Intelligenza Artificiale. Lezione 23. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 0

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Intelligenza Artificiale. Lezione 23. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 0"

Transcript

1 Intelligenza Artificiale Lezione 23 Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 0

2 Azioni e cambiamento Il calcolo delle situazioni Pianificazione Deduttiva (Capitolo 11 delle dispense, 7.6 RN) Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 1

3 Calcolo delle situazioni Linguaggio del primo ordine con uguaglianza e con più sorti: azione oggetto situazione Il linguaggio contiene: do(a, s), che fornisce come valore una situazione; < ( ) che si applica a coppie di situazioni, la costante S 0 di sorte situazione Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 2

4 Fluenti Un fluente si differenzia da un simbolo normale perché il suo valore può variare al variare della situazione P (x 1,..., x n, s); f(x 1,..., x n, s). Esempi: Su(x, y, s), Su(x, y, s ), colore(x, s) = rosso, colore(x, s ) = rosso. P oss(a, s) è un fluente il cui significato intuitivo è che l azione a è possibile nella situazione s. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 3

5 La teoria del calcolo delle situazioni La teoria del calcolo delle situazioni consiste in una assiomatizzazione per le situazioni, la quale garantisce che la struttura delle situazioni sia un albero (di profondità infinita e con una ramificazione limitata dalla cardinalità del dominio di sorte azione) e una assiomatizzazione che definisce le leggi causali del dominio che si intende descrivere. L assiomatizzazione per le situazioni, che chiamiamo Σ, è la seguente: s1. s < S 0, s2. do(a 1, s 1 ) = do(a 2, s 2 ) a 1 = a 2 s 1 = s 2 s3. s < do(a, s ) s s s4. P (S 0 ) ( a, s)[p (s) P (do(a, s))] ( s)p (s) Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 4

6 La teoria del calcolo delle situazioni Il modello di Σ è: GS = (A S,, cons, [ ]) Dove è l unione disgiunta; A è il dominio della sorte azione, i cui elementi saranno indicati con α; S è il dominio della sorte situazione, ed è definito come l insieme induttivo che soddisfa: [ ] S σ S implica per ogni α A, cons(α, σ) S dove [ ], è l interpretazione di S 0 ; cons interpreta la funzione do ed è definito induttivamente come segue: cons(α, [ ]) = [α] cons(α, cons(α, σ)) = cons(α, [α, σ]) Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 5

7 Assiomatizzazione della descrizione del dominio 1. Gli assiomi di nome unico per le azioni (una unique name axioms): sono gli assiomi che stabiliscono che tutte le azioni hanno nome unico. 2. La descrizione del dominio nello stato iniziale S Gli assiomi di precondizione (ap): costituiscono la descrizione delle condizioni per le quali un azione è eseguibile, un assioma per ciascuna azione. 4. Gli assiomi di stato successore (ss): sono la descrizione delle leggi causali del dominio, un assioma per ciascun fluente. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 6

8 Problemi (aspetti) della rappresentazione qualificazione delle precondizioni (qualification problem) specifica degli effetti (frame problem: frame = cornice, problema del cambiamento) assiomi statici e ramificazione degli effetti (ramification problem) Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 7

9 Qualificazione (delle precondizioni) Condizione necessaria per la riparazione P oss(ripara(w, x), s) hacolla(w, s) rotto(x, s) ma è anche sufficiente? hacolla(w, s) rotto(x, s) P oss(ripara(w, x), s) Basta avere la colla per aggiustare un oggetto rotto? La colla potrebbe essere secca, inadatta per il materiale dell oggetto, potrebbe risultare impossibile aprire il barattolo... Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 8

10 Soluzioni al problema della qualificazione 1. Si assume che le precondizioni siano necessarie e sufficienti (p.e. nel calcolo delle situazioni) In questo modo si esclude la possibililità che esistano impedimenti all esecuzione dell azione. 2. Occorre fare un ipotesi del tipo a meno che non ci siano impedimenti che porta ad una forma di ragionamento non monotono. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 9

11 Frame problem Specifica compatta di ciò che non cambia. Effetto di sposta(b 1, b 2, tavolo) non cambia il colore di b 1, e nemmeno quello degli altri blocchi, e del tavolo!!!! Quindi tra gli effetti di sposta occorre aggiungere x, b, s.colore(b, x, do(sposta, s)) = colore(b, x, s) E poi, c è il peso, la forma, la posizione... Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 10

12 Persistenza Per ogni azione ci sono molte proprietà che non vengono modificate dall esecuzione, cioè persistono. Soluzioni al Frame Problem (***): 1. assiomi di stato successore la logica rimane monotona, ma ci sono delle restrizioni (p.e. sull uso degli assiomi statici ) 2. aggiungendo regole del tipo tutto ciò che non viene specificato negli effetti persiste la logica diventa non monotona Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 11

