Appunti di. Misure elettroniche Prof. Ferrero Andrea Pierenrico. Fiandrino Claudio

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Appunti di. Misure elettroniche Prof. Ferrero Andrea Pierenrico. Fiandrino Claudio"

Transcript

1 Appunti di Misure elettroniche Prof. Ferrero Andrea Pierenrico Fiandrino Claudio 8 luglio

2 Indice 1 Incertezze Nozioni di metrologia Tipi di incertezze Quarzi 7 3 Oscilloscopi Oscilloscopi analogici Canale verticale Canale orizzontale Doppia base tempi Canali di ingresso Sonde compensate Oscilloscopi digitali Campionamento Real Time Campionamento Sub Sampling Misure del tempo Frequenzimetri Periodimetri e periodimetri medi Misure di intervalli di tempo Principio dell eterodina 27 6 Misure di tensione, corrente e fase Voltmetri analogici Voltmetri in continua Voltmetri in alternata Voltmetri a vero valore efficace Rosmetri Voltmetri numerici Voltmetri a semplice integrazione Voltmetri a doppia integrazione Amperometro Amperometri in continua Amperometri in alternata Fasometro Fasometri analogici Fasometri ad alta frequenza Fasometri numerici

3 7 Sintetizzatori di frequenza PLL DDS Circuito ALC e Modulatore I/Q Analizzatori di spettro Tipi di misure Modulo funzione di trasferimento Distorsione armonica Intermodulazione Power Meter 59 3

4 1 Incertezze 1.1 Nozioni di metrologia Definiamo in questo modo la catena metrologica: campioni primari campioni secondari tarature dello strumento I campioni primari sono oggetti fisici e vengono conservati in laboratori nazionali (INRMI-Torino). La loro accuratezza e definita a priori altrimenti non si potrebbero fare confronti. I campioni secondari servono per tarare gli strumenti di laboratorio e si trovano in laboratori certificati; periodicamente devono essere tarati dai campioni primari. Definizioni 1. Incertezza: misura l accuratezza. 2. Risoluzione: la piu piccola variazione che uno strumento apprezza sul misurando. 3. Sensibilità: la risoluzione dello zero. 4. Dinamica: la differenza tra il valore massimo e minimo misurabile, o campo di funzionamento dello strumento. 5. Ripetibilità: proprieta di ottenere lo stesso valore effettuando più prove, a parita di avere le stesse condizioni del misurando. Risoluzione ed incertezza non sono strettamente collegate: su una misura e possibile avere risoluzione di 1 µm ed incertezza di 1 cm. Ovviamente più è alta la risoluzione più è facile ottere incertezze basse, ma in generale questa proprieta non vale. 1.2 Tipi di incertezze Esistono tipologie di errore che non sono incertezze: sono gli errori sistematici. Questi tipi di errore sono rimovibili con opportune tarature degli strumenti mentre le incertezze non sono eliminabili in alcun modo. Per effettuare il 4

5 calcolo delle incertezze si provvede ad effettuare un certo numero di misure ottenendo così una distribuzione. La media, o valore atteso, x = n i=1 x i è il valore centrale della distribuzione se gli eventi sono statisticamente indipendenti. La varianza tra il campione i-esimo e il valore atteso x è: σ 2 = n i=1 (x i x) 2 N 1 dove con N si intende il numero di misure fatte o campioni acquisiti. Il valore N-1 a denominatore della frazione indica il numero di intervalli tra ogni campione ed è un termine di normalizzazione: il significato di questa formula infatti evidenzia per ogni misura la sua distanza con il valore medio rispetto al totale delle misure effettuate. La distribuzione di probabilità più comune è quella gaussiana per cui: P(x) = 1 e (x x)2 2πσ 2 2πσ 2 Anche questa formula prevede che gli eventi siano scorrelati quindi ne deduciamo che una distribuzione gaussiana implica che eseguendo più misure ognuna di esse non influenzi le altre. L incertezza si calcola in questo modo: I = µσ dove µ è il fattore di copertura che può assumere valore 2 oppure 3. Utilizzando µ = 2 si ottiene una probabilità pari al 95.4% che il misurando ricada nell intervallo { µ, µ}; aumenta fino al 99.7% nel caso in cui µ = 3. Elenchiamo di seguito i due tipi di incertezze che tratteremo: 1. incertezze di tipo A; 2. incertezze di tipo B; Incertezze di tipo A Per questo tipo di incertezze la misura risulta tanto piu accurata quanti più campioni vengono prelevati. Questo comportamento viene osservato con i momenti del secondo ordine. Incertezze di tipo B Le incertezze di tipo B non permettono di ridurre gli errori aumentando il numero delle misure effettuate: un esempio è l incertezza residua dovuta alla rimozione degli errori sistematici. 5

6 Incertezze di lettura Le incertezze di lettura sono quelle incertezze dovute all operatore, della sua accuratezza di lettura del valore da misurare sulla lancetta. Questo tipo di incertezze infatti sono strettamente legate a strumenti analogici, in quanto quelli numerici forniscono direttamente il risultato in cifre. Incertezze di classe È un incertezza assoluta solitamente espressa in % del valore di fondoscala. esempio 1. Si misurano 5 V con un fondo scala di 10 V sapendo che lo strumento è di classe 2. Incertezza assoluta: V = 2% su 10 = 0.2 Incertezza relativa: δv V = 0.2 = 0,04 4% 5 2. Si misurano 5 V con un fondo scala di 50 V sempre con uno strumento di classe 2. Incertezza assoluta: V = 2% su 50 = 1 Incertezza relativa: δv V = 1 = 0,2 20% 5 Da questo esempio possiamo capire che per misurare qualsiasi grandezza è preferibile utilizzare il fondo scala più prossimo al misurando al fine di minimizzare l incertezza. 6

