Intelligenza Artificiale. Lezione 23. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 0

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Intelligenza Artificiale. Lezione 23. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 0"

Transcript

1 Intelligenza Artificiale Lezione 23 Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 0

2 Azioni e cambiamento Il calcolo delle situazioni Pianificazione Deduttiva (Capitolo 11 delle dispense, 7.6 RN) Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 1

3 Calcolo delle situazioni Linguaggio del primo ordine con uguaglianza e con più sorti: azione oggetto situazione Il linguaggio contiene: do(a, s), che fornisce come valore una situazione; < ( ) che si applica a coppie di situazioni, la costante S 0 di sorte situazione Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 2

4 Fluenti Un fluente si differenzia da un simbolo normale perché il suo valore può variare al variare della situazione P (x 1,..., x n, s); f(x 1,..., x n, s). Esempi: Su(x, y, s), Su(x, y, s ), colore(x, s) = rosso, colore(x, s ) = rosso. P oss(a, s) è un fluente il cui significato intuitivo è che l azione a è possibile nella situazione s. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 3

5 La teoria del calcolo delle situazioni La teoria del calcolo delle situazioni consiste in una assiomatizzazione per le situazioni, la quale garantisce che la struttura delle situazioni sia un albero (di profondità infinita e con una ramificazione limitata dalla cardinalità del dominio di sorte azione) e una assiomatizzazione che definisce le leggi causali del dominio che si intende descrivere. L assiomatizzazione per le situazioni, che chiamiamo Σ, è la seguente: s1. s < S 0, s2. do(a 1, s 1 ) = do(a 2, s 2 ) a 1 = a 2 s 1 = s 2 s3. s < do(a, s ) s s s4. P (S 0 ) ( a, s)[p (s) P (do(a, s))] ( s)p (s) Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 4

6 La teoria del calcolo delle situazioni Il modello di Σ è: GS = (A S,, cons, [ ]) Dove è l unione disgiunta; A è il dominio della sorte azione, i cui elementi saranno indicati con α; S è il dominio della sorte situazione, ed è definito come l insieme induttivo che soddisfa: [ ] S σ S implica per ogni α A, cons(α, σ) S dove [ ], è l interpretazione di S 0 ; cons interpreta la funzione do ed è definito induttivamente come segue: cons(α, [ ]) = [α] cons(α, cons(α, σ)) = cons(α, [α, σ]) Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 5

7 Assiomatizzazione della descrizione del dominio 1. Gli assiomi di nome unico per le azioni (una unique name axioms): sono gli assiomi che stabiliscono che tutte le azioni hanno nome unico. 2. La descrizione del dominio nello stato iniziale S Gli assiomi di precondizione (ap): costituiscono la descrizione delle condizioni per le quali un azione è eseguibile, un assioma per ciascuna azione. 4. Gli assiomi di stato successore (ss): sono la descrizione delle leggi causali del dominio, un assioma per ciascun fluente. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 6

8 Problemi (aspetti) della rappresentazione qualificazione delle precondizioni (qualification problem) specifica degli effetti (frame problem: frame = cornice, problema del cambiamento) assiomi statici e ramificazione degli effetti (ramification problem) Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 7

9 Qualificazione (delle precondizioni) Condizione necessaria per la riparazione P oss(ripara(w, x), s) hacolla(w, s) rotto(x, s) ma è anche sufficiente? hacolla(w, s) rotto(x, s) P oss(ripara(w, x), s) Basta avere la colla per aggiustare un oggetto rotto? La colla potrebbe essere secca, inadatta per il materiale dell oggetto, potrebbe risultare impossibile aprire il barattolo... Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 8

10 Soluzioni al problema della qualificazione 1. Si assume che le precondizioni siano necessarie e sufficienti (p.e. nel calcolo delle situazioni) In questo modo si esclude la possibililità che esistano impedimenti all esecuzione dell azione. 2. Occorre fare un ipotesi del tipo a meno che non ci siano impedimenti che porta ad una forma di ragionamento non monotono. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 9

11 Frame problem Specifica compatta di ciò che non cambia. Effetto di sposta(b 1, b 2, tavolo) non cambia il colore di b 1, e nemmeno quello degli altri blocchi, e del tavolo!!!! Quindi tra gli effetti di sposta occorre aggiungere x, b, s.colore(b, x, do(sposta, s)) = colore(b, x, s) E poi, c è il peso, la forma, la posizione... Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 10

12 Persistenza Per ogni azione ci sono molte proprietà che non vengono modificate dall esecuzione, cioè persistono. Soluzioni al Frame Problem (***): 1. assiomi di stato successore la logica rimane monotona, ma ci sono delle restrizioni (p.e. sull uso degli assiomi statici ) 2. aggiungendo regole del tipo tutto ciò che non viene specificato negli effetti persiste la logica diventa non monotona Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 11