13 Soluzione (monotona) al frame problem 1. si considerano gli effetti positivi e negativi delle azioni per ogni fluente: γ F + (x, a, s) F (x, do(a, s)) γf (x, a, s) F (x, do(a, s)) 2. Si assume la completezza causale: il fluente F è completamente definito dai due assiomi al punto 1 3. si fa l ipotesi di nome unico per le azioni 4. si ottengono gli assiomi di stato successore: F (x, do(a, s)) γ F + (x, a, s) F (x, s) γ F (x, a, s) Nel calcolo delle situazioni si scrivono direttamente gli assiomi di stato successore. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 12

14 Ramificazioni degli effetti È utile spesso specificare delle condizioni che valgono indipendentemente dalle situazioni: assiomi statici Se la porta e la finestra sono aperte si crea corrente (indipendentente dalla particolare situazione). portaaperta f inestraaperta corrente L effetto dell azione aprip orta è portaaperta, ma se f inestraaperta un effetto indiretto di aprip orta è corrente. Un assioma statico deve sempre essere verificato e ciò può creare dei problemi con la persistenza: Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 13

15 normalmente corrente persiste quando viene eseguita aprip orta, ma non se f inestraaperta. Si hanno in genere diverse ramificazioni (situazioni possibili). Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 14

16 La teoria dinamica del dominio La teoria D che descrive il comportamento dinamico del dominio è definita come segue: D = Σ D S0 D una D ap D ss Dove Σ D una D S0 D ap D ss è l insieme degli assiomi fondazionali; è un insieme di assiomi del tipo a a per tutte le azioni; è l insieme di assiomi che descrivono lo stato iniziale; è l insieme di assiomi della forma: P oss(a(x 1,..., x n ), s) Π a ((x 1,..., x n ), s) dove Π a è una formula con variabili libere al più (x 1,..., x n stabilisce che l azione a è possibile nella situazione s; è l insieme di assiomi della forma: F (x 1,..., x n, do(a, s)) Ψ F ((x 1,..., x n ), a, s) dove Ψ F è una formula con variabili libere al più (x 1,..., x n stabilisce le condizioni per cui il fluente F è vero nella situa Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 15

17 Una descrizione dinamica: l agente-fidanzato Agente che compra dei fiori, li porta e li offre alla sua ragazzaagente, che quindi è contenta. Azioni: andare da(x), andare via da(x) comprare(x) procurarsi soldi, offrire(x, y) Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 16

18 Una descrizione dinamica: l agente-fidanzato 2 Simboli di predicato (oltre a P oss): Dove(a, x) è vero se x è il luogo in cui l azione a viene eseguita; Sono vicino a(x, s) è vero se l agente è vicino all oggetto x nella situazione s; Ho soldi per(x, s) è vero se l agente ha soldi per comprare l oggetto x nella situazione s; P ossiedo(x, s) è vero se l agente ha l oggetto x nella situazione s; Contenta(x, s) è vero se l agente x è contento nella situazione s. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 17

19 Precondizioni 1. P oss(procurarsi soldi, s) 2. P oss(andare da(x), s) 3. P oss(andare via da(x), s) 4. P oss(comprare(x), s) ydove(comprare(x), y) Sono vicino a(y, s) Ho soldi per(x, s) 5. P oss(offrire(x, y), s) P ossiedo(x) Sono vicino a(y, s) x = fiori y = mia agente ragazza Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 18

20 Assiomi di stato successore 6. Ho soldi per(x, do(a, s)) a = procurarsi soldi (Ho soldi per(x, s) z a = comprare(z)) 7. Sono vicino a(x, do(a, s)) a = andare da(x) (Sono vicino a(x, s) a andare via da(x)) 8. P ossiedo(x, do(a, s)) a = comprare(x) (P ossiedo(x, s) a offrire(x, y)) 9. Contenta(x, do(a, s)) a = offrire(fiori, x) x = mia agente ragazza (Contenta(x, s) a = andare via da(x))) Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 19

21 Mondo dei blocchi in SitCal Fluenti e azioni: P osso(a, s) è un predicato a due argomenti; ci dice se si può fare l azione a in s; Libero(x, s) è un predicato a due argomenti; ci dice se un blocco x non ha altri blocchi sopra di sé in s; Su(x, y, s) è un predicato a tre argomenti; ci dice se un blocco x si trova sopra (a contatto di) y in s; Sul tavolo(x, s) è un predicato a due argomenti; ci dice se un blocco x si trova a contatto del tavolo in s; muovere(x, y) è una funzione, ovvero un azione; ci dice che il blocco x viene mosso su y; muovere sul tavolo(x) è una funzione, ovvero un azione; ci dice che il blocco x viene mosso sul tavolo. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 20