7 2 Quarzi I quarzi sono modellabili con dei circuiti risonanti risonatori che sfruttando l effetto piezoelettrico, trasformando quindi l energia meccanica delle vibrazioni in energia elettrica, vengono utilizzati negli orologi per misurare il tempo. Per stimarne velocemente l accuratezza pensiamo che normalmente si regola l orologio due volte l anno (cambi di ora legale-solare). La lancetta che misura i secondi avrà frequenza di oscillazione di 1 MHz. Stimiamo che la misura sia affetta da un errore di ± 1 minuto: dunque I = T T = = dove sono l equivalenti in minuti di 6 mesi. Si consideri che gli orologi atomici al cesio, ad esempio, hanno incertezze dell ordine dei : sono dunque estremamente piu accurati. Ciò è dovuto proprio ai limiti fisici imposti dalla massima frequenza di oscillazione (è negli ordini delle centinaia di MHz) che condiziona la massa del quarzo stesso. Più e alta la pulsazione ω più la massa diventa piccola, ma per ovvi motivi non puo essere infinitesimale mentre masse molto grandi di quarzo presentano una pulsazione non interessante per fini pratici. Gli oscillatori al quarzo inoltre sono caratterizzati da un fenomeno di deterioramento fisico che comporta una diminuzione della massa e, dunque, un corrispondente aumento della frequenza di oscillazione (deriva). 7

8 3 Oscilloscopi La funzionalità di un oscilloscopio è rappresentare una forma d onda su un video con assi opportunamente tarati in ampiezza del segnale [V ] (tipicamente asse y) e tempo di visualizzazione [s] (tipicamente asse x). Esistono 2 categorie di oscilloscopi: 1. oscilloscopi analogici; 2. oscilloscopi digitali; I primi ad essere stati realizzati sono stati gli oscilloscopi analogici, oggi non sono quasi piu presenti sul mercato, ma offrono le stesse funzionalità dal punto di vista utente degli oscilloscopi numerici. Il grosso vantaggio di questi ultimi deriva dal fatto che, mediante il loro utilizzo è possibile fare confronti tra due segnali contemporaneamente oppure stimare con precisione un transitorio perchè questi dispositivi sono dotati di memoria. In questo modo possono memorizzare dei campioni, cosa non fisicamente realizzabile in analogica perchè i fosfori, che permettono la visibiltà della forma d onda sullo schermo, hanno una durata finita di tempo in cui si illuminano e dunque permettono di vedere solo in tempo reale il segnale. È tuttavia importante precisare che se non si sono acquisiti dati prima dell istante in cui il trigger comincia ad essere attivo è molto probabile che non si vedrà nulla sullo schermo: dunque c è netta separazione tra i due istanti (di inizio acquisizione dati e di trigger) cosa che non avviene negli oscilloscopi analogici. 8

9 3.1 Oscilloscopi analogici Lo schermo visualizza il segnale quando i fosfori presenti nella superficie interna del tubo a raggi catodici vengono colpiti dal fascio elettronico emettendo fotoni (ovvero trasformando la loro energia cinetica in energia luminosa). Un singolo elettrone una volta strappato dal filamento caldo viene accellerato ed arriva così a colpire i fosfori; senza particolari accorgimenti il fascio degli elettroni colpirebbe i fosfori nel mezzo dello schermo disegnando un punto e non una forma d onda. Per far sí che il raggio elettronico disegni sullo schermo il segnale occorre deflettere il raggio stesso attraverso placchette di deflessione verticali ed orizzontali. Mediante la deflessione verticale si riescono a rappresentare le ampiezze delle forme d onda e con il canale orizzontale se ne definisce l occupazione temporale sul video. La deflessione D viene calcolata con la seguente formula:. V d è la tensione di deflessione D = V dbl 2dV acc. b è la lunghezza delle placchette. L è la lunghezza del tubo. d è distanza tra le placchette. V acc è la tensione di accellerazione La deflessione aumenta aumentando la lunghezza del tubo catodico mentre diminuisce se le placchette sono troppo vicine. Esse infatti si comportano come condensatori a facce piane con capacità C = ǫ S d, dove ǫ è la permittività dielettrica (o costante dielettrica) ed S la superficie della faccia di una singola armatura. Se la distanza fra le armature è piccola = la capacità è grande e siccome il 1 circuito equivalente è di tipo passabasso in cui V d = 1 + src V ing si nota che la pulsazione del polo ω p si sposta verso sinistra. Ricordiamo che f= ω 2π dunque anche la frequenza diminuisce e questo comporta la necessità di avere in ingresso segnali con banda limitata perchè altrimenti non sarebbe possibile visualizzarli sullo schermo. 9

10 Figura 1: schema generale oscilloscopio canali verticale ed orizzontale Canale verticale L attenuatore condiziona il segnale di ingresso per garantire una dinamica elevata e quindi una banda più larga a disposizione compatibilmente con i vincoli imposti dalla deflessione. Generalemente si utilizzano attenuatori variabili a scatti, composti cioè da celle a k costante (k fattore di attenuazione, es. k= 10 db). Figura 2: cella a k costante Il progettista può determinare il valore di k scegliendo il numero delle celle in modo tale da ottenere il fattore di attenuazione desiderato: esempio 10

11 Occorre realizzare un attenuazione complessiva del segnale di 15 db avendo a disposizione 6 celle rispettivamente con k 1 = 5, k 2 = 5, k 3 = 9, k 4 = 6, k 5 = 1, k 6 = 5. La configurazione migliore è quella che prevede di utilizzare k 3 e k 4 in quanto in questo modo si raggiunge un fattore di attenuzione pari a quello desiderato e si minimizzano le resistenze parassite degli interruttori meccanici. Queste resistenze sono di per sè trascurabili dunque non cambiano il potenziale ne contribuiscono in alcun modo ad aumentare le incertezze, ma in ogni caso è bene tenerne conto e cercare di ridurle il piu possibile. Davanti all attenuatore viene posto un circuito di selezione dell ingresso (come in figura... ): Figura 3: circuito di selezione. GND permette di porre a zero la scala;. DC fa passare il segnale;. AC filtra il segnale. Dopo l attenuatore deve essere necessariamente presente un amplicifatore con la funzione di amplificare il segnale in modo tale da avere tensioni di grandezza sufficiente per poter deflettere gli elettroni; queste tensioni sono dell ordine dei 100/1000 V. Ovviamente l amplificatore non deve operare in zona di saturazione e questo è il secondo motivo per cui è presente l attenuatore. Dopo essere stato amplificato il segnale raggiunge le placchette di deflessione verticale. 11