13 Soluzione (monotona) al frame problem 1. si considerano gli effetti positivi e negativi delle azioni per ogni fluente: γ F + (x, a, s) F (x, do(a, s)) γf (x, a, s) F (x, do(a, s)) 2. Si assume la completezza causale: il fluente F è completamente definito dai due assiomi al punto 1 3. si fa l ipotesi di nome unico per le azioni 4. si ottengono gli assiomi di stato successore: F (x, do(a, s)) γ F + (x, a, s) F (x, s) γ F (x, a, s) Nel calcolo delle situazioni si scrivono direttamente gli assiomi di stato successore. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 12

14 Ramificazioni degli effetti È utile spesso specificare delle condizioni che valgono indipendentemente dalle situazioni: assiomi statici Se la porta e la finestra sono aperte si crea corrente (indipendentente dalla particolare situazione). portaaperta f inestraaperta corrente L effetto dell azione aprip orta è portaaperta, ma se f inestraaperta un effetto indiretto di aprip orta è corrente. Un assioma statico deve sempre essere verificato e ciò può creare dei problemi con la persistenza: Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 13

15 normalmente corrente persiste quando viene eseguita aprip orta, ma non se f inestraaperta. Si hanno in genere diverse ramificazioni (situazioni possibili). Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 14

16 La teoria dinamica del dominio La teoria D che descrive il comportamento dinamico del dominio è definita come segue: D = Σ D S0 D una D ap D ss Dove Σ D una D S0 D ap D ss è l insieme degli assiomi fondazionali; è un insieme di assiomi del tipo a a per tutte le azioni; è l insieme di assiomi che descrivono lo stato iniziale; è l insieme di assiomi della forma: P oss(a(x 1,..., x n ), s) Π a ((x 1,..., x n ), s) dove Π a è una formula con variabili libere al più (x 1,..., x n stabilisce che l azione a è possibile nella situazione s; è l insieme di assiomi della forma: F (x 1,..., x n, do(a, s)) Ψ F ((x 1,..., x n ), a, s) dove Ψ F è una formula con variabili libere al più (x 1,..., x n stabilisce le condizioni per cui il fluente F è vero nella situa Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 15

17 Una descrizione dinamica: l agente-fidanzato Agente che compra dei fiori, li porta e li offre alla sua ragazzaagente, che quindi è contenta. Azioni: andare da(x), andare via da(x) comprare(x) procurarsi soldi, offrire(x, y) Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 16

18 Una descrizione dinamica: l agente-fidanzato 2 Simboli di predicato (oltre a P oss): Dove(a, x) è vero se x è il luogo in cui l azione a viene eseguita; Sono vicino a(x, s) è vero se l agente è vicino all oggetto x nella situazione s; Ho soldi per(x, s) è vero se l agente ha soldi per comprare l oggetto x nella situazione s; P ossiedo(x, s) è vero se l agente ha l oggetto x nella situazione s; Contenta(x, s) è vero se l agente x è contento nella situazione s. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 17

19 Precondizioni 1. P oss(procurarsi soldi, s) 2. P oss(andare da(x), s) 3. P oss(andare via da(x), s) 4. P oss(comprare(x), s) ydove(comprare(x), y) Sono vicino a(y, s) Ho soldi per(x, s) 5. P oss(offrire(x, y), s) P ossiedo(x) Sono vicino a(y, s) x = fiori y = mia agente ragazza Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 18

20 Assiomi di stato successore 6. Ho soldi per(x, do(a, s)) a = procurarsi soldi (Ho soldi per(x, s) z a = comprare(z)) 7. Sono vicino a(x, do(a, s)) a = andare da(x) (Sono vicino a(x, s) a andare via da(x)) 8. P ossiedo(x, do(a, s)) a = comprare(x) (P ossiedo(x, s) a offrire(x, y)) 9. Contenta(x, do(a, s)) a = offrire(fiori, x) x = mia agente ragazza (Contenta(x, s) a = andare via da(x))) Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 19

21 Mondo dei blocchi in SitCal Fluenti e azioni: P osso(a, s) è un predicato a due argomenti; ci dice se si può fare l azione a in s; Libero(x, s) è un predicato a due argomenti; ci dice se un blocco x non ha altri blocchi sopra di sé in s; Su(x, y, s) è un predicato a tre argomenti; ci dice se un blocco x si trova sopra (a contatto di) y in s; Sul tavolo(x, s) è un predicato a due argomenti; ci dice se un blocco x si trova a contatto del tavolo in s; muovere(x, y) è una funzione, ovvero un azione; ci dice che il blocco x viene mosso su y; muovere sul tavolo(x) è una funzione, ovvero un azione; ci dice che il blocco x viene mosso sul tavolo. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 20