22 Assiomi di precondizione 1 P osso(muovere(x, y), s) Libero(x, s) Libero(y, s) x y 2 P osso(muovere sul tavolo(x), s) Libero(x, s) Sul tavolo(x, s) Assiomi di di nome unico 6 muovere(x, y) muovere sul tavolo(z) 7 muovere(x, y) = muovere(x, y ) x = x y = y 8 muovere sul tavolo(x) = muovere sul tavolo(x ) x = x Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 21

23 Assiomi di stato successore 3 Libero(x, do(a, s)) y (( z a = muovere(y, z) a = muovere sul tavolo(y)) Su(y, x, s)) Libero(x, s) ( y a = muovere(y, x)) 4 Su(x, y, do(a, s)) a = muovere(x, y) Su(x, y, s) a = muovere sul tavolo(x) z a = muovere(x, z) 5 Sul tavolo(x, do(a, s)) a = muovere sul tavolo(x) Sul tavolo(x, s) y a = muovere(x, y) Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 22

24 Situazione iniziale Blocco(a) Blocco(b) Blocco(c) Blocco(d) Blocco(e) Blocco(f) Su(c, b, S 0 ) Su(b, a, S 0 ) Su(a, tavolo, S 0 ) Su(e, d, S 0 ) Su(f, tavolo, S 0 ) Dobbiamo aggiungere che i blocchi sono tutti e soli quelli elencati: Blocco(x) x = a x = b x = c x = d x = e x = f Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 23

25 La pianificazione deduttiva Un problema di pianificazione deduttiva nel calcolo delle situazioni è definito da: D = sgoal(s) dove D è la teoria delle azioni che comprende: D S0, D una, D ap, D ss e Σ. Poiché una teoria dinamica D è verificata in strutture ad albero, un goal può essere verificato seguendo diversi percorsi s = do(a k,... do(a 1, S 0 )). Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 24

26 Correttezza e completezza L approccio deduttivo alla pianificazione garantisce correttezza e completezza, cioè: Se un piano per il Goal esiste esso viene trovato Se una sequenza viene dedotta, questa è un piano. L indecidibilità del calcolo del primo ordine fa sì che delle deduzioni potrebbero non necessariamente terminare. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 25

27 Eseguibilità Con la formulazione data un piano potrebbe includere una azione che non può essere eseguita. Un piano deve essere legale, o eseguibile D = s(executable(s) Goal(s)) La condizione executable(s) garantisce che per ogni passo del piano vengano verificate le precondizioni per l esecuzione delle azioni. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 26

28 Ottimalità Correttezza e completezza non eliminano la possibilità di dedurre piani che contengono cicli o piani non ottimali. Per eliminare le sequenze inutili occorre evitare di ripetere certe azioni una volta che un determinato fluente è stato verificato; Questo può essere fatto inserendo nella assiomatizzazione la descrizione delle cosiddette bad situations, cioè situazioni che non si vuole il pianificatore raggiunga, in modo da potare l albero di ricerca ed evitare azioni inutili. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 27

29 La regressione Nella pianificazione deduttiva i piani possono essere generati con una ricerca nello spazio degli stati, che a partire dalla situazione iniziale, raggiunga uno stato che soddisfa l obiettivo. La Regressione è un metodo per verificare la derivabilità di un piano: D = Goal(do(a k,..., do(a 1, S 0 ))) se e solo se D S0 = R(Goal(do(a k,..., do(a 1, S 0 ))) dove R è un operatore che, data una formula in cui tutti i termini di tipo situazione che vi occorrono sono chiusi, restituisce una formula in cui l unico termine di tipo situazione che vi occorre è la costante S 0. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 28

30 Aggiornamento delle basi di dati Lo stato (situazione) in cui si trova una base di dati può essere descritta come il risultato di una sequenza di transazioni (operazioni di aggiornamento). Nel calcolo delle situazioni il problema si modella: i dati nella based i dati corrispondono a relazioni le operazioni di aggiornamento sono azioni tutto ciò che non è modificato da una transazione persiste La regressione consente di calcolare lo stato della base di dati. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 29

ALGEBRA I: CARDINALITÀ DI INSIEMI

ALGEBRA I: CARDINALITÀ DI INSIEMI ALGEBRA I: CARDINALITÀ DI INSIEMI 1. CONFRONTO DI CARDINALITÀ E chiaro a tutti che esistono insiemi finiti cioè con un numero finito di elementi) ed insiemi infiniti. E anche chiaro che ogni insieme infinito

Dettagli

Un programma GOLOG è un azione complessa, che viene ridotta ad azioni primitive, corrispondenti ad azioni reali nel dominio di applicazione.