12 3.1.2 Canale orizzontale Gli elementi che formano il canale orizzontale sono:. generatore di rampa;. trigger;. circuito di blanking; L accuratezza sull asse orizzontale (asse dei tempi) del segnale dipende dall accuratezza della rampa: più è ripida piu il pennello viene deflesso velocemente. Quando il pennello deve tornare verso sinistra dopo aver disegnato parte del segnale la coda che esso produrrebbe viene eliminata grazie al circuito di blanking, un sistema che azzerando la tensione di accellerazione fa in modo di non eccitare i fosfori e quindi di non far visualizzare a video tracce inutili. Il circuito di trigger è quel circuito che provvede a far partire la rampa in prossimità di un certo livello di tensione del segnale. In ingresso del trigger è posto un selettore simile a quello visto per l attenuatore, ma in particolare al posto di GND la linea di ingresso corrispondente è LINE (50 Hz, 220 V). Questa configurazione è molto utile nel caso si voglia fare un analisi del rumore che, a frequenze molto basse, avrebbe un livello di tensione così basso da non far mai scattare il trigger; usando questo accorgimento si ovvia a tale problema. Il livello di tensione necessario a far visualizzare il segnale viene regolato mediante il LEVEL SLOPE: permette anche di scegliere su quale pendenza (positiva o negativa) si deve far partire il segnale di trigger. Il trigger potrebbe non essere mai attivato per due ragioni: in caso di mancanza del segnale di ingresso oppure se la soglia è posta ad un livello piu alto della massima ampiezza del segnale. È dunque previsto un meccanismo automatico in grado di azionare il trigger indipendentemente dal livello del segnale mediante la modalità AUTO; se invece si vuole avere pieno controllo sul trigger si lascia settata l altra modalità, NORMAL, che funziona come spiegato precedentemente. Nel caso su un segnale la soglia di trigger sia presente più volte sullo schermo si potrebbe visualizzare una traccia sovrapposta; il motivo è semplice: una volta che il pennello termina un periodo tornando a sinistra viene nuovamente azionato il trigger e dunque a video si visualizza una doppia traccia. La soluzione è spegnere il circuito di trigger per un certo lasso di tempo: sull oscilloscopio si usa l HOLD/OFF. 12

13 3.1.3 Doppia base tempi Occorre fare una distinzione prima di parlare concretamente delle funzioni della doppia base tempi: la doppia base tempi non è la stessa cosa di utilizzare due canali di ingresso! La doppia base tempi serve a evidenziare oppure zoomare una traccia. Utilizzando la modalità ritardata e intensificata la BT1 comandando la BT2 con la sua rampa fa sì che sullo schermo si visualizzi, nel periodo della BT2, il segnale molto più luminoso sul video. Quando invece viene utilizzata la modalità ritadata il segnale di ingresso viene triggerato soltanto dalla BT2 visualizzando sullo schermo il segnale zoomato Canali di ingresso Quando si utilizzano più canali è presente un selettore che sceglie l ingresso appunto da un solo canale alla volta. Se i segnali da visualizzare sono lenti è consigliabile settare su CHOPPED il modo in cui il selettore cambia l ingresso in quanto è pilotato con un onda quadra passando velocemente da un ingresso all altro. ALTERNATE invece è preferibile se i segnali variano con frequenze dei KHz perchè il selettore completa una rampa di trigger con il primo canale prima di passare sul secondo quindi se il segnala fosse lento sullo schermo verrebbe visualizzato solo un flash in quanto il pennello non sarebbe deflesso con la velocità necessaria per far vedere una traccia fissa Sonde compensate Il circuito equivalente dell oscilloscopio con gli elementi finora considerati è, nella sua prima approssimazione, come quello mostrato in figura. Figura 4: circuito in prima approssimazione 13

14 . R IN ordine delle decine di Ω. R G ordine dei MΩ Calcoliamone la funzione di trasferimento (f.d.t): V IN V G = G G G G + G IN + sc IN dove G G e G IN sono l inverso di R G e R IN. La frequenza di taglio dell unico polo della funzione è ω p = G G+G IN C IN che possiamo approssimare a ω p = G G C IN in quanto G IN è trascurabile rispetto a G G. Possiamo immediatamente dedurre che avere un polo fisso può essere limitante quindi per migliorare il comportamento in frequenza si adottano delle sonde compensate per effettuare le misure con il seguente circuito equivalente: Figura 5: circuito equivalente con le sonde Analizziamo ora la f.d.t complessiva: = V IN V G = G G //(G S + sc S ) G G //(G S + sc S ) + sc IN + G IN = G G (G S + sc S ) G G (G S + sc S ) + (G G + sc S + G S ) (sc IN + G IN ) il cui diagramma di bode è quello mostrato in figura con 2 poli ed 1 zero alternati. - figura 14 (1)

