare a ogni numero che si vuole utilizzare. Tale limitazione è necessaria, pur potendo variare la sua entità a seconda del contesto. Se rivediamo la corrispondenza tra numeri in base e numeri in base 10 rileviamo che con cifre binarie possiamo rappresentare 4 numeri cioè. 10

11 Con tre cifre binarie possiamo rappresentare 8 numeri cioè binarie possiamo rappresentare n numeri; 3. Possiamo allora asserire che con n cifre Cifre Binarie 3 Cifre Binarie 4 Cifre Binarie BASE 10 BASE BASE 10 BASE BASE 10 BASE Quindi possiamo asserire che: una sequenza di 8 bit, chiamata «byte» o anche «char», è possibile rappresentare 8 =56 numeri interi; una sequenza di 16 bit, cioè due byte affiancati, è chiamata «integer» e permette di rappresentare 16 =65536 numeri interi; una sequenza di 3 bit (o quattro byte) è chiamata «long» e permette di rappresentare 3 = numeri interi. Qui faremo le nostre considerazioni solo per i numeri rappresentabili come integer, ma il tutto si può ripetere per gli altri tipi di dati apportando pochi semplici adattamenti. Come nella numerazione decimale, è consuetudine tralasciare le eventuali cifre 0 iniziali (a sinistra), a meno che non sia importante evidenziare quante sono le cifre utilizzabili. Così il numero binario 111 corrisponde al numero decimale 7 per tutti e tre i tipi di numeri suddetti (char, integer e long). Supponiamo per un momento di eseguire il conteggio partendo da 0 e di poter scrivere via via tutti i numeri consecutivi in forma binaria, senza alcuna limitazione. Così, dopo 3767= 15-1 passi, troviamo il numero x = (la cifra iniziale 0, che è seguita da quindici cifre 1, potrebbe essere omessa). Il successore di x cioè y = x + 1 y = (1 seguito da quindici 0), infatti: = Proseguendo ancora, dopo altri 3767 passi troviamo il numero binario costituito da sedici cifre uguali a 1 (al quale per ora non diamo un nome) e il suo successore z = (1 seguito da sedici 0). Il procedimento potrebbe continuare, ma ci fermiamo qui. 11

12 Nell'insieme di numeri che abbiamo scritto (da 0 a z) ce n'è uno di troppo, dato che per la rappresentazione di questi numeri abbiamo solo 16 =65536 posti, consentiti dalle 16 cifre «identifichiamo» z con il numero 0. Il risultato del procedimento può essere descritto come segue: ciascuno dei numeri considerati è stato contrassegnato con una tacca su di una fettuccia flessibile, che è stata poi piegata a forma di circolo, in modo da far combaciare gli estremi, dove erano stati posti rispettivamente i valori 0 e z. Il conteggio dei numeri così disposti è dunque ciclico: partendo da un qualunque numero k, dopo z passi ritroviamo il numero k di partenza. La particolare numerazione descritta è detta «numerazione modulo z»: in essa due numeri che differiscono per un multiplo intero di z sono considerati lo stesso numero. Ad esempio, i numeri 6, 16, 96, -14 sono lo stesso numero nella numerazione modulo 10. Numeri binari negativi. I numeri binari di 16 cifre, interpretati come nel paragrafo precedente, sono detti «unsigned integer», cioè integer privi di segno, dato che rappresentano numeri non negativi. Se occorre utilizzare anche numeri negativi, come accade normalmente, si deve suddividere l'insieme in due parti, ciascuna delle quali è composta da 15 =3768 elementi: insieme P (numeri Positivi) dei numeri con primo bit (msb) uguale a 0: da 0 a x ( numeri positivi); insieme N (numeri negativi) dei numeri con primo bit (msb) uguale a 1: da y a z-1 (numeri negativi). Il bit più significativo (il primo a sinistra nella rappresentazione binaria) distingue così i numeri dell'insieme P (positivi) da quelli dell'insieme N (negativi). Perciò si usa dire che tale bit rappresenta il «segno» del numero integer (il segno è 1 esattamente quando il numero è negativo). Ma c'è un'apparente contraddizione. Nel precedente paragrafo i numeri binari dell'insieme N corrispondevano ai numeri decimali: Come mai è legittimo interpretare tali numeri come negativi? Per il semplice motivo che, considerati «modulo z», essi sono la stessa cosa. Infatti, sottraendo z (decimale 65536) dai numeri di sopra, si ottengono nell'ordine i numeri:

13 Dunque gli integer con segno variano fra il minimo y (decimale -3768) e il massimo x (decimale 3767). Naturalmente le limitazioni poste impongono di controllare che non si eccedano i limiti consentiti. Ad esempio, operando con numeri integer con segno non è lecito considerare il numero x+1, cioè il successore di x. Se un programma tentasse di utilizzare tale numero, si genererebbe una situazione di errore detta «overflow» (eccesso). Notare che il numero decimale può essere rappresentato come unsigned integer, mentre -1 può essere rappresentato come integer con segno: entrambi questi numeri corrispondono alla sequenza di sedici bit 1. Va anche osservato che le operazioni algebriche con numeri integer negativi funzionano in modo coerente. In particolare vale la seguente operazione di somma binaria (che tradotta in forma decimale significa «-1+1=0»): = Notare che, se non ci fossero limitazioni nel numero di bit, il risultato della somma precedente dovrebbe essere il numero binario di diciassette cifre (cioè la cifra 1, che scaturisce dai riporti, seguita da sedici cifre 0). In realtà si agisce proprio in questo modo, ma viene scartata la cifra 1, scivolata nella diciassettesima posizione (contando da destra), grazie all'identificazione fra i numeri 0 e z che, modulo z, hanno lo stesso valore. Un altro esempio è dato dalla seguente somma, che esprime in forma binaria l'operazione x+y=-1: =