Un programma GOLOG è un azione complessa, che viene ridotta ad azioni primitive, corrispondenti ad azioni reali nel dominio di applicazione. GOLOG GOLOG è un linguaggio di programmazione ad altissimo livello che permette di modellare comportamenti complessi in un mondo che evolve dinamicamente. Nei linguaggi di programmazione standard i programmi

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA

ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA ALGEBRA I: NUMERI INTERI, DIVISIBILITÀ E IL TEOREMA FONDAMENTALE DELL ARITMETICA 1. RICHIAMI SULLE PROPRIETÀ DEI NUMERI NATURALI Ho mostrato in un altra dispensa come ricavare a partire dagli assiomi di

Dettagli

Intelligenza Artificiale. Pianificazione. Intelligenza Artificiale Daniele Nardi, 2003 Pianificazione 0

Intelligenza Artificiale. Pianificazione. Intelligenza Artificiale Daniele Nardi, 2003 Pianificazione 0 Intelligenza Artificiale Pianificazione Intelligenza Artificiale Daniele Nardi, 2003 Pianificazione 0 Pianificazione automatica (Capitolo 12 del R& N) Estensioni di POP: Partial Order Planning Applicazioni

Dettagli

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati Tipologie di pianificatori Pianificazione Intelligenza Artificiale e Agenti II modulo Pianificazione a ordinamento parziale (POP) (HTN) pianificazione logica (SatPlan) Pianificazione come ricerca su grafi

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile.

Si basano sul seguente Teorema: S = A sse S { A} è insoddisfacibile. Deduzione automatica La maggior parte dei metodi di deduzione automatica sono metodi di refutazione: anziché dimostrare direttamente che S A, si dimostra che S { A} è un insieme insoddisfacibile (cioè

Dettagli

Ricapitoliamo. Ricapitoliamo

Ricapitoliamo. Ricapitoliamo Ricapitoliamo Finora ci siamo concentrati sui processi computazionali e sul ruolo che giocano le procedure nella progettazione dei programmi In particolare, abbiamo visto: Come usare dati primitivi (numeri)

Dettagli

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale

Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Corso di Scienza Economica (Economia Politica) prof. G. Di Bartolomeo Lezione 10: Il problema del consumatore: Preferenze e scelta ottimale Facoltà di Scienze della Comunicazione Università di Teramo Scelta

Dettagli

Lezione 10. La Statistica Inferenziale

Lezione 10. La Statistica Inferenziale Lezione 10 La Statistica Inferenziale Filosofia della scienza Secondo Aristotele, vi sono due vie attraverso le quali riusciamo a formare le nostre conoscenze: (1) la deduzione (2) l induzione. Lezione

Dettagli

Logica del primo ordine

Logica del primo ordine Logica del primo ordine Sistema formale sviluppato in ambito matematico formalizzazione delle leggi del pensiero strette relazioni con studi filosofici In ambito Intelligenza Artificiale logica come linguaggio

Dettagli

APPLICAZIONI LINEARI

APPLICAZIONI LINEARI APPLICAZIONI LINEARI 1. Esercizi Esercizio 1. Date le seguenti applicazioni lineari (1) f : R 2 R 3 definita da f(x, y) = (x 2y, x + y, x + y); (2) g : R 3 R 2 definita da g(x, y, z) = (x + y, x y); (3)

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

Lezioni di Matematica 1 - I modulo

Lezioni di Matematica 1 - I modulo Lezioni di Matematica 1 - I modulo Luciano Battaia 16 ottobre 2008 Luciano Battaia - http://www.batmath.it Matematica 1 - I modulo. Lezione del 16/10/2008 1 / 13 L introduzione dei numeri reali si può

Dettagli

Non-monotonic reasoning

Non-monotonic reasoning Logica classica Non-monotonic reasoning modella alcuni aspetti del modo di ragionare umano ma richiede conoscenza completa conoscenza consistente conoscenza fissa che non varia nel tempo Ragionamento in

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE)

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) Contenuti Michelene Chi Livello ottimale di sviluppo L. S. Vygotskij Jerome Bruner Human Information Processing Teorie della Mente Contrapposizione

Dettagli

Logica del primo ordine

Logica del primo ordine Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI

APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI APPUNTI DI MATEMATICA LE DISEQUAZIONI NON LINEARI Le disequazioni fratte Le disequazioni di secondo grado I sistemi di disequazioni Alessandro Bocconi Indice 1 Le disequazioni non lineari 2 1.1 Introduzione.........................................

Dettagli

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme

Proof. Dimostrazione per assurdo. Consideriamo l insieme complementare di P nell insieme G Pareschi Principio di induzione Il Principio di Induzione (che dovreste anche avere incontrato nel Corso di Analisi I) consente di dimostrare Proposizioni il cui enunciato è in funzione di un numero

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica. Programmazione I - corso B a.a. 2009-10. prof.

Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica. Programmazione I - corso B a.a. 2009-10. prof. Università di Torino Facoltà di Scienze MFN Corso di Studi in Informatica Programmazione I - corso B a.a. 009-10 prof. Viviana Bono Blocco 9 Metodi statici: passaggio parametri, variabili locali, record

Dettagli

Percorsi di matematica per il ripasso e il recupero

Percorsi di matematica per il ripasso e il recupero Giacomo Pagina Giovanna Patri Percorsi di matematica per il ripasso e il recupero 1 per la Scuola secondaria di secondo grado UNITÀ CMPIONE Edizioni del Quadrifoglio à t i n U 1 Insiemi La teoria degli

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

FUNZIONI CONVESSE. + e x 0

FUNZIONI CONVESSE. + e x 0 FUNZIONI CONVESSE Sia I un intervallo aperto di R (limitato o illimitato) e sia f(x) una funzione definita in I. Dato x 0 I, la retta r passante per il punto P 0 (x 0, f(x 0 )) di equazione y = f(x 0 )

Dettagli

Esercizi sull Association Analysis

Esercizi sull Association Analysis Data Mining: Esercizi sull Association Analysis 1 Esercizi sull Association Analysis 1. Si consideri il mining di association rule da un dataset T di transazioni, rispetto a delle soglie minsup e minconf.

Dettagli

TEORIA DELL UTILITÀ E DECISION PROCESS

TEORIA DELL UTILITÀ E DECISION PROCESS TEORIA DELL UTILITÀ E DECISION PROCESS 1 UTILITÀ Classicamente sinonimo di Desiderabilità Fisher (1930):... uno degli elementi che contribuiscono ad identificare la natura economica di un bene e sorge

Dettagli

Dall italiano alla logica proposizionale

Dall italiano alla logica proposizionale Rappresentare l italiano in LP Dall italiano alla logica proposizionale Sandro Zucchi 2009-10 In questa lezione, vediamo come fare uso del linguaggio LP per rappresentare frasi dell italiano. Questo ci

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni.

Albero semantico. Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. Albero semantico Albero che mette in corrispondenza ogni formula con tutte le sue possibili interpretazioni. A differenza dell albero sintattico (che analizza la formula da un punto di vista puramente

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Logica predicativa del prim ordine

Logica predicativa del prim ordine Logica predicativa del prim ordine Eugenio G. Omodeo Anno accademico 2007/ 08 Contents 1 Linguaggi per la logica predicativa del prim ordine 5 1.1 Sintassi di un linguaggio predicativo........................

Dettagli

OGNI SPAZIO VETTORIALE HA BASE

OGNI SPAZIO VETTORIALE HA BASE 1 Mimmo Arezzo OGNI SPAZIO VETTORIALE HA BASE CONVERSAZIONE CON ALCUNI STUDENTI DI FISICA 19 DICEMBRE 2006 2 1 Preliminari Definizione 1.0.1 Un ordinamento parziale (o una relazione d ordine parziale)

Dettagli

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04

I numeri reali. Note per il corso di Analisi Matematica 1. G. Mauceri. a.a. 2003-04 I numeri reali Note per il corso di Analisi Matematica 1 G. Mauceri a.a. 2003-04 2 I numeri reali Contents 1 Introduzione 3 2 Gli assiomi di campo 3 3 Gli assiomi dell ordine 4 4 Valore assoluto 5 5 I

Dettagli

Reti di Telecomunicazione Lezione 7

Reti di Telecomunicazione Lezione 7 Reti di Telecomunicazione Lezione 7 Marco Benini Corso di Laurea in Informatica marco.benini@uninsubria.it Il protocollo Programma della lezione file transfer protocol descrizione architetturale descrizione

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Esponenziali elogaritmi

Esponenziali elogaritmi Esponenziali elogaritmi Potenze ad esponente reale Ricordiamo che per un qualsiasi numero razionale m n prendere n>0) si pone a m n = n a m (in cui si può sempre a patto che a sia un numero reale positivo.

Dettagli

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. Universitá di Bologna

Linguaggi. Claudio Sacerdoti Coen 11/04/2011. 18: Semantica della logica del prim ordine. <sacerdot@cs.unibo.it> Universitá di Bologna Linguaggi 18: Semantica della logica del prim ordine Universitá di Bologna 11/04/2011 Outline Semantica della logica del prim ordine 1 Semantica della logica del prim ordine Semantica

Dettagli

Che cosa abbiamo fatto fin ora. Perché? Agente basato su conoscenza. Introduzione alla rappresentazione della conoscenza

Che cosa abbiamo fatto fin ora. Perché? Agente basato su conoscenza. Introduzione alla rappresentazione della conoscenza Che cosa abbiamo fatto fin ora Introduzione alla rappresentazione della conoscenza ovvero Come costruire agenti basati su conoscenza e dotati di capacità di ragionamento Maria Simi, 2014/2015 Abbiamo trattato:

Dettagli

Programmazione Funzionale

Programmazione Funzionale Programmazione Funzionale LP imperativi: apparenza simile modello di progettazione = macchina fisica Famiglia dei LP imperativi = progressivo miglioramento del FORTRAN Obiezione: pesante aderenza dei LP