15 - Agendo sul parametro G S, l unico sul quale si possa intervenire, realizzando l uguaglianza: C S = C IN (2) G S G IN è possibile semplificare l espressione precedente in modo da ottenere: V IN V G = G G G S (s C S G S + 1) G G G S (s C S G S + 1) + G IN (s C IN G IN + 1) (sc S + G G + G S ) dove i rapporti (s C S G S + 1) e (s C IN G IN + 1) sono uguali e quindi possono essere ridotti: V IN V G = G G G S G G G S + G IN (sc S + G G + G S ) Notiamo immediatamente che in questa equazione sono scomparsi un polo ed uno zero: si parla di compensazione di un polo con uno zero perchè la complessità della f.d.t è diminuita di un grado ed inoltre, come si può vedere graficamente, la frequenza di taglio ω p si è spostata a destra, garantendo quindi una banda più larga. - figura - Introduciamo ora il rapporto: 1 A = R IN R IN + R S = G S G S + G IN con A fattore di attenuazione della sonda (> 1). Calcoliamo il valore di G S : G S A = G S + G IN dunque G S = G IN A 1 Per questo A > 1 altrimenti questo rapporto non avrebbe senso. Per la (2) scrivere C S = C IN A 1 è equivalente a scrivere G S = G IN A 1. Verifichiamo calcolando quanto vale C S ed esprimiamola come prima in funzione di A: (3) C S = G S C IN G IN = C S = C IN (A 1) (4) 15

16 Rielaborando ulteriormente la (3) otteniamo: V IN V G = G G G S G G (G S + G IN ) + G IN G S + sc S G IN ora moltiplichiamo e dividiamo per (G S + G IN ): Indichiamo ora: V IN V G = G S (G S +G IN ) ] G G [ G G G + G IN [ S (G S +G IN ) ] + sc G S [ IN (G S +G IN ) ] (5) G eq = G S G IN G S + G IN, C eq = C S C IN C S + C IN è possibile ricavare la seconda mediante i seguenti passaggi partendo da: C eq = C S G IN G IN GS = C S = C S C S C IN G = S G IN = C S C IN C S + C IN Con queste quantità scriviamo la (5) in questo modo più semplice: V IN V G = ( G G A ) G G + G eq + sc eq Notiamo subito che è molto simile a quella scritta senza sonde compensate a patto di sostituire a C IN e G IN con C eq e G eq tenendo conto del fattore di attenuazione A. La nuova posizione del polo è ω p1 = G G+G eq C eq esprimiamo il valore di C eq sostituendo a C S la (4): C eq = C S C IN C S + C IN = A questo punto osserviamo: C IN (A 1) C IN C IN (A 1) + C IN ω p1 = G G C IN A = ω p A = G G C eq in quanto G eq G G ; = C IN C IN C IN A = C IN A Questa formula ci dice che con una capacità equivalente pari alla capacità di ingresso divisa per il fattore di attenuazione delle sonde riusciamo ad allargare la banda di funzionamento dell oscilloscopio dello stesso fattore. Ora calcoliamo approssimativamente i valori in continua nel caso si utilizzino sonde compensate oppure no: nel primo caso si ottiene: ( VIN V G ) s=0 = (G G A ) G G + G eq = 1 A 16

17 tenendo conto che G eq G G ; se invece non si utilizzano le sonde: V IN V G = G G G G + G IN e trascurando nuovamente G IN perchè G IN G G si ottiene circa 1. Globalmente con un aumento di banda abbiamo ottenuto un fattore di attenuazione sul guadagno di A. Tuttavia mediante amplificatori è facile riportare il guadagno su valori desiderati mentre sarebbe molto difficile ovviare al problema della banda ristretta di frequenza: è il compromesso banda per guadagno. 17

18 3.2 Oscilloscopi digitali Come accennato nella presentazione gli oscilloscopi digitali, o numerici, sono sostanzialmente dei sistemi di acquisizione dati che si prestano molto bene ad operazioni di confronto tra segnali (i dati campionati sono livelli di tensione) e a visualizzare transitori, ovvero a mostrare la forma d onda del segnale ad un tempo iniziale e molto breve. Figura 6: schema generale oscilloscopio numerico Le prestazioni di questi dispositivi sono legate essenzialmente a tre fattori: la capacità della base tempi, la frequenza di clock e la frequenza di campionamento. Avendo a disposizione tanta memoria consente di avere una base tempi molto lunga, capace cioè di contenere molti campioni, e ci si può permettere di lavorare con frequenze alte. Se al contrario si ha poca memoria sono possibili due scelte: scegliere una base tempi lunga con l obbigo di lavorare a frequenze basse; 18

19 optare per una base tempi corta, ma poter trattare frequenze più elevate; L accuratezza dell oscilloscopio numerico è direttamente proporzionale con il numero di bit che il convertitore analogico-digitale (ADC) ha: ricordiamo che le soglie di decisione sono 2 N con N che indica il numero di bit. Dunque se N è grande si riesce a quantizzare il segnale in maniera più precisa perchè le soglie sono a livelli di tensione più vicini rispetto al caso in cui N sia piccolo. Ovviamente migliore è l accuratezza meno veloce diventa il dispositivo quindi opererà con frequenze basse. La soluzione migliore, quella di compromesso, garantisce la massimizzazione della banda in funzione della base tempi. esempio Un segnale con banda 1 khz modulato ad 1 MHz. Lo spettro di questo segnale è composto da un segnale portante ogni cento campioni di modulante. Se la memoria contiene pochi campioni il rischio è di riuscire a vedere solo segnali della modulante e non la portante. Dimostriamo ora che il rapporto segnale-rumore S N è pari a 6N. Definiamo per prima cosa V come l intervallo tra una soglia di quantizzazione e l altra. Esso rappresenta l intervallo in cui dato un segnale continuo nel tempo non riusciamo a distinguere due valori diversi di tensione, ma li rappresentiamo, approssimandoli, con un medesimo livello di soglia: si definisce rumore di quantizzazione. Matematicamente quindi V = Vmax 2 N 1 in quanto V max è la tensione massima che può raggiungere il segnale e 2 N 1 rappresentano il numero di intervalli in cui si effettua la quantizzazione. In prima approssimazione possiamo dire che V = Vmax. 2 N Ora anzichè effettuare il calcolo rigoroso con gli spettri di potenza trattiamo il rumore come se fosse un segnale: S N = V max V = V max V max = 2 N 2 N Esprimiamo ora in db il risultato ottenuto: i rapporti sono fra tensioni dunque: 2 N db = 20log 10 2 N = 20Nlog 10 2 = 6N Gli oscilloscopi moderni sono sovracampionati (non si faccia confusione con il campionamento real time o sub sampling trattati in seguito) nel senso che, una volta stabilita la banda su cui effettuare il campionamento anzichè utilizzare il numero di campioni minimo indicato da Nyquist generalmente 19