14 Il linguaggio della logica Osservazione: tutto quello che di seguito verrà detto sulle proposizioni vale anche per le variabili logiche; intendendo per variabile logica una variabile che può assumere due soli valori di verità o vero o falso. A tali valori si può attribuire, in logica positiva, il valore numerico uno (1) per il vero e zero (0) per il falso; oppure, in logica negativa zero (0) per il vero e uno (1) per il falso.. Proposizioni semplici e composte Le frasi che formano i discorsi del nostro linguaggio naturale possono essere dichiarative, descrittive, esclamative, interrogative, possono esprimere sollecitazioni, ordini, esortazioni. Al tipo dichiarativo o al tipo descrittivo appartengono frasi che esprimono opinioni, giudizi, credenze, valutazioni, situazioni di fatto. Ci occupiamo solo di queste ultime. Sono esempi di frasi che indicano situazioni di fatto: 1) Antonio abita a Roma. ) Lucia ha rubato un biscotto. 3) Paola sta lavorando a maglia. 4) 5 è un numero primo. 5) Mario è maggiorenne. 6) Oggi piove. 7) Il cane è un quadrupede. 8) Il rettangolo è un parallelogramma. Tutte queste frasi hanno due caratteristiche fondamentali: Sono frasi semplici perché non contengono altra frase come componente; Di ciascuna di esse si può obiettivamente dire se è vera o se è falsa ossia è possibile attribuirle uno ed uno solo dei due valori di verità: vero, falso. Per questa seconda caratteristica, sono chiamate proposizioni quindi una proposizione logica è una frase a cui è possibile attribuireuno solo dei due valori vero o falso. Mentre si parla di proposizione composta quando la frase è composta da più proposizioni semplici collegate dai termini non, e, o (o anche oppure ), se... allora..., In grammatica questi termini sono chiamati congiunzioni proposizionali; spesso sono anche indicati col nome di connettivi del linguaggio o, anche, connettivi logici. Sono esempi di proposizioni composte: Non è vero che Lucia ha rubato un biscotto. Antonio abita a Roma e lavora a Fossombrone. Paola sta lavorando a maglia o ascoltando la radio. Se Lucia ha rubato un biscotto, allora sarà punita. La prima proposizione è stata ottenuta negando la precedente proposizione ; la seconda, collegando con il connettivo e la proposizione 1 con un'altra proposizione semplice; la terza, collegando la proposizione 3 con un'altra, pure semplice, mediante il connettivo o; l'ultima è stata ottenuta collegando due proposizioni semplici, di cui la prima è ancora la, con il connettivo se.. allora

15 Non ci dobbiamo tuttavia limitare alla costruzione di proposizioni composte mediante i connettivi logici. Dobbiamo anche stabilire il loro valore di verità, cosa che si ottiene solo a partire dal valore di verità delle proposizioni componenti. La ricerca del valore di verità delle proposizioni composte è il primo degli oggetti di studio di un capitolo della logica chiamato calcolo delle proposizioni o algebra delle proposizioni. Quando, nel linguaggio naturale, si esprime una proposizione composta, al posto dei connettivi sopra indicati, si usano spesso altri termini aventi la stessa funzione ma che conferiscono al discorso maggiore efficacia e lo rendono più espressivo. Tuttavia la ricchezza di sfumature, resa possibile dall'uso di questi termini, comporta il pericolo della poca precisione e di una non univoca interpretazione. Nel linguaggio della logica invece, l'uso dei connettivi è strettamente limitato alle loro forme essenziali che, se fanno perdere in potere espressivo appiattendo ogni sfumatura, fanno tuttavia guadagnare in rigore. Per altro verso, le proposizioni composte del linguaggio naturale sono solo quelle nelle quali esiste un nesso tra le componenti. Ad esempio, possono avere uno stesso soggetto che compie due azioni diverse, contemporanee o successive, come nella proposizione: Roberto prese la patente e guidò auto d ogni cilindrata La congiunzione presente in questa proposizione composta ha significato di successione temporale perciò se si scambiano le due proposizioni fra loro si ottiene una proposizione che nel linguaggio naturale si riterrebbe assurda: «Roberto guidò auto d ogni cilindrata e prese la patente» Nel linguaggio logico invece, poiché non ci si preoccupa del significato ma solo dei loro valori di verità, le due proposizioni sono entrambe corrette. Le seguenti frasi non sono proposizioni(non si può loro attribuire un significato di vero o falso). Chi dorme non piglia pesci. (è un proverbio, una sentenza) Cerca di comportarti onestamente. (è un esortazione) Sbrigati altrimenti perderai il treno. (è una sollecitazione) Voglio essere la migliore della classe. (Indica un aspirazione) Laura è una ragazza bella e spiritosa. (è un giudizio) La matematica è una disciplina difficile. (Indica un opinione) Il tuo cinismo mi addolora. (Esprime un sentimento) Toccare ferro porta fortuna (é una credenza) Hai superato l'esame per la patente guida? (è una domanda) Correre in bicicletta mi diverte molto. (Esprime una sensazione) Smettila d essere maleducato! (è un ordine) Come fa freddo oggi! (è un esclamazione) La negazione di proposizioni è un operazione logica unaria perché opera su una sola proposizione. Si ottiene il risultato dell 'operazione anteponendo non è vero che alla proposizione che si vuole negare oppure premettendo un non al suo predicato come si fa nel linguaggio naturale. Le proposizioni si rappresentano di solito con lettere maiuscole dell'alfabeto internazionale. 15

16 Operazione di negazione NOT Per indicare l'operazione di negazione sono in uso vari simboli; fra questi adottiamo quello che occupa minor spazio: se con p indichiamo una qualsiasi proposizione semplice, con non p indicheremo la sua negazione che leggeremo: non è vero p oppure non p. La funzione dell 'operatore di negazione è di cambiare il valore di verità della proposizione a cui si applica: se p è vera, allora non p è falsa; se p è falsa, allora non p è vera. P Non P Tabella di verità Possiamo definire anche la variabile logica come quella variabile che può assumere due soli valori quello vero o quello falso. In logica positiva al vero si associa il valore uno (1) e al falso il valore zero (0); in logica negativa l inverso. In logica elettronica al vero si associa il livello alto di tensione e al falso quello basso. Quindi se A è una variabile logica, riassumendo nella tabella di verità scriveremo: Variabile logica A Mentre per la variabile negata di A indicata con A a soprasegnato, avremo: Variabile logica A Normalmente vengono indicate con le lettere maiuscole dell alfabeto Il simbolo elettronico del componente ( detto porta logica) che esegue l operazione negazione o not logico è: Prodotto logico AND La congiunzione ( end logico o prodotto logico ) di proposizioni è un operazione logica binaria che consiste nel collegare due proposizioni con la congiunzione e. Essa da una proposizione vera ( o una variabile vera) soltanto quando tutte le preposizioni sono vere I simboli usati per la congiunzione o prodotto logico sono:: x. Se P e Q sono due proposizioni semplici, l operazione di congiunzione permette di costruire la proposizione composta (P e Q). I risultati dell operazione di congiunzione ( end o prodotto logico) sono raccolti nella tabella: 16