Dettagli

Esistenza di funzioni continue non differenziabili in alcun punto

Esistenza di funzioni continue non differenziabili in alcun punto UNIVERSITÀ DEGLI STUDI DI CAGLIARI FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI CORSO DI LAUREA IN MATEMATICA Esistenza di funzioni continue non differenziabili in alcun punto Relatore Prof. Andrea

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Basi di Dati prof. Letizia Tanca lucidi ispirati al libro Atzeni-Ceri-Paraboschi-Torlone. SQL: il DDL

Basi di Dati prof. Letizia Tanca lucidi ispirati al libro Atzeni-Ceri-Paraboschi-Torlone. SQL: il DDL Basi di Dati prof. Letizia Tanca lucidi ispirati al libro Atzeni-Ceri-Paraboschi-Torlone SQL: il DDL Parti del linguaggio SQL Definizione di basi di dati (Data Definition Language DDL) Linguaggio per modificare

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Cenni su algoritmi, diagrammi di flusso, strutture di controllo

Cenni su algoritmi, diagrammi di flusso, strutture di controllo Cenni su algoritmi, diagrammi di flusso, strutture di controllo Algoritmo Spesso, nel nostro vivere quotidiano, ci troviamo nella necessità di risolvere problemi. La descrizione della successione di operazioni

Dettagli

Cenni sul calcolo combinatorio

Cenni sul calcolo combinatorio Cenni sul calcolo combinatorio Disposizioni semplici Le disposizioni semplici di n elementi distinti di classe k con kn sono tutti i gruppi di k elementi scelti fra gli n, che differiscono per almeno un

Dettagli

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5

Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Analisi Costi e Benefici Laura Vici laura.vici@unibo.it LEZIONE 5 Rimini, 26 aprile 2006 1 The Inter temporal Effects of International Trade Valore in $ del consumo di beni oggi G D F H 1/(1+r) G Valore

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

5 Radici primitive dell unità e congruenze del tipo

5 Radici primitive dell unità e congruenze del tipo 5 Radici primitive dell unità e congruenze del tipo X m a (mod n ) Oggetto di questo paragrafo è lo studio della risolubilità di congruenze del tipo: X m a (mod n) con m, n, a Z ed m, n > 0. Per l effettiva

Dettagli

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare

Linguaggi del I ordine - semantica. Per dare significato ad una formula del I ordine bisogna specificare Linguaggi del I ordine - semantica Per dare significato ad una formula del I ordine bisogna specificare Un dominio Un interpretazione Un assegnamento 1 Linguaggi del I ordine - semantica (ctnd.1) Un modello

Dettagli

Esercitazioni per il corso di Logica Matematica

Esercitazioni per il corso di Logica Matematica Esercitazioni per il corso di Logica Matematica Luca Motto Ros 14 marzo 2005 Nota importante. Queste pagine contengono appunti personali dell esercitatore e sono messe a disposizione nel caso possano risultare

Dettagli

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y =

ESERCIZI. x + 3 x 2 1. a) y = 4x2 + 3x 2x + 2 ; b) y = 6x2 x 1. (x + 2) 2 c) y = ESERCIZI Testi (1) Un urna contiene 20 palline di cui 8 rosse 3 bianche e 9 nere; calcolare la probabilità che: (a) tutte e tre siano rosse; (b) tutte e tre bianche; (c) 2 rosse e una nera; (d) almeno

Dettagli

QUADERNI DI DIDATTICA

QUADERNI DI DIDATTICA Department of Applied Mathematics, University of Venice QUADERNI DI DIDATTICA Tatiana Bassetto, Marco Corazza, Riccardo Gusso, Martina Nardon Esercizi sulle funzioni di più variabili reali con applicazioni

Dettagli

Rischio e Volatilità

Rischio e Volatilità 2 Meeting annuale SellaAdvice Trading Rho,, 20 novembre 2004 Rischio e Volatilità Relatore: Maurizio Milano Da dove deve partire un analisi tecnica operativa a supporto di un attività di trading? L elemento

Dettagli

Corso di teoria dei modelli

Corso di teoria dei modelli Corso di teoria dei modelli Alessandro Berarducci 22 Aprile 2010. Revised 5 Oct. 2010 Indice 1 Introduzione 2 2 Linguaggi del primo ordine 3 2.1 Linguaggi e strutture......................... 3 2.2 Morfismi................................