20 se ne prendono di più. La motivazione è spiegabile analizzando ancora il rumore di quantizzazione definito in precedenza: la probabilità di commettere un errore in un intervallo non influisce sugli altri quindi ne deduciamo che il rumore di quantizzazione è gaussiano e quindi bianco. Ipotizziamo ora un segnale con potenza normalizzata ad 1 che sia affetto dal rumore di quantizzazione come in figura: - figura - definiamo: ω = P s, > ω N = P N B B In dbm possiamo scrivere la relazione P s = P N + 6N dunque linearmente P N = Ps. 10 6N 10 Ora sovracampioniamo: la banda B aumenta diventando B New come in figura: - figura - La potenza del segnale P s rimane la stessa, mentre cambia P N1 = ω N1 B dove ω N1 = P N B B New = Ps 10 6N 10 A noi però interessa calcolare il rapporto S N B New perchè il segnale utile non è variato. ( ) S N B B New si è distribuito sulla nuova banda. bandab = P s 10 6N 10 BNew P s B in db troviamo che: ( ) S S = 10log 10 N db N = 6N + 10log B New 10 B sempre sulla banda B e non Quindi il rumore si riduce in quanto è quello che si avrebbe se si campionasse ad una frequenza pari a quella di sovracampionamento: ciò comporta la possibilità di aumentare l accuratezza senza avere un numero elevato di bit e quindi la risoluzione senza avere complessità di componentistica elevate. Questo principio è lo stesso che si utilizza nella DFT quando si vuole aumentare la risoluzione in frequenza di sequenze numeriche formate da pochi campioni nel dominio del tempo: si aggiungono degli zeri con il meccanismo del zeros padding, che non influiscono sul comportamento del segnale, per far sí che si ricostruisca il segnale interpolando più punti. 20

21 3.2.1 Campionamento Real Time Questa modalità di campionamento segue il criterio di Nyquist quindi campiona il segnale ad una frequenza di campionamento che è almeno il doppio della banda per non perdere informazione. Solitamente raggiungono frequenze di 20 GHz. f c 2B Il problema delle alte frequenze viene risolto parallellizzando l ingresso, ovvero con più ADC ritardati fra loro con dei τ diversi. Ad esempio in questo modo si ottiene un campione in 1/4 del tempo utilizzando in ingresso 4 ADC e le misure sono distribuite nel singolo periodo. Il periodo di trigger è comunque pari a 2B del segnale, tuttavia nel nostro esempio i campioni sono 4 quindi in sostanza si sta triggerando 4 volte nello stesso periodo e questo significa che è come se l ADC avesse una frequenza 4 volte superiore. Questa situazione comporta che le memorie devono essere veloci per scrivere nel minor tempo possibile la misura effettuata: per questo vengono utilizzate memorie cache il cui pregio è per l appunto l elevata velocità compensata però dal fatto che sono molto piccole. Ne consegue che le base tempi non possono essere lunghe a piacere, ma devono essere consone alle capacità delle memorie cache; precisiamo che ogni ADC utilizza una memoria cache (4 ADC 4 memorie cache). Effettuaiamo ora le ultime considerazioni sul circuito di sample & hold: per quanto detto prima la velocità meccanica del circuito non può che essere veloce altrimenti non si porrebbe nemmeno il problema di voler visualizzare segnali ad alta frequenza. Con un segnale di 20 GHz il periodo T = 1 f è di 1 ( ) = 2 11 = 50 ps (picosecondi). Con un calcolo approssimato che stabilisce la velocità del campionatore ad 1 20T troviamo che 2 ps è la minima velocità che deve avere il sample & hold. In memoria una volta effettuato il campionamento troviamo dei segnali che sono l immagine di quelli analogici affetti da un errore aggiuntivo, dovuto alla non idealità del campionatore. La porta p T con cui si campiona ha come risposta all impulso una sinc e non una δ ideale come teorizzato da Nyquist quindi lo spettro presenta aliasing in corrispodenza delle code del treno di sinc, un fenomeno che contribuisce ad aumentare l incertezza Campionamento Sub Sampling Non risponde al criterio di Nyquist, ma sfrutta il principio delle bande equivalenti. 21

22 4 Misure del tempo Passiamo ora ad analizzare i principali strumenti utilizzati per effetture misure del tempo:. frequenzimetri;. periodimetri e periodimetri medi; 4.1 Frequenzimetri Sostanzialmente i frequenzimetri misurano quanti colpi di clock sono presenti in una finestra temporale, o finestra di gate. Il segnale in ingresso con una propria frequenza f x e periodo t x viene Figura 7: schema frequenzimetro mandato ad uno squadratore (che può essere un trigger di Schmitt o un comparatore di soglia con isteresi) da cui si ricavano impulsi con periodo T. Questi impulsi sono successivamente mandati ad un porta AND, la quale riceve anche il risultato del processo non lineare di generazione delle armoniche (con frequenza f ck e periodo t ck ) di cui si tiene conto del singolo periodo grazie al divisore. Il risultato dell operazione logica rappresenta il numero di impulsi presenti nel periodo che è la finestra di gate; ad effettuare questo conteggio provvede un contatore decadico. 22