22 Assiomi di precondizione 1 P osso(muovere(x, y), s) Libero(x, s) Libero(y, s) x y 2 P osso(muovere sul tavolo(x), s) Libero(x, s) Sul tavolo(x, s) Assiomi di di nome unico 6 muovere(x, y) muovere sul tavolo(z) 7 muovere(x, y) = muovere(x, y ) x = x y = y 8 muovere sul tavolo(x) = muovere sul tavolo(x ) x = x Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 21

23 Assiomi di stato successore 3 Libero(x, do(a, s)) y (( z a = muovere(y, z) a = muovere sul tavolo(y)) Su(y, x, s)) Libero(x, s) ( y a = muovere(y, x)) 4 Su(x, y, do(a, s)) a = muovere(x, y) Su(x, y, s) a = muovere sul tavolo(x) z a = muovere(x, z) 5 Sul tavolo(x, do(a, s)) a = muovere sul tavolo(x) Sul tavolo(x, s) y a = muovere(x, y) Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 22

24 Situazione iniziale Blocco(a) Blocco(b) Blocco(c) Blocco(d) Blocco(e) Blocco(f) Su(c, b, S 0 ) Su(b, a, S 0 ) Su(a, tavolo, S 0 ) Su(e, d, S 0 ) Su(f, tavolo, S 0 ) Dobbiamo aggiungere che i blocchi sono tutti e soli quelli elencati: Blocco(x) x = a x = b x = c x = d x = e x = f Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 23

25 La pianificazione deduttiva Un problema di pianificazione deduttiva nel calcolo delle situazioni è definito da: D = sgoal(s) dove D è la teoria delle azioni che comprende: D S0, D una, D ap, D ss e Σ. Poiché una teoria dinamica D è verificata in strutture ad albero, un goal può essere verificato seguendo diversi percorsi s = do(a k,... do(a 1, S 0 )). Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 24

26 Correttezza e completezza L approccio deduttivo alla pianificazione garantisce correttezza e completezza, cioè: Se un piano per il Goal esiste esso viene trovato Se una sequenza viene dedotta, questa è un piano. L indecidibilità del calcolo del primo ordine fa sì che delle deduzioni potrebbero non necessariamente terminare. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 25

27 Eseguibilità Con la formulazione data un piano potrebbe includere una azione che non può essere eseguita. Un piano deve essere legale, o eseguibile D = s(executable(s) Goal(s)) La condizione executable(s) garantisce che per ogni passo del piano vengano verificate le precondizioni per l esecuzione delle azioni. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 26

28 Ottimalità Correttezza e completezza non eliminano la possibilità di dedurre piani che contengono cicli o piani non ottimali. Per eliminare le sequenze inutili occorre evitare di ripetere certe azioni una volta che un determinato fluente è stato verificato; Questo può essere fatto inserendo nella assiomatizzazione la descrizione delle cosiddette bad situations, cioè situazioni che non si vuole il pianificatore raggiunga, in modo da potare l albero di ricerca ed evitare azioni inutili. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 27

29 La regressione Nella pianificazione deduttiva i piani possono essere generati con una ricerca nello spazio degli stati, che a partire dalla situazione iniziale, raggiunga uno stato che soddisfa l obiettivo. La Regressione è un metodo per verificare la derivabilità di un piano: D = Goal(do(a k,..., do(a 1, S 0 ))) se e solo se D S0 = R(Goal(do(a k,..., do(a 1, S 0 ))) dove R è un operatore che, data una formula in cui tutti i termini di tipo situazione che vi occorrono sono chiusi, restituisce una formula in cui l unico termine di tipo situazione che vi occorre è la costante S 0. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 28

30 Aggiornamento delle basi di dati Lo stato (situazione) in cui si trova una base di dati può essere descritta come il risultato di una sequenza di transazioni (operazioni di aggiornamento). Nel calcolo delle situazioni il problema si modella: i dati nella based i dati corrispondono a relazioni le operazioni di aggiornamento sono azioni tutto ciò che non è modificato da una transazione persiste La regressione consente di calcolare lo stato della base di dati. Intelligenza Artificiale Daniele Nardi, 2003 Lezione 23 29

Intelligenza Artificiale. Lezione 10

Intelligenza Artificiale. Lezione 10 Un sentito ringraziamento ed un ricordo per Raymond Reiter Intelligenza Artificiale Lezione 10 Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 10 0 Sommario Il calcolo delle situazioni Reiter

Dettagli

Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0

Rappresentazione della conoscenza. Lezione 11. Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Rappresentazione della conoscenza Lezione 11 Rappresentazione della Conoscenza Daniele Nardi, 2008Lezione 11 0 Sommario Pianificazione Deduttiva nel calcolo delle situazioni (Reiter 3.3) Teoria del calcolo