17 P Q P Q ( and logico) Tabella di verità Relativamente a due variabili logiche A e B avremo: Il simbolo elettronico del componente è: La disgiunzione esclusiva OR La disgiunzione inclusiva( o OR logico) è pure un operazione binaria che consiste nel collegare due proposizioni con il connettivo o inclusivo, la o debole: Se P, Q sono due proposizioni semplici qualsiasi, l OR logico permette di costruire la proposizione composta P v Q (legge P or Q or logico o somma logica). La preposizione risultante ( o la variabile) è vera sempre tranne nel caso in cui entrambe le proposizioni componenti ( le variabili) sono false. I risultati dell'operazione di OR Logico sono pertanto quelli raccolti nella tabella P Q P Q (Or logico) Tabella di verità Se consideriamo due variabili avremo: 17

18 il simbolo elettronico del componente è: Il connettivo o è usato nel linguaggio naturale anche con altri significati che ora esaminiamo. Quelli sopra indicati sono le porte logiche fondamentali, tutte le preposizioni più o meno complesse si possono realizzare attraverso loro. La disgiunzione esclusiva XOR La disgiunzione esclusiva ( o XOR), la o forte, usa per questa disgiunzione è >-< oppure XOR. Essa mi da vero soltanto quando le proposizioni non sono o tutte vere o tutte false. Ad esempio, ha significato esclusivo la o della espressione frutta o formaggio scritta nei menù dei ristoranti; precisa che il ristorante mette a disposizione, nel prezzo convenuto per il menù scelto, o frutta o formaggio ma non entrambe le cose. P Q P Q (Or esclusivo o XOR) Tabella di verità Se consideriamo due variabili avremo: il simbolo elettronico del componente è: L'implicazione è un operazione logica binaria che permette di collegare due proposizioni, di cui la prima (P) è detta antecedente e la seconda (Q) è detta conseguente, per formare la proposizione composta P Q (si legge: se P allora Q, o anche P implica Q ) Non si deve confondere l operazione ora definita con l affermazione: 18

19 da P si deduce logicamente Q. Infatti la verità della proposizione P Q dipende soltanto dai valori di verità di P e Q. (Implicazione materiale) La tavola di verità di figura seguente mette in evidenza che la proposizione P => Q è sempre vera tranne nel caso in cui da una premessa vera segue una conseguenza falsa. P Q P Q (P implica Q) Tabella di verità Analizziamo questa tavola alla luce di un esempio. Consideriamo la proposizione: se ho la febbre, allora sono ammalato formata dalle proposizioni semplici: P: ho la febbre Q: sono ammalato Delle situazioni descritte nelle proposizioni seguenti quale di esse non può verificarsi: (a) se ho la febbre allora sono ammalato; (b) se ho la febbre allora non sono ammalato; (c) se non ho la febbre allora sono ammalato; (d) se non ho la febbre allora non sono ammalato. Le situazioni indicate in (a) e in (d) si verificano certamente; può verificarsi anche la (c) perché ci possono essere malattie che non comportano febbre. L'unica situazione che non può verificarsi è la (b) che corrisponde al caso in cui da una premessa vera segue una conseguenza falsa: è falso dire di non essere ammalati quando si ha la febbre. Come si può verificare vale la seguente equivalenza: Indichiamo con un trattino sopra la lettera la negazione della relativa proposizione o variabile logica. Il senso dell implicazione materiale P P Q P Q P P Q (or) P Q P Q P Q Tabella di verità Q lo ritroviamo nei seguenti casi: se ABC e un triangolo equilatero, allora ABC e un triangolo isoscele. L implicazione non è commutativa: P Q e Q P non hanno lo stesso valore di verità. Se si compongono le precedenti proposizioni con una congiunzione P Q Q P ( ) ( ) si ottiene una nuova proposizione chiamata doppia implicazione che si indica con 19

20 P Q Che è vera solo quando le implicazioni componenti sono entrambe vere o entrambe false. P Q R P Q R ( ) ( ) ( ) ( ) P Q R P Q R (Commutatie ) associative. Proprietà distributiva della congiunzione rispetto alla disgiunzione; ( ) ( ) P ( Q R) equivale a P Q P R Proprietà distributiva della disgiunzione rispetto alla congiunzione; ( ) ( ) P ( Q R) equivale a P Q P R Gli unici connettivi logici essenziali sono: la negazione, la disgiunzione inclusiva, la congiunzione. A B C ( A B) C ( A C) ( B C) ( A B) C ( A C) ( B C) Tabella di verità LEGGE DI DE MORGAN Una funzione logica è uguale a se stessa negata ove ad ogni variabile logica si sostituisce la sua negata agli OR si sostituiscono gli AND e agli AND si sostituiscono gli OR f ( A, B, C, OR, AND...) = f ( A, B, C, AND, OR...) esempi: A x B = A + B = A + B A x B = A + B = A + B A + B = A X B = A x B 0

Rappresentazione binaria dei numeri negativi

Rappresentazione binaria dei numeri negativi Introduzione all Informatica 1 Conversione decimale binario (continuazione) La conversione di un numero decimale (es. 112) in binario si effettua tramite l algoritmo della divisione, dividendo successivamente

Dettagli

Codifica dell informazione

Codifica dell informazione Codifica dell informazione Il calcolatore memorizza ed elabora vari tipi di informazioni Numeri, testi, immagini, suoni Occorre rappresentare tale informazione in formato facilmente manipolabile dall elaboratore

Dettagli

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA

I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA I SISTEMI DI NUMERAZIONE E LA NUMERAZIONE BINARIA Indice Introduzione Il sistema decimale Il sistema binario Conversione di un numero da base 10 a base 2 e viceversa Conversione in altri sistemi di numerazione

Dettagli

Rappresentazione e Memorizzazione dei Dati

Rappresentazione e Memorizzazione dei Dati Rappresentazione e Memorizzazione dei Dati Giuseppe Nicosia CdL in Matematica (Laurea Triennale) Facoltà di Scienze MM.FF.NN. Università di Catania Bit e loro Memorizzazione Definizioni Algoritmo: una

Dettagli

Numerazione binaria e rappresentazione delle informazioni

Numerazione binaria e rappresentazione delle informazioni Numerazione binaria e rappresentazione delle informazioni Info Sito del corso: http://home.dei.polimi.it/amigoni/informaticab.html Nicola Basilico, nicola.basilico@gmail.com Problema Abbiamo informazioni