23 Effettuiamo ora alcune considerazioni quantitative: il divisore genera delle finestre ogni τ gate = N t ck quindi possiamo dedurre che il contatore decadico conti n impulsi pari a: n = N t ck t x = N f x f ck da cui ricaviamo che: f x = n f ck N Calcoliamo ora le incertezze relative per f x : fx = N f x N + n n + fck f ck (6) ma poichè N può essere deciso dal progettista non è un fattore di incertezza quindi: fx = n f x n + fck Analizziamo ora i singoli fattori:. n n rappresenta l incertezza di quantizzazione ovvero l errore dovuto allo sfasamento del gate che potrebbe non comprendere il primo impulso generato dallo squadratore = n = ±1 = n n = ± 1 n. figura f ck. fck f ck rappresenta l incertezza del clock e nel caso dei risonatori al quarzo abbiamo già dimostrato essere nell ordine dei 10 ( 6). Passiamo ora a calcolare l incertezza assoluta di f x senza considerare l incertezza di f ck : dalla la (6) riscriviamo che: f x = n = n N t ck τ g Per cui sapendo che l incertezza relativa si può esprimere: fx f x = 1 n determiniamo: fx = 1 n f x = 1 n n τ g = 1 τ g 23

24 Da cui si deduce che aumentando il tempo di gate, ovvero il tempo in cui si effettuano le misure degli impulsi, si otteranno minori errori e che 1 τ g rappresenta anche la più piccola frequenza apprezzabile, dunqe è la risoluzione del frequenzimetro. Ovviamente questo ragionamento è valido ricordando che abbiamo trascurato l incertezza del clock in quanto non possiamo intervenire direttamente (è un incertezza di tipo B) per migliorarla. In generale quindi l incertezza su f x risulta maggiore della risoluzione perchè somma di due contributi e questo ci porta a concludere che le ultime cifre significative sono affette da incertezza maggiore e probabilmente sbagliate. esempio Consideriamo il caso di un gate con f ck = 1Hz e un segnale con f x = 4Hz. In ogni finestra si contano 4 campioni dunque l incertezza relativa è: fx = 1 f x n = 1 = 0.25 = 25% 4 un valore molto alto. Se invece il segnale è più veloce con f x = 1 MHz allora in ogni finestra vengono contati 1 milione (10 6 ) impulsi; l incertezza cambia decisamente: fx = 1 f x n = 1 = 0, = 1ppm 106 Questi due semplici esempi ci hanno fatto capire che i frequenzimetri a contatore sono degli ottimi strumenti quando i segnali di ingresso non sono a basse frequenze: in quel caso le misure sono affette da errori significativi. 4.2 Periodimetri e periodimetri medi Per misurare segnali a bassa frequenza abbiamo visto che i frequenzimetri sono poco adatti: si usano normalmente periodimetri. In questi dispositivi anzichè avere un divisore per N che genera la finestra di gate la porta AND riceve direttamente dall oscillatore al quarzo l armonica: il risultato immediato è che il contatore decadico non conta più un numero di impulsi n come nel frequenzimetro, ma: e dunque la frequenza risulta: n = t x t ck = f ck f x f x = f ck n 24

25 esempio Con un segnale di clock ad f ck = 1MHz e un segnale con f x = 4Hz i campioni che vengono contati sono: n = f ck = f x 4 = Effettuiamo ora le analoghe considerazioni sulle incertezze già prese in esame per i frequenzimetri: fx = n f x n + fck sarebbe la formula che potremmo scrivere analizzando semplicemente l espressione di f x. Invece per i periodimetri abbiamo una causa di incertezza aggiuntiva che è data dal rumore del segnale che si utilizza come clock definito come ǫ N. Dunque in generale si ha: fx f x = n n f ck + fck + ǫ N Abbiamo già discusso del significato di n n pari ad 1 n e f ck f ck quindi procediamo ad analizzare in dettaglio l incertezza dovuta al rumore. In generale il rumore di un segnale è l errore dato da un livello di tensione più alto (o più basso)v n rispetto al valore del segnale normale cioè una variazione del segnale s(t) = V s sin(ωt) rispetto al tempo esprimibile come y = δy δx x; come in figura definiamo t e il tempo di errore dovuto al rumore: t e = V n δs(t) δt calcoliamo ora la derivata del segnale: per t = 0 si ha che: e dunque: δs(t) δt Analizziamo ora l espressione: t e T = 1 ( Vsω V n ) T = ( ) Vs V n f ck = V s ω cos(ωt) δs(t) δt = V s ω t e = V n V s ω 1 2πf T 25 = 1 ( ) Vs V n 2π = ( S N 1 ) 2π

26 Questa incertezza va calcolata due volte in quanto il segnale di gate generato dal quarzo avrà un tempo di apertura e chiusura quindi possiamo finalmente definire: 1 ǫ N = ) π ( S N È importante far notare che per garantire incertezza minore occorre sempre considerare come punto di osservazione del fenomeno quel punto in cui la derivata della grandezza considerata è massima; nel nostro caso la derivata di sin(ωt) è ωcos(ωt) che in t = 0 vale 1. Nel periodimetro medio viene aumentato il tempo di misura di N volte, il che permette di lavorare con notevole accuratezza anche a frequenze molto più basse del periodimetro. La spiegazione logica ovviamente è la stessa già spiegata nei frequenzimetri: aumentando il tempo di misura migliora la risoluzione; poichè utilizziamo uno strumento ottimo a basse frequenze migliorando ancora l accuratezza si riusciranno ad apprezzare frequenze ancora più basse. Riportiamo di seguito brevemente alcune formule importanti: n = Nt x t ck, n = Nf ck, f x = Nf ck f x n 4.3 Misure di intervalli di tempo -scrittura veloce riguradare meglio- Analizziamo il comportamento di un cronometro. Occorrerà avere due segnali uno per lo start ed uno per lo stop posti all ingresso di un flip flop di tipo SR, quindi possiamo ipotizzare uno schema di questo tipo: schema L uscita del flip-flop saranno degli impulsi generati a T x quindi le incertezze saranno: δt x T x = δf ck f ck + 1 n e ovviamente sarà bene tenere conto dell errorre dovuto all apertura e chisura degli impulsi quindi più in generale avremo: δt x = δf ck T x f ck + 1 n + ǫ N 26