Dettagli

Interpretazione astratta

Interpretazione astratta Interpretazione astratta By Giulia Costantini (819048) e Giuseppe Maggiore (819050) Contents Interpretazione astratta... 2 Idea generale... 2 Esempio di semantica... 2 Semantica concreta... 2 Semantica

Dettagli

Componenti di un sistema KNOWLEDGE-BASED

Componenti di un sistema KNOWLEDGE-BASED Componenti di un sistema KNOWLEDGE-BASED DYNAMIC DATABASE PROBLEM FORMALIZATION CONTROL STRATEGY IL DATABASE DESCRIVE LA SITUAZIONE CORRENTE NELLA DETERMINAZIONE DELLA SOLUZIONE AL PROBLEMA. LA FORMALIZZAZIONE

Dettagli

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine

Algebra e Logica Matematica. Calcolo delle proposizioni Logica del primo ordine Università di Bergamo Anno accademico 2006 2007 Ingegneria Informatica Foglio Algebra e Logica Matematica Calcolo delle proposizioni Logica del primo ordine Esercizio.. Costruire le tavole di verità per

Dettagli

Verifica parte IIA. Test (o analisi dinamica) Mancanza di continuità. Esempio

Verifica parte IIA. Test (o analisi dinamica) Mancanza di continuità. Esempio Test (o analisi dinamica) Verifica parte IIA Rif. Ghezzi et al. 6.3-6.3.3 Consiste nell osservare il comportamento del sistema in un certo numero di condizioni significative Non può (in generale) essere

Dettagli

Elementi di Informatica e Programmazione

Elementi di Informatica e Programmazione Elementi di Informatica e Programmazione Il concetto di Algoritmo e di Calcolatore Corsi di Laurea in: Ingegneria Civile Ingegneria per l Ambiente e il Territorio Università degli Studi di Brescia Cos

Dettagli

Semantica Assiomatica

Semantica Assiomatica Semantica Assiomatica Anche nella semantica assiomatica, così come in quella operazionale, il significato associato ad un comando C viene definito specificando la transizione tra stati (a partire, cioè,

Dettagli

regola(1,[e,f],b) regola(2,[m,f],e) regola(3,[m],f) regola(4,[b,f],g) regola(5,[b,g],c) regola(6,[g,q],a)

regola(1,[e,f],b) regola(2,[m,f],e) regola(3,[m],f) regola(4,[b,f],g) regola(5,[b,g],c) regola(6,[g,q],a) ESERCIZIO1 PREMESSA Per risolvere problemi spesso esistono delle regole che, dai dati del problema, permettono di calcolare o dedurre la soluzione. Questa situazione si può descrivere col termine regola(,

Dettagli

I metodi formali nel processo di sviluppo del software

I metodi formali nel processo di sviluppo del software I metodi formali nel processo di sviluppo del software I metodi formali consentono di creare una specifica più completa, uniforme e non ambigua di quelle prodotte usando i metodi convenzionali ed orientati

Dettagli

Clickomania con Blockly

Clickomania con Blockly Clickomania con Blockly Violetta Lonati Sommario Clickomania è un solitario, noto anche come Chain Shot! o Same Game. Il campo di gioco è costituito da una parete inizialmente coperta di mattoni, uno per

Dettagli

Metodi formali per la verifica dell affidabilità di sistemi software (e hardware) (Peled, Software Reliability Methods, cap. 1) Importanza della

Metodi formali per la verifica dell affidabilità di sistemi software (e hardware) (Peled, Software Reliability Methods, cap. 1) Importanza della Metodi formali per la verifica dell affidabilità di sistemi software (e hardware) (Peled, Software Reliability Methods, cap. 1) Importanza della verifica di sistemi (safety-critical, commercially critical,

Dettagli

/* Goal a b c */ goal(s) :- ontable(c,s), on(a,b,s), on(b,c,s), clear(a,s). È necessario controllare la ricerca del piano

/* Goal a b c */ goal(s) :- ontable(c,s), on(a,b,s), on(b,c,s), clear(a,s). È necessario controllare la ricerca del piano Il motore di inferenza del Prolog potrebbe non trovare soluzioni /* file: simpleproblem3.pl */ /* Initial Situation a b c */ ontable(b,s0). ontable(c,s0). on(a,b,s0). clear(a,s0). clear(c,s0). /* Goal

Dettagli

FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti

FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti FONDAMENTI DI INTELLIGENZA ARTIFICIALE 1 parte (6 CFU) 12 Luglio 2012 Tempo a disposizione: 2 h Risultato: 32/32 punti Esercizio 1 (7 punti) Si formalizzi in logica dei predicati del primo ordine la seguente

Dettagli

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione

Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione 4 LEZIONE: Programmazione su Carta a Quadretti Tempo della lezione: 45-60 Minuti. Tempo di preparazione: 10 Minuti Obiettivo Principale: Aiutare gli studenti a capire cos è la programmazione SOMMARIO:

Dettagli

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale

Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale Planning as Model Checking Presentazione della Tesina di Intelligenza Artificiale di Francesco Maria Milizia francescomilizia@libero.it Model Checking vuol dire cercare di stabilire se una formula è vera

Dettagli

Il principio di induzione e i numeri naturali.