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Sistemi di Riscrittura per Termini del Prim Ordine

Sistemi di Riscrittura per Termini del Prim Ordine Sistemi di Riscrittura per Termini del Prim Ordine Paola Inverardi, Monica Nesi e Marisa Venturini Zilli Dipartimento di Matematica Pura e Applicata Università di L Aquila Dipartimento di Scienze dell

Dettagli

Dall italiano al linguaggio della logica proposizionale

Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Dall italiano al linguaggio della logica proposizionale Enunciati atomici e congiunzione In questa lezione e nelle successive, vedremo come fare

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro

Lo Spettro primo di un anello. Carmelo Antonio Finocchiaro Lo Spettro primo di un anello Carmelo Antonio Finocchiaro 2 Indice 1 Lo spettro primo di un anello: introduzione 5 1.1 Le regole del gioco................................ 5 1.2 Prime definizioni e risultati

Dettagli

19. Inclusioni tra spazi L p.

19. Inclusioni tra spazi L p. 19. Inclusioni tra spazi L p. Nel n. 15.1 abbiamo provato (Teorema 15.1.1) che, se la misura µ è finita, allora tra i corispondenti spazi L p (µ) si hanno le seguenti inclusioni: ( ) p, r ]0, + [ : p

Dettagli

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme

Per lo svolgimento del corso risulta particolarmente utile considerare l insieme 1. L insieme R. Per lo svolgimento del corso risulta particolarmente utile considerare l insieme R = R {, + }, detto anche retta reale estesa, che si ottiene aggiungendo all insieme dei numeri reali R

Dettagli

IN BASSO NELLA FINESTRA C È LA BARRA DI DISEGNO. SE NON È VISIBILE, FARE CLIC SUL MENU IN ALTO: VISUALIZZA / BARRE DEGLI STRUMENTI / DISEGNO

IN BASSO NELLA FINESTRA C È LA BARRA DI DISEGNO. SE NON È VISIBILE, FARE CLIC SUL MENU IN ALTO: VISUALIZZA / BARRE DEGLI STRUMENTI / DISEGNO FARE UNA MAPPA CON OPENOFFICE IMPRESS START/PROGRAMMI APRIRE IMPRESS SCEGLIERE PRESENTAZIONE VUOTA. POI CLIC SU AVANTI E DI NUOVO SU AVANTI. QUANDO AVANTI NON COMPARE PIÙ, FARE CLIC SU CREA CHIUDERE LE

Dettagli

Calcolo delle Probabilità

Calcolo delle Probabilità Calcolo delle Probabilità Il calcolo delle probabilità studia i modelli matematici delle cosidette situazioni di incertezza. Molte situazioni concrete sono caratterizzate a priori da incertezza su quello

Dettagli

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta

Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Equazione della Circonferenza - Grafico di una Circonferenza - Intersezione tra Circonferenza e Retta Francesco Zumbo www.francescozumbo.it http://it.geocities.com/zumbof/ Questi appunti vogliono essere

Dettagli

Decisioni di finanziamento e mercati finanziari efficienti BMAS Capitolo 12

Decisioni di finanziamento e mercati finanziari efficienti BMAS Capitolo 12 Finanza Aziendale Decisioni di finanziamento e mercati finanziari efficienti BMAS Capitolo 12 Copyright 2003 - The McGraw-Hill Companies, srl 1 Argomenti Decisioni di finanziamento e VAN Informazioni e

Dettagli

1865 SARDINIA 1. COMPONENTI DEL GIOCO 2. PREPARAZIONE. 1865: Sardinia Rules Summary. Sunto del regolamento in italiano; Versione regole originali E

1865 SARDINIA 1. COMPONENTI DEL GIOCO 2. PREPARAZIONE. 1865: Sardinia Rules Summary. Sunto del regolamento in italiano; Versione regole originali E 1865 SARDINIA Sunto del regolamento in italiano; Versione regole originali E Attenzione: il regolamento originale va comunque letto. Il presente sunto ha il solo scopo di fare da introduzione e veloce

Dettagli

Costruire una pila in classe

Costruire una pila in classe Costruire una pila in classe Angela Turricchia, Grazia Zini e Leopoldo Benacchio Considerazioni iniziali Attualmente, numerosi giocattoli utilizzano delle pile. I bambini hanno l abitudine di acquistarle,

Dettagli

1. Intorni di un punto. Punti di accumulazione.

1. Intorni di un punto. Punti di accumulazione. 1. Intorni di un punto. Punti di accumulazione. 1.1. Intorni circolari. Assumiamo come distanza di due numeri reali x e y il numero non negativo x y (che, come sappiamo, esprime la distanza tra i punti

Dettagli

Funzione reale di variabile reale

Funzione reale di variabile reale Funzione reale di variabile reale Siano A e B due sottoinsiemi non vuoti di. Si chiama funzione reale di variabile reale, di A in B, una qualsiasi legge che faccia corrispondere, a ogni elemento A x A

Dettagli

Gli uni e gli altri. Strategie in contesti di massa

Gli uni e gli altri. Strategie in contesti di massa Gli uni e gli altri. Strategie in contesti di massa Alessio Porretta Universita di Roma Tor Vergata Gli elementi tipici di un gioco: -un numero di agenti (o giocatori): 1,..., N -Un insieme di strategie