27 5 Principio dell eterodina In questa sezione analizziamo un principio fondamentale alla base di quasi tutte le applicazioni nelle telecomunicazioni, il principio grazie al quale vengono realizzati tutti i mixer. 6 Misure di tensione, corrente e fase Queste tre grandezze hanno in comune principi e meccanismi praticamente identici con cui vengono misurate: infatti voltmetro, amperometro e fasometro basano il loro funzionamento sul galvanometro di Arsonval. Analizziamo quindi brevemente il comportamento di tale dispositivo: il galvanometro misura le correnti che scorrono in una bobina le quali, generando un campo magnetico indotto qst è da rivedere da fisica, fanno muovere l ago sulla scala tarata. Il suo circuito equivalente reale è composto dalla serie di un galvanometro reale ed una resistenza R g molto bassa e non lineare che tiene conto della dissipazione di energia data dalla somma dell energia meccanica dissipata dall ago e dell energia dissipata dal filo (resistenza che incontra la corrente circolando lungo il filo appunto). Le correnti che riesce a misurare un galvanometro sono molto piccole (ordine dei µa) in quanto essendo un meccanismo meccanico di tipo massa-mollasmorzatore non riesce a tollerare oscillazioni veloci (date da una corrente in alternata) altrimenti la molla fisicamente si romperebbe; tutti gli oggetti meccanici hanno f.d.t di tipo passabasso con bande a frequenze basse: la banda di funzionamento del galvanometro è tipicamente di 0.5 Hz. Oltre al circuito equivalente normalmente sono presenti anche (vedi figura) due resistenze: R S ed R V. La R S o Resistenza di Shunt serve per convogliare la maggior parte della corrente per non causare gli effetti drammatici descritti in precedenza; R V è una resistenza che si pone in serie ad R g ed è inserita in modo tale da essere molto più grande di R g e quindi rendere possibile il calcolo delle incertezze; infatti la resistenza interna al galvanometro è molto bassa e non misurabile direttamente, dunque se non fosse presente R v non riusciremmo mai a stimare gli errori commessi. Se anzichè utilizzare una sola Resistenza di Shunt se ne utilizzano di più intanto possiamo cambiare scala (in base al valore della resistenza e dunque della corrente che riesce a far passare o bloccare) e a seconda della loro disposizione creiamo uno strumento o un altro: se vengono poste in serie con un deviatore che provvede a renderne attiva una alla volta otteniamo un voltmetro, se invece sono in parallelo (sempre con un deviatore) abbiamo 27

28 Figura 8: circuito equivalente costruito un amperometro. Figura 9: realizzazione di amperometro 28

29 Figura 10: realizzazione di voltmetro 6.1 Voltmetri analogici Analizziamo in un primo momento i vari tipi di strumento in analogica e, solo in seguito, tratteremo le tipologie di strumenti numerici Voltmetri in continua Al fine di non perturbare la misura in corso un voltmetro dovrebbe avere una resistenza infinita, ovvero misurare in un punto senza cadute di tensione dovute a resistenza percorse da corrente. Modellizzando con un circuito equivalente di Thevenin il misurando otteniamo: dunque la tensione misurata dal voltmetro sarà: R v V m = V 0 R v + R 0 29

30 per il partitore fra le resistenze del circuito mostrato in figura: L errore assoluto commesso risulterà essere: R v R 0 V = V 0 V 0 = V 0 R v + R 0 R 0 + R v mentre l errore relativo: δv V = R 0 R 0 + R v Alcune considerazioni: al diminuire di R 0 o all aumentare di R v diminuisce l incertezza; questo tipo di errore non è un incertezza, ma un errore sistematico in quanto conoscendo i valori di R 0 ed R v si può rimuovere tarando opportunamente lo strumento Voltmetri in alternata Per capire come i voltmetri effettuano le misure di segnali in alternata occorre definire bene alcune grandezze fondamentali: valore di picco, valore medio, valore efficace e introdurremo in seguito il valor medio convenzionale. Il valore di picco V p è la misura tra la massima e la minima ampiezza del segnale. Il valore medio, o componente in continua del segnale, V DC viene definito come: V DC = 1 T T 0 x(t)dt ovvero la media del segnale nel suo periodo fondamentale. Il valore efficace V eff rappresenta la tensione che applicata ad una resistenza di 1 Ω dissiperebbe la stessa potenza di un segnale in continua. 1 T V eff = [x(t)] T 2 dt 0 30

31 Osserviamo che il valore efficace di una tensione continua V C è proprio la tensione continua; risolvendo l integrale otteniamo: 1 T T[VC V eff = [V C ] T 2 ] dt = 2 = V C T 0 Il valore medio efficace di un segnale sinusoidale risulta essere Vp 2 Se il segnale presenta sia una componente continua V DC che una componente alternata con V effalt avremo: V eff = [V DC ] 2 + [V effalt ] 2 Introduciamo ora il valor medio convenzionale definito come: V M = 1 T T 0 x(t) dt esso rappresenta la componente continua del modulo del segnale di partenza. Dato un segnale dunque occorre farne il suo modulo e misurare il valore V M con un semplice voltmetro in continua di cui abbiamo già trattato in precedenza. Spostiamo l attenzione su come fare il modulo di un segnale: utilizziamo un diodo e sfruttiamo la sua capacità di raddrizzatore a singola semionda per raggiungere il nostro obbiettivo. In alternativa con un ponte di diodi è possibile realizzare circuiti raddrizzatori a doppia semionda: effettuiamo alcune considerazioni per capire vantaggi e svantaggi degli uni e degli altri. Nel secondo caso i due diodi devono condurre contemporaneamente e la misura non cambia invertendo la polarizzazione; con un diodo solo invece si avranno sicuramente misure diverse in base ai punti in cui si andranno a rilevare le tensioni, comportamento dovuto al diverso tipo di polarizzazione del segnale. Calcoliamo ora il valore medio convenzionale di un segnale sinusoidale x(t) = V p sin(ωt) quando usiamo un raddrizzatore a singola semionda: V M = 1 T T osserviamo che solo tra 0 e T 2 0 [V p sin(ωt)]dt = V p T V M = V p T effettuiamo un cambio di variabili: z = ωt = 2πft = 2πt T T 0 [sin(ωt)]dt il segnale è non nullo quindi: T 2 0 [sin(ωt)]dt dz = 2πdt T 31 dzt dt = 2π