Dettagli

Sistemi di numerazione: binario, ottale ed esadecimale

Sistemi di numerazione: binario, ottale ed esadecimale Sistemi di numerazione: binario, ottale ed esadecimale Codifica binaria dell Informazione Bit Byte Kilobyte Megabyte Gigabyte 0/1 (si/no) 00010010 (8 bit) 2 10 = 1024 byte 2 20 ~ 1.000.000 byte 2 30 ~

Dettagli

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi:

Modulo 8. Elettronica Digitale. Contenuti: Obiettivi: Modulo 8 Elettronica Digitale Contenuti: Introduzione Sistemi di numerazione posizionali Sistema binario Porte logiche fondamentali Porte logiche universali Metodo della forma canonica della somma per

Dettagli

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica

Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Corso di Laurea Ingegneria Informatica Fondamenti di Informatica Dispensa 05 La rappresentazione dell informazione Carla Limongelli Ottobre 2011 http://www.dia.uniroma3.it/~java/fondinf/ La rappresentazione

Dettagli

Indice. 1 Rappresentazione dei dati... 3

Indice. 1 Rappresentazione dei dati... 3 INSEGNAMENTO DI INFORMATICA DI BASE LEZIONE II CODIFICA DELL'INFORMAZIONE PROF. GIOVANNI ACAMPORA Indice 1 Rappresentazione dei dati... 3 1.1. Rappresentazione dei numeri... 3 1.1.1 Rappresentazione del

Dettagli

Lezione 2: Codifica binaria dell informazione. Codifica binaria

Lezione 2: Codifica binaria dell informazione. Codifica binaria Lezione 2: Codifica binaria dell informazione Codifica binaria Elaborazione di dati binari Materiale didattico Lucidi delle lezioni, disponibili al sito: http://wwwinfo.deis.unical.it/~irina Oppure sul

Dettagli

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità.

CODIFICA BINARIA. ... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. I METODI DI NUMERAZIONE I numeri naturali... sono rappresentati ricorrendo a simboli che sintezzano il concetto di numerosità. Il numero dei simboli usati per valutare la numerosità costituisce la base

Dettagli

Codifica delle Informazioni

Codifica delle Informazioni Codifica delle Informazioni Luca Bortolussi Dipartimento di Matematica e Informatica Università degli studi di Trieste Panoramica Le informazioni gestite dai sistemi di elaborazione devono essere codificate

Dettagli

Perché la traduzione in formato numerico è tanto importante? Come avviene la conversione? Perchè vogliamo convertire l'informazione?

Perché la traduzione in formato numerico è tanto importante? Come avviene la conversione? Perchè vogliamo convertire l'informazione? IL MONDO DIGITALE La rivoluzione digitale Sistema Le immagini diventano numeri Dal testo ai numeri e viceversa E i suoni? Anche il video diventa digitale La rivoluzione digitale Musica digitale, cinema

Dettagli

Rappresentazione dell informazione. Bogdan Maris (2014-2015)

Rappresentazione dell informazione. Bogdan Maris (2014-2015) Rappresentazione dell informazione 1 Rappresentare l informazione Per elaborare l informazione è necessario saperla rappresentare in una forma comprensibile per l esecutore Bisogna stabilire un codice

Dettagli

Informazione analogica e digitale

Informazione analogica e digitale L informazione L informazione si può: rappresentare elaborare gestire trasmettere reperire L informatica offre la possibilità di effettuare queste operazioni in modo automatico. Informazione analogica

Dettagli

La codifica dell informazione

La codifica dell informazione La codifica dell informazione Parte I Sui testi di approfondimento: leggere dal Cap. del testo C (Console, Ribaudo):.,. fino a pg.6 La codifica delle informazioni Un calcolatore memorizza ed elabora informazioni

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione dell informazione negli elaboratori Informazione e computer Si può rappresentare l informazione attraverso varie forme: Numeri Testi Suoni Immagini 0001010010100101010 Computer Cerchiamo di capire come tutte queste informazioni possano essere

Dettagli

Come si misura la memoria di un calcolatore?

Come si misura la memoria di un calcolatore? Come si misura la memoria di un calcolatore? Definizione Il byte è definito come unità di misura di memoria. I multipli del byte sono: KiloByte (KB) - 1 KB = 2 10 byte = 1024 byte MegaByte (MB) - 1 MB

Dettagli

Il sistema di numerazione posizionale decimale INFORMATICA DI BASE. Sistemi di numerazione: binario, ottale ed esadecimale

Il sistema di numerazione posizionale decimale INFORMATICA DI BASE. Sistemi di numerazione: binario, ottale ed esadecimale INFORMATICA DI BASE Sistemi di numerazione: binario, ottale ed esadecimale Prof. Sebastiano Battiato Dipartimento di Matematica e Informatica Università di Catania e-mail : {battiato}@dmi.unict.it Il sistema

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE Istituto di Istruzione Superiore G. Curcio Ispica I SISTEMI DI NUMERAZIONE Prof. Angelo Carpenzano Dispensa di Informatica per il Liceo Scientifico opzione Scienze Applicate Sommario Sommario... I numeri...

Dettagli

Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003

Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003 Dispense Introduzione al calcolatore Corso: Fondamenti Informatica I Prof. Paolo Nesi A.A. 2002/2003 Nota: Queste dispense integrano e non sostituiscono quanto scritto sul libro di testo. 1 Sistemi di

Dettagli

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR

ALGEBRA BOOLEANA FONDAMENTI DI INFORMATICA 1. Algebra di Boole. Definizione NOT, AND, OR Università degli Studi di Cagliari Corso di Laurea in Ingegneria Biomedica, Chimica, Elettrica e Meccanica FONDAMENTI DI INFORMATICA 1 http://www.diee.unica.it/~marcialis/fi1 A.A. 2010/2011 Docente: Gian

Dettagli

LA NUMERAZIONE BINARIA

LA NUMERAZIONE BINARIA LA NUMERAZIONE BINARIA 5 I SISTEMI DI NUMERAZIONE Fin dalla preistoria l uomo ha avuto la necessità di fare calcoli, utilizzando svariati tipi di dispositivi: manuali (mani, bastoncini, sassi, abaco),

Dettagli

Informatica 1. Riepilogo

Informatica 1. Riepilogo Informatica 1 Hardware e Software ing. Luigi Puzone 1 Riepilogo Nella lezione scorsa abbiamo visto i seguenti concetti di base Dati e informazioni e loro ciclo di elaborazione Hardware e Software Tipologie