Il principio di induzione e i numeri naturali. Il principio di induzione e i numeri naturali. Il principio di induzione è un potente strumento di dimostrazione, al quale si ricorre ogni volta che si debba dimostrare una proprietà in un numero infinito

Dettagli

(anno accademico 2008-09)

(anno accademico 2008-09) Calcolo relazionale Prof Alberto Belussi Prof. Alberto Belussi (anno accademico 2008-09) Calcolo relazionale E un linguaggio di interrogazione o e dichiarativo: at specifica le proprietà del risultato

Dettagli

Gli algoritmi: definizioni e proprietà

Gli algoritmi: definizioni e proprietà Dipartimento di Elettronica ed Informazione Politecnico di Milano Informatica e CAD (c.i.) - ICA Prof. Pierluigi Plebani A.A. 2008/2009 Gli algoritmi: definizioni e proprietà La presente dispensa e da

Dettagli

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio

I Problemi e la loro Soluzione. Il Concetto Intuitivo di Calcolatore. Risoluzione di un Problema. Esempio Il Concetto Intuitivo di Calcolatore Fondamenti di Informatica A Ingegneria Gestionale Università degli Studi di Brescia Docente: Prof. Alfonso Gerevini I Problemi e la loro Soluzione Problema: classe

Dettagli

Ancora su diagnosi. Lezione 9 giugno. Conoscenza incompleta e senso comune. Frameworks per il ragionamento basato su assunzioni

Ancora su diagnosi. Lezione 9 giugno. Conoscenza incompleta e senso comune. Frameworks per il ragionamento basato su assunzioni Ancora su diagnosi Lezione 9 giugno Ancora su diagnosi Conoscenza incompleta, senso comune e ragionamento basato su assunzioni Cenni su pianificazione Abbiamo accennato alla diagnosi di guasti. Occorre

Dettagli

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni

Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alcune nozioni preliminari di teoria elementare di insiemi e funzioni Alberto Pinto Corso di Matematica - NUCT 1 Insiemi 1.1 Generalità Diamo la definizione di insieme secondo Georg Cantor, matematico

Dettagli

Intelligenza Artificiale

Intelligenza Artificiale Intelligenza Artificiale Esercizi e Domande di Esame Tecniche di Ricerca e Pianificazione Esercizi Griglia Si consideri un ambiente costituito da una griglia n n in cui si muove un agente che può spostarsi

Dettagli

Algebra Booleana ed Espressioni Booleane

Algebra Booleana ed Espressioni Booleane Algebra Booleana ed Espressioni Booleane Che cosa è un Algebra? Dato un insieme E di elementi (qualsiasi, non necessariamente numerico) ed una o più operazioni definite sugli elementi appartenenti a tale

Dettagli

Elementi di Algebra Relazionale

Elementi di Algebra Relazionale Note dalle lezioni di INFORMATICA (per gli allievi della classe quinta - indirizzo MERCURIO) Elementi di Algebra Relazionale prof. Stefano D.L.Campanozzi I.T.C. Giulio Cesare Bari - a.s. 2008-2009 1 Introduzione

Dettagli

( x) ( x) 0. Equazioni irrazionali

( x) ( x) 0. Equazioni irrazionali Equazioni irrazionali Definizione: si definisce equazione irrazionale un equazione in cui compaiono uno o più radicali contenenti l incognita. Esempio 7 Ricordiamo quanto visto sulle condizioni di esistenza

Dettagli

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0.

L espressione torna invece sempre vera (quindi la soluzione originale) se cambiamo contemporaneamente il verso: 1 < 0. EQUAZIONI E DISEQUAZIONI Le uguaglianze fra espressioni numeriche si chiamano equazioni. Cercare le soluzioni dell equazione vuol dire cercare quelle combinazioni delle lettere che vi compaiono che la

Dettagli

x u v(p(x, fx) q(u, v)), e poi

x u v(p(x, fx) q(u, v)), e poi 0.1. Skolemizzazione. Ogni enunciato F (o insieme di enunciati Γ) è equisoddisfacibile ad un enunciato universale (o insieme di enunciati universali) in un linguaggio estensione del linguaggio di F (di