Dettagli

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE

ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE ALCUNE APPLICAZIONI DEL CALCOLO DIFFERENZIALE Sia I un intervallo di R e siano a = inf(i) R { } e b = sup(i) R {+ }; i punti di I diversi dagli estremi a e b, ( e quindi appartenenti all intervallo aperto

Dettagli

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI

SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI G. FANO (Torino - Italia) SULLE VARIETÀ ALGEBRICHE A TRE DIMENSIONI AVENTI TUTTI I GENERI NULLI 1. - La distinzione, che pareva tradizionale, tra scienze di ragionamento e scienze sperimentali è ormai

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale

4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale 4 Quarta lezione: Spazi di Banach e funzionali lineari. Spazio duale Spazi Metrici Ricordiamo che uno spazio metrico è una coppia (X, d) dove X è un insieme e d : X X [0, + [ è una funzione, detta metrica,

Dettagli

Teoria della misurazione e misurabilità di grandezze non fisiche

Teoria della misurazione e misurabilità di grandezze non fisiche Teoria della misurazione e misurabilità di grandezze non fisiche Versione 12.6.05 Teoria della misurazione e misurabilità di grandezze non fisiche 1 Il contesto del discorso (dalla lezione introduttiva)

Dettagli

Parte 2. Determinante e matrice inversa

Parte 2. Determinante e matrice inversa Parte. Determinante e matrice inversa A. Savo Appunti del Corso di Geometria 013-14 Indice delle sezioni 1 Determinante di una matrice, 1 Teorema di Cramer (caso particolare), 3 3 Determinante di una matrice

Dettagli

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani

Ricerca Operativa Esercizi sul metodo del simplesso. Luigi De Giovanni, Laura Brentegani Ricerca Operativa Esercizi sul metodo del simplesso Luigi De Giovanni, Laura Brentegani 1 1) Risolvere il seguente problema di programmazione lineare. ma + + 3 s.t. 2 + + 2 + 2 + 3 5 2 + 2 + 6,, 0 Soluzione.

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli

Risposta temporale: esercizi

Risposta temporale: esercizi ...4 Risposta temporale: esercizi Esercizio. Calcolare la risposta al gradino del seguente sistema: G(s) X(s) = s (s+)(s+) Y(s) Per ottenere la risposta al gradino occorre antitrasformare la seguente funzione:

Dettagli

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys.

METODO DEI MINIMI QUADRATI. Quest articolo discende soprattutto dai lavori di Deming, Press et al. (Numerical Recipes) e Jefferys. METODO DEI MINIMI QUADRATI GIUSEPPE GIUDICE Sommario Il metodo dei minimi quadrati è trattato in tutti i testi di statistica e di elaborazione dei dati sperimentali, ma non sempre col rigore necessario

Dettagli

Capitolo 8 - Introduzione alla probabilità

Capitolo 8 - Introduzione alla probabilità Appunti di Teoria dei Segnali Capitolo 8 - Introduzione alla probabilità Concetti preliminari di probabilità... Introduzione alla probabilità... Deinizione di spazio degli eventi... Deinizione di evento...

Dettagli

FORWARD RATE AGREEMENT

FORWARD RATE AGREEMENT FORWARD RATE AGREEMENT FLAVIO ANGELINI. Definizioni In generale, un contratto a termine o forward permette una compravendita di una certa quantità di un bene differita a una data futura a un prezzo fissato

Dettagli

Rischio impresa. Rischio di revisione

Rischio impresa. Rischio di revisione Guida alla revisione legale PIANIFICAZIONE del LAVORO di REVISIONE LEGALE dei CONTI Formalizzazione delle attività da svolgere nelle carte di lavoro: determinazione del rischio di revisione, calcolo della

Dettagli

AA 2006-07 LA RICORSIONE

AA 2006-07 LA RICORSIONE PROGRAMMAZIONE AA 2006-07 LA RICORSIONE AA 2006-07 Prof.ssa A. Lanza - DIB 1/18 LA RICORSIONE Il concetto di ricorsione nasce dalla matematica Una funzione matematica è definita ricorsivamente quando nella

Dettagli

2. L iscrizione nel Registro delle Imprese

2. L iscrizione nel Registro delle Imprese 2. L iscrizione nel Registro delle Imprese 2.1 Gli effetti dell iscrizione nel Registro delle Imprese L art. 2 del d.lgs. 18 maggio 2001, n. 228 (in materia di orientamento e modernizzazione del settore

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

Guida all'installazione ed uso dell'app RXCamLink

Guida all'installazione ed uso dell'app RXCamLink Guida all'installazione ed uso dell'app RXCamLink Questa guida riporta i passi relativi all'installazione ed all'utilizzo dell'app "RxCamLink" per il collegamento remoto in mobilità a sistemi TVCC basati

Dettagli