Dettagli

Base generica: B A = {... }, con A = B, sequenze di n simboli (cifre) c n

Base generica: B A = {... }, con A = B, sequenze di n simboli (cifre) c n Rappresentare le informazioni con un insieme limitato di simboli (detto alfabeto A) in modo non ambiguo (algoritmi di traduzione tra codifiche) Esempio: numeri interi assoluti Codifica decimale (in base

Dettagli

Sistemi di numerazione: generalità

Sistemi di numerazione: generalità Sistemi di numerazione: generalità Nel corso della storia sono stati introdotti diversi sistemi di numerazione, dettati di volta in volta dalle specifiche esigenze dei vari popoli. Poiché ogni numero maggiore

Dettagli

Fondamenti di Informatica

Fondamenti di Informatica Fondamenti di Informatica Corso di Laurea in Scienze dell'educazione, 2014-15 Lorenzo Bettini http://www.di.unito.it/~bettini Informazioni generali Ricevimento studenti su appuntamento Dipartimento di

Dettagli

Laboratorio di Informatica

Laboratorio di Informatica per chimica industriale e chimica applicata e ambientale LEZIONE 2 Rappresentazione delle informazioni: numeri e caratteri 1 Codice La relazione che associa ad ogni successione ben formata di simboli di

Dettagli

La rappresentazione delle informazioni

La rappresentazione delle informazioni La rappresentazione delle informazioni In queste pagine cercheremo di capire come sia possibile rappresentare mediante numeri e memorizzare in un file testi, immagini, video, suoni Il computer per lavorare

Dettagli

Marta Capiluppi marta.capiluppi@univr.it Dipartimento di Informatica Università di Verona

Marta Capiluppi marta.capiluppi@univr.it Dipartimento di Informatica Università di Verona Marta Capiluppi marta.capiluppi@univr.it Dipartimento di Informatica Università di Verona Classificazione delle immagini Le immagini si suddividono in raster e vettoriali. Le immagini raster sono di tipo

Dettagli

Rappresentazione di informazioni con un alfabeto finito

Rappresentazione di informazioni con un alfabeto finito Rappresentazione di informazioni con un alfabeto finito Sia A = { a 1,, a k } un insieme (alfabeto) di k simboli, detti anche lettere. Quante sono le sequenze composte da n simboli (anche ripetuti) di

Dettagli

Elementi di Informatica. ( Lezione II, parte I ) Sistemi di numerazione: binario, ottale ed esadecimale

Elementi di Informatica. ( Lezione II, parte I ) Sistemi di numerazione: binario, ottale ed esadecimale Elementi di Informatica ( Lezione II, parte I ) Sistemi di numerazione: binario, ottale ed esadecimale Il sistema di numerazione posizionale decimale Nella numerazione posizionale ogni cifra del numero

Dettagli

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0

4 3 4 = 4 x 10 2 + 3 x 10 1 + 4 x 10 0 aaa 10 2 10 1 10 0 Rappresentazione dei numeri I numeri che siamo abituati ad utilizzare sono espressi utilizzando il sistema di numerazione decimale, che si chiama così perché utilizza 0 cifre (0,,2,3,4,5,6,7,8,9). Si dice

Dettagli

LA RAPPRESENTAZIONE DELLE INFORMAZIONI

LA RAPPRESENTAZIONE DELLE INFORMAZIONI ISTITUTO TECNICO E LICEO SCIENTIFICO TECNOLOGICO ANGIOY LA RAPPRESENTAZIONE DELLE INFORMAZIONI Prof. G. Ciaschetti DATI E INFORMAZIONI Sappiamo che il computer è una macchina stupida, capace di eseguire

Dettagli

La somma. Esempio: Il prodotto. Esempio:

La somma. Esempio: Il prodotto. Esempio: La somma L algoritmo della operazione di somma non cambia qualunque sia la base considerata. Naturalmente, le regole da imparare nel caso di una base b sono relative alle sole b 2 posssibili combinazioni

Dettagli

SISTEMI DI NUMERAZIONE E CODICI

SISTEMI DI NUMERAZIONE E CODICI SISTEMI DI NUMERAZIONE E CODICI Il Sistema di Numerazione Decimale Il sistema decimale o sistema di numerazione a base dieci usa dieci cifre, dette cifre decimali, da O a 9. Il sistema decimale è un sistema

Dettagli

Codifica dell informazione

Codifica dell informazione Codifica Cosa abbiamo visto : Rappresentazione binaria Codifica dei numeri (interi positivi, interi con segno, razionali.) Cosa vedremo oggi: Codifica dei caratteri,codifica delle immagini,compressione

Dettagli

Lezione 3 Prof. Angela Bonifati

Lezione 3 Prof. Angela Bonifati Lezione 3 Prof. Angela Bonifati Complemento a 2 Algebra booleana Le infrastrutture hardware Esercizi sulla codifica dei numeri Eseguire le seguenti conversioni: Da base 2 e 16 in base 10: 110 2 =???? 10

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Fondamenti di calcolo booleano Breve introduzione storica Nel 1854, il prof. Boole pubblica un trattato ormai famosissimo: Le leggi del pensiero. Obiettivo finale del trattato è di far nascere la matematica dell intelletto umano, un

Dettagli

Introduzione all Informatica

Introduzione all Informatica Introduzione all Informatica Lezione 4 Davide Di Ruscio Dipartimento di Informatica Università degli Studi dell Aquila diruscio@di.univaq.it Nota Questi lucidi sono tratti dal materiale distribuito dalla

Dettagli

Nel seguito verranno esaminati i diversi tipi di dato e il modo in cui essi sono rappresentati all interno del calcolatore.