Dettagli

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007

Correttezza. Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1. Dispensa 10. A. Miola Novembre 2007 Corso di Laurea Ingegneria Informatica Fondamenti di Informatica 1 Dispensa 10 Correttezza A. Miola Novembre 2007 http://www.dia.uniroma3.it/~java/fondinf1/ Correttezza 1 Contenuti Introduzione alla correttezza

Dettagli

Il linguaggio di specifica formale Z

Il linguaggio di specifica formale Z Il linguaggio Z (Spivey, 1992) Il linguaggio di specifica formale Z Sviluppato presso l Università di Oxford (UK) Basato su FSM Applicato in ambito industriale Dotato di numerose estensioni (Object Z,

Dettagli

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno

NORMALIZZAZIONE DI SCHEMI RELAZIONALI. Prof.ssa Rosalba Giugno NORMALIZZAZIONE DI SCHEMI RELAZIONALI Prof.ssa Rosalba Giugno PROBLEMA GENERALE La progettazione concettuale e logica produce uno schema relazionale che rappresenta la realta dei dati nella nostra applicazione.

Dettagli

Testing: basato su analisi dinamica del codice. Metodi Formali: basato su analisi statica del codice.

Testing: basato su analisi dinamica del codice. Metodi Formali: basato su analisi statica del codice. Convalida: attività volta ad assicurare che il SW sia conforme ai requisiti dell utente. Verifica: attività volta ad assicurare che il SW sia conforme alle specifiche dell analista. Goal: determinare malfunzionamenti/anomalie/errori

Dettagli

Tipi di Dato Ricorsivi

Tipi di Dato Ricorsivi Tipi di Dato Ricorsivi Luca Abeni September 2, 2015 1 Tipi di Dato Vari linguaggi di programmazione permettono all utente di definire nuovi tipi di dato definendo per ogni nuovo tipo l insieme dei suoi

Dettagli

SISTEMI OPERATIVI. Deadlock (blocco critico) Domande di verifica. Luca Orrù Centro Multimediale Montiferru 04/06/2007

SISTEMI OPERATIVI. Deadlock (blocco critico) Domande di verifica. Luca Orrù Centro Multimediale Montiferru 04/06/2007 2007 SISTEMI OPERATIVI Deadlock (blocco critico) Domande di verifica Luca Orrù Centro Multimediale Montiferru 04/06/2007 Deadlock (blocco critico) 1. Si descriva il deadlock e le condizioni sotto cui si

Dettagli

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico

Processo di risoluzione di un problema ingegneristico. Processo di risoluzione di un problema ingegneristico Processo di risoluzione di un problema ingegneristico 1. Capire l essenza del problema. 2. Raccogliere le informazioni disponibili. Alcune potrebbero essere disponibili in un secondo momento. 3. Determinare

Dettagli

Uso di JUnit. Fondamenti di informatica Oggetti e Java. JUnit. Luca Cabibbo. ottobre 2012

Uso di JUnit. Fondamenti di informatica Oggetti e Java. JUnit. Luca Cabibbo. ottobre 2012 Fondamenti di informatica Oggetti e Java ottobre 2012 1 JUnit JUnit è uno strumento per assistere il programmatore Java nel testing JUnit consente di scrivere test di oggetti e classi Java i test sono

Dettagli

Le funzioni elementari. La struttura di R. Sottrazione e divisione

Le funzioni elementari. La struttura di R. Sottrazione e divisione Le funzioni elementari La struttura di R La struttura di R è definita dalle operazioni Addizione e moltiplicazione. Proprietà: Commutativa Associativa Distributiva dell addizione rispetto alla moltiplicazione

Dettagli

Rappresentazione grafica di entità e attributi

Rappresentazione grafica di entità e attributi PROGETTAZIONE CONCETTUALE La progettazione concettuale, ha il compito di costruire e definire una rappresentazione corretta e completa della realtà di interesse, e il prodotto di tale attività, è lo schema

Dettagli

Elementi di topologia della retta

Elementi di topologia della retta Elementi di topologia della retta nome insieme definizione l insieme è un concetto primitivo che si accetta come intuitivamente noto secondo George Cantor, il padre della teoria degli insiemi: Per insieme

Dettagli

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo.

Siamo così arrivati all aritmetica modulare, ma anche a individuare alcuni aspetti di come funziona l aritmetica del calcolatore come vedremo. DALLE PESATE ALL ARITMETICA FINITA IN BASE 2 Si è trovato, partendo da un problema concreto, che con la base 2, utilizzando alcune potenze della base, operando con solo addizioni, posso ottenere tutti

Dettagli

Capitolo 4 Probabilità

Capitolo 4 Probabilità Levine, Krehbiel, Berenson Statistica II ed. 2006 Apogeo Capitolo 4 Probabilità Insegnamento: Statistica Corso di Laurea Triennale in Economia Facoltà di Economia, Università di Ferrara Docenti: Dott.

Dettagli

Semantica operazionale dei linguaggi di Programmazione

Semantica operazionale dei linguaggi di Programmazione Semantica operazionale dei linguaggi di Programmazione Oggetti sintattici e oggetti semantici Rosario Culmone, Luca Tesei Lucidi tratti dalla dispensa Elementi di Semantica Operazionale R. Barbuti, P.

Dettagli

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005

Risoluzione. Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 Risoluzione Eric Miotto Corretto dal prof. Silvio Valentini 15 giugno 2005 1 Risoluzione Introdurremo ora un metodo per capire se un insieme di formule è soddisfacibile o meno. Lo vedremo prima per insiemi

Dettagli

SAP BusinessObjects Versione del documento: 4.2 2015-11-12. Manuale di installazione di Dashboards LiveCycle Data Services Gateway

SAP BusinessObjects Versione del documento: 4.2 2015-11-12. Manuale di installazione di Dashboards LiveCycle Data Services Gateway SAP BusinessObjects Versione del documento: 4.2 2015-11-12 Manuale di installazione di Dashboards LiveCycle Data Services Gateway Contenuto 1 Cronologia del documento.... 3 2 Informazioni sul manuale....

Dettagli

Breve visione d insieme

Breve visione d insieme Breve visione d insieme Per accedere occorre semplicemente collegarsi alla pagina http://wm.infocom.it/ ed inserire il proprio indirizzo e-mail e password. Inserimento delle Vostre credenziali Multilingua

Dettagli

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO

PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO PROVA FINALE V. AULETTA G. PERSIANO ALGORITMI II - -MAGIS INFO 1. Load Balancing Un istanza del problema del load balancing consiste di una sequenza p 1,..., p n di interi positivi (pesi dei job) e un

Dettagli

Le query. Lezione 6 a cura di Maria Novella Mosciatti

Le query. Lezione 6 a cura di Maria Novella Mosciatti Lezione 6 a cura di Maria Novella Mosciatti Le query Le query sono oggetti del DB che consentono di visualizzare, modificare e analizzare i dati in modi diversi. Si possono utilizzare query come origine

Dettagli

Modello di Controllo dell Accesso basato sui ruoli (RBAC)

Modello di Controllo dell Accesso basato sui ruoli (RBAC) Modello di Controllo dell Accesso basato sui ruoli (RBAC) POLITICHE RBAC Sistemi di tipo Role Based Access Control (RBAC) assegnano i privilegi non agli utenti, ma alla funzione che questi possono svolgere

Dettagli

Guida rapida all uso di Moodle per i docenti

Guida rapida all uso di Moodle per i docenti Guida rapida all uso di Moodle per i docenti Avvertenze: 1) Questo NON è un manuale completo di Moodle. La guida è esplicitamente diretta a docenti poco esperti che devono cimentarsi per la prima volta

Dettagli

Xerox 700 Digital Color Press con Integrated Fiery Color Server. Stampa di dati variabili

Xerox 700 Digital Color Press con Integrated Fiery Color Server. Stampa di dati variabili Xerox 700 Digital Color Press con Integrated Fiery Color Server Stampa di dati variabili 2008 Electronics for Imaging, Inc. Per questo prodotto, il trattamento delle informazioni contenute nella presente

Dettagli

UNIVERSITA DEGLI STUDI DI FIRENZE. Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica

UNIVERSITA DEGLI STUDI DI FIRENZE. Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica UNIVERSITA DEGLI STUDI DI FIRENZE Facoltà di Ingegneria Corso di Laurea in Ingegneria Informatica Esercitazioni per l esame di Intelligenza Artificiale Prof. G. Soda Classic di Sauro Menchetti A.A.1998-99

Dettagli

COME AVERE SUCCESSO SUL WEB?

COME AVERE SUCCESSO SUL WEB? Registro 3 COME AVERE SUCCESSO SUL WEB? Guida pratica per muovere con successo i primi passi nel web MISURAZIONE ED OBIETTIVI INDEX 3 7 13 Strumenti di controllo e analisi Perché faccio un sito web? Definisci

Dettagli

Operatori logici e porte logiche

Operatori logici e porte logiche Operatori logici e porte logiche Operatori unari.......................................... 730 Connettivo AND........................................ 730 Connettivo OR..........................................

Dettagli

INFORMATICA. Applicazioni WEB a tre livelli con approfondimento della loro manutenzione e memorizzazione dati e del DATABASE.