Nel seguito verranno esaminati i diversi tipi di dato e il modo in cui essi sono rappresentati all interno del calcolatore. In una delle molteplici possibili definizioni di informazione, questa viene fatta corrispondere a qualunque elemento, in grado di essere rappresentato e comunicato, che consenta di fornire o aumentare

Dettagli

Algoritmo = Dati e Azioni Sistema numerico binario Rappresentazioni di numeri binari Rappresentazione in modulo e segno

Algoritmo = Dati e Azioni Sistema numerico binario Rappresentazioni di numeri binari Rappresentazione in modulo e segno Algoritmo = Dati e Azioni Dati: Numeri (naturali, interi, reali, ) Caratteri alfanumerici (a, b, c, ) Dati logici (vero, falso) Vettori di elementi, matrici, ([1,2,3], [[1,1],[1,2], ]) Azioni o istruzioni:

Dettagli

APPUNTI DI ELETTRONICA DIGITALE

APPUNTI DI ELETTRONICA DIGITALE APPUNTI DI ELETTRONICA DIGITALE ITIS MARCONI-GORGONZOLA docente :dott.ing. Paolo Beghelli pag.1/24 Indice 1.ELETTRONICA DIGITALE 4 1.1 Generalità 4 1.2 Sistema di numerazione binario 4 1.3 Operazioni con

Dettagli

Rappresentazione binaria

Rappresentazione binaria Rappresentazione binaria DOTT. ING. LEONARDO RIGUTINI RICERCATORE ASSOCIATO DIPARTIMENTO INGEGNERIA DELL INFORMAZIONE UNIVERSITÀ DI SIENA VIA ROMA 56 53100 SIENA UFF. 0577234850-7102 RIGUTINI@DII.UNISI.IT

Dettagli

Un ripasso di aritmetica: Rappresentazione binaria - operazioni. riporti

Un ripasso di aritmetica: Rappresentazione binaria - operazioni. riporti Un ripasso di aritmetica: Rappresentazione binaria - operazioni A queste rappresentazioni si possono applicare le operazioni aritmetiche: riporti 1 1 0 + 1 0 = 1 0 0 24 Un ripasso di aritmetica: Rappresentazione

Dettagli

Codifica binaria e algebra di Boole

Codifica binaria e algebra di Boole Codifica binaria e algebra di Boole Corso di Programmazione A.A. 2008/09 G. Cibinetto Contenuti della lezione Codifica binaria dell informazione Numeri naturali, interi, frazionari, in virgola mobile Base

Dettagli

Codifica dei numeri. Rappresentazione dell informazione

Codifica dei numeri. Rappresentazione dell informazione Rappresentazione dell informazione Rappresentazione informazione Elementi di aritmetica dei computer Organizzazione della memoria e codici correttori Salvatore Orlando Differenza tra simbolo e significato

Dettagli

Tecnologia dell'informazione e della Comunicazione (TIC) Modulo 2: Informazione, dati e codifica

Tecnologia dell'informazione e della Comunicazione (TIC) Modulo 2: Informazione, dati e codifica Tecnologia dell'informazione e della Comunicazione (TIC) Modulo 2: Informazione, dati e codifica Informazione: è lo scambio di conoscenza tra due o più persone nonché il significato che le persone coinvolte

Dettagli

Logica e codifica binaria dell informazione

Logica e codifica binaria dell informazione Politecnico di Milano Corsi di Laurea in Ingegneria Matematica e Ingegneria Fisica Dipartimento di Elettronica ed Informazione Logica e codifica binaria dell informazione Anno Accademico 2002 2003 L. Muttoni

Dettagli

PDF created with pdffactory trial version www.pdffactory.com

PDF created with pdffactory trial version www.pdffactory.com Codifica di immagini Codifica di immagini o Un immagine è un insieme continuo di informazioni A differenza delle cifre e dei caratteri alfanumerici, per le immagini non esiste un'unità minima di riferimento

Dettagli

Corso di informatica di base

Corso di informatica di base Rel. 1.0 16.10.2010 Luigi Ferrari Indice 1. Modulo 1 - Concetti base dell'informatica...1 1.1. Dato e informazione...1 1.1.1. Misura dell'informazione...1 1.2. Sistema decimale e sistema binario, ma non

Dettagli

Nel seguito verranno esaminati i diversi tipi di dato e il modo in cui essi sono rappresentati all interno del calcolatore.

Nel seguito verranno esaminati i diversi tipi di dato e il modo in cui essi sono rappresentati all interno del calcolatore. In una delle molteplici possibili definizioni di informazione, questa viene fatta corrispondere a qualunque elemento, in grado di essere rappresentato e comunicato, che consenta di fornire o aumentare

Dettagli

Rappresentazione digitale

Rappresentazione digitale I BIT POSSONO RAPPRESENTARE TUTTO Tutta l informazione interna ad un computer è codificata con sequenze di due soli simboli : 0 e 1 è facile realizzare dispositivi elettronici che discriminano fra due

Dettagli

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio

Appunti di informatica. Lezione 2 anno accademico 2015-2016 Mario Verdicchio Appunti di informatica Lezione 2 anno accademico 2015-2016 Mario Verdicchio Sistema binario e logica C è un legame tra i numeri binari (0,1) e la logica, ossia la disciplina che si occupa del ragionamento

Dettagli

Megabyte (MB) = 1024KB 1 milione di Byte (e.g. un immagine di 30MB) Gigabyte (GB) = 1024MB 1 miliardo di Byte (e.g. un hard disk da 80GB)

Megabyte (MB) = 1024KB 1 milione di Byte (e.g. un immagine di 30MB) Gigabyte (GB) = 1024MB 1 miliardo di Byte (e.g. un hard disk da 80GB) Unità di misura per l informatica Un bit (b) rappresenta una cifra binaria. E l unità minima di informazione. Un Byte (B) è costituito da 8 bit. Permette di codificare 256 entità di informazione distinte

Dettagli

7 : I DATI E LA LORO STRUTTURA NELLA PROGRAMMAZIONE

7 : I DATI E LA LORO STRUTTURA NELLA PROGRAMMAZIONE 7 : I DATI E LA LORO STRUTTURA NELLA PROGRAMMAZIONE TIPO DI DATO Un tipo di dato è una entità caratterizzata dai seguenti elementi: un insieme X di valori che raprresenta il dominio del tipo di dato; un

Dettagli

MODULO 1 Le grandezze fisiche

MODULO 1 Le grandezze fisiche MODULO 1 Le grandezze fisiche Quante volte, ogni giorno, utilizziamo il metro, i secondi, i kilogrammi Ma forse non sappiamo quante menti di uomini ingegnosi hanno dato un senso a quei simboli per noi

Dettagli

Sistemi di numerazione

Sistemi di numerazione Sistemi di numerazione 1 Sistemi di numerazione 2 Sistemi di numerazione I primi esempi di utilizzo di sistemi di numerazione risalgono al neolitico, ovvero a circa 50.000 anni fa. In epoca preistorica,

Dettagli

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri.

Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. Codici Numerici. Modifica dell'informazione. Rappresentazione dei numeri. A partire da questa lezione, ci occuperemo di come si riescono a codificare con sequenze binarie, quindi con sequenze di 0 e 1,

Dettagli

La Logica Proposizionale. (Algebra di Boole)

La Logica Proposizionale. (Algebra di Boole) 1 ISTITUTO DI ISTRUZIONE SUPERIORE ANGIOY La Logica Proposizionale (Algebra di Boole) Prof. G. Ciaschetti 1. Cenni storici Sin dagli antichi greci, la logica è intesa come lo studio del logos, che in greco

Dettagli

CFP AUXILIUM - TORINO BIT E BYTE

CFP AUXILIUM - TORINO BIT E BYTE CFP AUXILIUM - TORINO BIT E BYTE Il funzionamento del computer si basa tutto sulla presenza/assenza di segnale elettrico all interno dei milioni e milioni di circuiti che lo compongono; in ultima analisi

Dettagli

Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio

Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio Dipartimento di Ingegneria dell Informazione Università degli Studi di Parma Fondamenti di Informatica Laurea in Ingegneria Civile e Ingegneria per l Ambiente e il Territorio Rappresentazione dell Informazione

Dettagli

LA RAPPRESENTAZIONE DELLE INFORMAZIONI

LA RAPPRESENTAZIONE DELLE INFORMAZIONI ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOJ GRAFICA E COMUNICAZIONE LA RAPPRESENTAZIONE DELLE INFORMAZIONI Prof. G. Ciaschetti DATI E INFORMAZIONI Sappiamo che il computer è una macchina stupida, capace

Dettagli

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI

L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI L INNOVAZIONE SCIENTIFICO-TECNOLOGICA NEI PROCESSI PRODUTTIVI Scienza ed industria hanno oggi costituito legami molto forti di collaborazione che hanno portato innovazione tecnologica sia a livello organizzativo-amministrativo

Dettagli

SISTEMI DI NUMERAZIONE

SISTEMI DI NUMERAZIONE Università degli Studi di Roma Tor Vergata Facoltà di Ingegneria Corso di Laurea in Ingegneria Medica SISTEMI DI NUMERAZIONE Come nei calcolatori sono rappresentati i numeri Numeri I numeri rappresentano

Dettagli

90.1 Sistemi di numerazione. 90.1.1 Sistema decimale. 605 Capitolo 90 Dai sistemi di numerazione all organizzazione della memoria

90.1 Sistemi di numerazione. 90.1.1 Sistema decimale. 605 Capitolo 90 Dai sistemi di numerazione all organizzazione della memoria 605 Capitolo 90 Dai sistemi di numerazione all organizzazione della memoria 90.1 Sistemi di numerazione.................................................... 605 90.1.1 Sistema decimale..................................................

Dettagli

L'informazione e la sua codifica

L'informazione e la sua codifica L'informazione e la sua codifica Corso di Informatica CdL: Chimica Claudia d'amato claudia.damato@di.uniba.it Informatica e telecomunicazione Cos è l informatica informatica? lo studio sistematico degli

Dettagli

Università degli Studi di Messina Cattedra di Chirurgia Generale Prof. Salvatore Gorgone. Informatica

Università degli Studi di Messina Cattedra di Chirurgia Generale Prof. Salvatore Gorgone. Informatica Università degli Studi di Messina Cattedra di Chirurgia Generale Prof. Salvatore Gorgone Informatica Informatica = Informazione automatica Philippe Dreyfus 962 Scienza che studia i sistemi per l elaborazione

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione La Codifica dell informazione (parte 1) Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Docente:

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

I SISTEMI DI NUMERAZIONE

I SISTEMI DI NUMERAZIONE ISTITUTO DI ISTRUZIONE SUPERIORE G. M. ANGIOY CARBONIA I SISTEMI DI NUMERAZIONE Prof. G. Ciaschetti Fin dall antichità, l uomo ha avuto il bisogno di rappresentare le quantità in modo simbolico. Sono nati

Dettagli

Fondamenti di Informatica Ingegneria Clinica Lezione 19/11/2009. Prof. Raffaele Nicolussi

Fondamenti di Informatica Ingegneria Clinica Lezione 19/11/2009. Prof. Raffaele Nicolussi Fondamenti di Informatica Ingegneria Clinica Lezione 19/11/2009 Prof. Raffaele Nicolussi FUB - Fondazione Ugo Bordoni Via B. Castiglione 59-00142 Roma Docente Raffaele Nicolussi rnicolussi@fub.it Lezioni

Dettagli

La codifica delle immagini

La codifica delle immagini Lettere e numeri non costituiscono le uniche informazioni utilizzate dagli elaboratori ma si stanno diffondendo sempre di più applicazioni che utilizzano ed elaborano anche altri tipi di informazione:

Dettagli

la scienza della rappresentazione e della elaborazione dell informazione

la scienza della rappresentazione e della elaborazione dell informazione Sistema binario Sommario informatica rappresentare informazioni la differenza Analogico/Digitale i sistemi di numerazione posizionali il sistema binario Informatica Definizione la scienza della rappresentazione

Dettagli

Cenni di logica & algebra booleana

Cenni di logica & algebra booleana Cenni di algebra booleana e dei sistemi di numerazione Dr. Carlo Sansotta - 25 2 Parte Cenni di logica & algebra booleana 3 introduzione L elaboratore elettronico funziona secondo una logica a 2 stati:

Dettagli

Le immagini digitali. Le immagini digitali. Caterina Balletti. Caterina Balletti. Immagini grafiche. Trattamento di immagini digitali.

Le immagini digitali. Le immagini digitali. Caterina Balletti. Caterina Balletti. Immagini grafiche. Trattamento di immagini digitali. 1 Le immagini digitali Le immagini digitali Università IUAV di venezia Trattamento di immagini digitali immagini grafiche immagini raster immagini vettoriali acquisizione trattamento geometrico trattamento

Dettagli

Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013

Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013 Operazioni Aritmetiche e Codici in Binario Giuseppe Talarico 23/01/2013 In questo documento vengono illustrate brevemente le operazioni aritmetiche salienti e quelle logiche ad esse strettamente collegate.