INFORMATICA. Applicazioni WEB a tre livelli con approfondimento della loro manutenzione e memorizzazione dati e del DATABASE. INFORMATICA Applicazioni WEB a tre livelli con approfondimento della loro manutenzione e memorizzazione dati e del DATABASE. APPLICAZIONI WEB L architettura di riferimento è quella ampiamente diffusa ed

Dettagli

Idee guida. Finite State Machine (1) Un automa a stati finiti è definito da una 5- pla: FSM = , dove: Finite State Machine (2)

Idee guida. Finite State Machine (1) Un automa a stati finiti è definito da una 5- pla: FSM = <Q,,, q0, F>, dove: Finite State Machine (2) Idee guida ASM = FSM con stati generalizzati Le ASM rappresentano la forma matematica di Macchine Astratte che estendono la nozione di Finite State Machine Ground Model (descrizioni formali) Raffinamenti

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Logica del primo ordine

Logica del primo ordine Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A7_4 V1.3 Logica del primo ordine Il contenuto del documento è liberamente utilizzabile dagli studenti, per studio

Dettagli

Corso introduttivo all utilizzo di TQ Qualifica

Corso introduttivo all utilizzo di TQ Qualifica Corso introduttivo all utilizzo di TQ Qualifica Le pagine che seguono introducono l utente all uso delle principali funzionalità di TQ Qualifica mediante un corso organizzato in quattro lezioni. Ogni lezione

Dettagli

Microsoft Access Maschere

Microsoft Access Maschere Microsoft Access Maschere Anno formativo: 2007-2008 Formatore: Ferretto Massimo Mail: Skype to: ferretto.massimo65 Profile msn: massimoferretto@hotmail.com "Un giorno le macchine riusciranno a risolvere

Dettagli

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento

Funzione Una relazione fra due insiemi A e B è una funzione se a ogni elemento di A si associa uno e un solo elemento TERIA CAPITL 9. ESPNENZIALI E LGARITMI. LE FUNZINI Non si ha una funzione se anche a un solo elemento di A non è associato un elemento di B, oppure ne sono associati più di uno. DEFINIZINE Funzione Una

Dettagli

Scelte in condizione di incertezza

Scelte in condizione di incertezza Scelte in condizione di incertezza Tutti i problemi di decisione che abbiamo considerato finora erano caratterizzati dal fatto che ogni possibile scelta dei decisori portava a un esito certo. In questo

Dettagli

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL

RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL RAPPRESENTAZIONE GRAFICA E ANALISI DEI DATI SPERIMENTALI CON EXCEL 1 RAPPRESENTAZIONE GRAFICA Per l analisi dati con Excel si fa riferimento alla versione 2007 di Office, le versioni successive non differiscono

Dettagli

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme:

Lezione 1. Gli Insiemi. La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: Lezione 1 Gli Insiemi La nozione di insieme viene spesso utilizzata nella vita di tutti i giorni; si parla dell insieme: degli iscritti ad un corso di laurea delle stelle in cielo dei punti di un piano

Dettagli

If a cascata, switch, boolean

If a cascata, switch, boolean If a cascata, switch, boolean If a cascata Switch Il tipo boolean Operatori logici, valutazione pigra 1 If a cascata Consideriamo una semplice classe che deve descrivere con una stringa gli effetti di

Dettagli

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti

LOGICA DEI PREDICATI. Introduzione. Predicati e termini individuali. Termini individuali semplici e composti Introduzione LOGICA DEI PREDICATI Corso di Intelligenza Artificiale A.A. 2009/2010 Prof. Ing. Fabio Roli La logica dei predicati, o logica del primo ordine (LPO) considera schemi proposizionali composti

Dettagli

SMS IN. Rules SMS IN. Rules. Geodrop. Geodrop

SMS IN. Rules SMS IN. Rules. Geodrop. Geodrop SMS IN Rules SMS IN Rules } Geodrop Geodrop SMS In 2.3 Regole per la manipolazione dei messaggi Guida alla scrittura di condizioni complesse Guida alle condizioni complesse v1.0-it, 7 Dicembre 2012 Indice

Dettagli

Gestione Rapporti (Calcolo Aree)

Gestione Rapporti (Calcolo Aree) Gestione Rapporti (Calcolo Aree) L interfaccia dello strumento generale «Gestione Rapporti»...3 Accedere all interfaccia (toolbar)...3 Comandi associati alle icone della toolbar...4 La finestra di dialogo

Dettagli

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE

LE SUCCESSIONI 1. COS E UNA SUCCESSIONE LE SUCCESSIONI 1. COS E UNA SUCCESSIONE La sequenza costituisce un esempio di SUCCESSIONE. Ecco un altro esempio di successione: Una successione è dunque una sequenza infinita di numeri reali (ma potrebbe

Dettagli

JAVASCRIPT. Tale file è associato alla pagina web mediante il tag