Dettagli

Codifica binaria dei numeri

Codifica binaria dei numeri Codifica binaria dei numeri Caso più semplice: in modo posizionale (spesso detto codifica binaria tout court) Esempio con numero naturale: con 8 bit 39 = Codifica in virgola fissa dei numeri float: si

Dettagli

Codifica binaria dell Informazione Aritmetica del Calcolatore

Codifica binaria dell Informazione Aritmetica del Calcolatore Codifica binaria dell Informazione Aritmetica del Calcolatore 1 Significati e simboli Significati Codifica Simboli riga linea Interpretazione Codifica ridondante sun soleil güneş x y a Codifica ambigua

Dettagli

2. Codifica dell informazione

2. Codifica dell informazione 2. Codifica dell informazione Codifica Una codifica è una regola per associare in modo univoco i valori di un dato da codificare con sequenze di simboli. La corrispondenza definita dalla codifica è arbitraria,

Dettagli

La rappresentazione dell informazione

La rappresentazione dell informazione La rappresentazione dell informazione Sui testi di approfondimento: leggere dal Cap. 2 del testo C (Console, Ribaudo): 2.3, 2.4 Parte II La codifica dei dati multimediali I caratteri alfanumerici non costituiscono

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CAMPIONE Edizioni del Quadrifoglio à t i n U 2 Logica delle proposizioni

Dettagli

I sistemi di numerazione

I sistemi di numerazione I sistemi di numerazione 01-INFORMAZIONE E SUA RAPPRESENTAZIONE Sia dato un insieme finito di caratteri distinti, che chiameremo alfabeto. Utilizzando anche ripetutamente caratteri di un alfabeto, si possono

Dettagli

11010010 = 1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 210

11010010 = 1*2^7 + 1*2^6 + 0*2^5 + 1*2^4 + 0*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 210 Il sistema BINARIO e quello ESADECIMALE. Il sistema di numerazione binario è particolarmente legato ai calcolatori in quanto essi possono riconoscere solo segnali aventi due valori: uno alto e uno basso;

Dettagli

Fondamenti di Informatica INFORMATICA ED UNITA DI MISURA

Fondamenti di Informatica INFORMATICA ED UNITA DI MISURA Fondamenti di Informatica INFORMATICA ED UNITA DI MISURA INFORMATICA= INFOR(MAZIONE AUTO)MATICA Scienza che si occupa del trattamento automatico dell informazione Dati(input) Istruzioni di un Computer

Dettagli

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16

Un ripasso di aritmetica: Conversione dalla base 10 alla base 16 Un ripasso di aritmetica: Conversione dalla base 1 alla base 16 Dato un numero N rappresentato in base dieci, la sua rappresentazione in base sedici sarà del tipo: c m c m-1... c 1 c (le c i sono cifre

Dettagli

I Sistemi di numerazione e la rappresentazione dei dati

I Sistemi di numerazione e la rappresentazione dei dati I Sistemi di numerazione e la rappresentazione dei dati LA RAPPRESENTAZIONE DELLE INFORMAZIONI (1) Per utilizzare un computer è necessario rappresentare in qualche modo le informazioni da elaborare e il

Dettagli

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione

Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Esempi ed esercizi Aritmetica degli elaboratori e algebra di commutazione Fondamenti di Informatica Michele Ceccarelli Università del Sannio ceccarelli@unisannio.it Angelo Ciaramella DMI-Università degli

Dettagli

Università degli Studi di Cassino e del Lazio Meridionale

Università degli Studi di Cassino e del Lazio Meridionale Università degli Studi di Cassino e del Lazio Meridionale di Calcolatori Elettronici Rappresentazione dei dati numerici Aritmetica dei registri Anno Accademico 2012/2013 Alessandra Scotto di Freca Si ringrazia

Dettagli

Aritmetica dei Calcolatori 1

Aritmetica dei Calcolatori 1 Architettura degli Elaboratori e Laboratorio 1 Marzo 2013 1 Sistema di numerazione sistema posizionale 2 rappresentazione binaria cambio di base basi potenze di 2 3 Rappresentazione binaria con segno Sistema

Dettagli

la scienza della rappresentazione e della elaborazione dell informazione

la scienza della rappresentazione e della elaborazione dell informazione Sistema binario Sommario informatica rappresentare informazioni la differenza Analogico/Digitale i sistemi di numerazione posizionali il sistema binario Informatica Definizione la scienza della rappresentazione

Dettagli

La rappresentazione dell informazione. La codifica dei dati multimediali. Sommario

La rappresentazione dell informazione. La codifica dei dati multimediali. Sommario La rappresentazione dell informazione Su questa parte vi fornirò dispense Sui testi di approfondimento: leggere dal Cap. 2 del testo C (Console, Ribaudo): 2.3, 2.4 Parte II La codifica dei dati multimediali

Dettagli

Calcolatori: Algebra Booleana e Reti Logiche

Calcolatori: Algebra Booleana e Reti Logiche Calcolatori: Algebra Booleana e Reti Logiche 1 Algebra Booleana e Variabili Logiche I fondamenti dell Algebra Booleana (o Algebra di Boole) furono delineati dal matematico George Boole, in un lavoro pubblicato

Dettagli

Corso basilare di programmazione

Corso basilare di programmazione Parte vi Corso basilare di programmazione Introduzione............................................ 947 Programma didattico.................................. 947 Strumenti per la compilazione..........................

Dettagli

Aritmetica: operazioni ed espressioni

Aritmetica: operazioni ed espressioni / A SCUOLA DI MATEMATICA Lezioni di matematica a cura di Eugenio Amitrano Argomento n. : operazioni ed espressioni Ricostruzione di un abaco dell epoca romana - Museo RGZ di Magonza (Germania) Libero da

Dettagli

RAPPRESENTAZIONE DEI NUMERI BINARI. Corso di Fondamenti di Informatica AA 2010-2011

RAPPRESENTAZIONE DEI NUMERI BINARI. Corso di Fondamenti di Informatica AA 2010-2011 RAPPRESENTAZIONE DEI NUMERI BINARI Corso di Fondamenti di Informatica AA 2010-2011 Prof. Franco Zambonelli Numeri interi positivi Numeri interi senza segno Caratteristiche generali numeri naturali (1,2,3,...)

Dettagli

L informatica comprende:

L informatica comprende: Varie definizioni: INFORMATICA Scienza degli elaboratori elettronici (Computer Science) Scienza dell informazione Definizione proposta: Scienza della rappresentazione e dell elaborazione dell informazione

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione La Codifica dell informazione (parte 4) Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Docente:

Dettagli

Corso di Informatica

Corso di Informatica CdLS in Odontoiatria e Protesi Dentarie Corso di Informatica Prof. Crescenzio Gallo crescenzio.gallo@unifg.it La Codifica!2 Informazioni Numeri Naturali Relativi Reali Testi Informazioni tradizionali Immagini

Dettagli