32 quando: t = 0 z = 0 t = T 2 z = π riscriviamo dunque l integrale: V M = V p T T 2π π 0 [sin(z)]dz = V p 2π [ cos(z) π 0] = V p 2π [1 ( 1)] = V p π esprimiamo anche le relazioni fra V M e valore efficace: V M = 2Veff π V eff = πv M 2 Il valore π 2 = 2.22 è la costante di proporzionalità che lega il valor medio convenzionale con il valore efficace; dunque con opportune tarature dello strumento è possibile osservare direttamente la lettura che desideriamo. Se invece il raddrizzatore è a doppia semionda osserviamo immediatamente che ai fini del calcolo è come avere un raddrizzatore a singola semionda in cui abbiamo una componente non nulla anche nell altro semiperiodo: moltiplichiamo dunque per un fattore 2 il risultato ottenuto in precedenza anzichè ripetere il calcolo integrale. V M = 2V p π V M = 2 2V eff π V eff = πv M 2 2 Abbiamo ottenuto anche in questo caso un coefficiente moltplicativo che lega V M a V eff pari alla metà di quello precedente. Ricapitoliamo ora le considerazioni fatte: dato un segnale riusciamo ad individuarne le sue grandezze caratteristiche grazie ad opportune tarature dello strumento: 32

33 K Descrizione 1.11 Circuito a doppia semionda 2.22 Circuito a singola semionda 1 2 Valore di picco Tabella 1: Costanti di proporzionalità Nell ambito delle telecomunicazioni il valore più importante è il valore di picco (si usa normalmente nei ricetrasmettitori radio). Il valore di picco fornisce in continua l informazione dell ampiezza del segnale : esistono degli strumenti in grado di fornire direttamente questo valore utilizzando appunto dei circuiti non lineari con diodi e misurando il valore di tensione sempre con un semplice voltmetro in continua. Questi dispositivi, o rilevatori di picco, possono essere formati da una serie di diodo e condensatore o fra il parallelo di tali componenti: in questa ipotesi prendono anche il nome di fissatori a zero. Figura 11: rilevarori serie e parallelo Voltmetri a vero valore efficace I voltmetri a vero valore efficace hanno la costante di proporzionalità K=1: essi misurano infatti, grazie al principio termico, solo V eff. Ipotizziamo di avere un generatore di tensione sinusoidale con in serie una resistenza: essa dissipa potenza e calore che può essere misurato con un termometro. Ora pensiamo di scaldare alla stessa temperatura una resistenza di pari valore collegata ad un generatore in continua: le potenze dissipate dalle resistenze saranno le stesse in entrambi i circuiti quindi la tensione erogata dal generatore in continua sarà obbligatoriamente la stessa dissipata dal generatore sinusoidale. 33

34 Figura 12: schema generale Questa banale considerazione è il principio che sta base delle termocoppie: quando è presente una differenza di temperature tra le estremità ed il giunto i fili metallici generano una differenza di potenziale. V = c T dove c rappresenta la costante di Siebeck, il teorico che per primo ha osservato questo fenomeno: conversione diretta di energia termica in energia elettrica (Effetto Siebeck). A questo punto si potrebbe pensare di utilizzare questo principio per produrre elettricità: applichiamo una differenza di temperatura per fornire l energia sufficiente ad alimentare i nostri oggetti quotidiani. Ciò non è fisicamente realizzabile per la semplice ragione che la costante c è molto bassa quindi applicando differenze di temperature anche elevate si ottengono ddp dell ordine massimo dei mv (generalemente sono µv ). Inoltre non si possono utilizzare metalli qualsiasi per realizzare le termocoppie, ma servono precise combinazioni per ottenere le migliori costanti di Siebeck; dunque non si può utilizzare questo principio per produrre elettricità. Questo è dunque lo schema dei voltmetri a vero valore efficace a termocoppie: L amplificatore viene inserito per mantenere uguali le tensioni sulle termocoppie da cui viene letta la misura; in caso contrario cambierebbero le temperature delle termocoppie e la rilevazione, fatta dal voltmetro in continua (VDC) sarebbe errata. Per questo occorre anche evitare che una delle due resistenze non cambi la temperatura altrimenti l amplificatore non manterrebbe la tensione costante ma l amplificherebbe portando di nuovo ad errori grossolani. Inoltre è bene che l ambiente esterno influisca in modo comune sulle termocoppie oppure l intero principio cadrebbe: si può ovviare a questo problema 34

35 Figura 13: realizzazione voltmetri con termocoppie con isolanti termici. Esiste un componente elettronico che può anche fuzionare come termometro: è il diodo. Ricordiamo la sua equazione caratteristica: h V i 1 ηv I = I s e T dove η rappresenta il fattore di idealità che dipende dalla polarizzazione (η = 1 2) mentre il termine V T = κt Q è l equivalente elettrico della temperatura. Utilizzando dei transistor questo è lo schema dei voltmetri a vero valore efficace: La corrente che scorre nei transistor è proporzionale alla temperatura (vedi equazione caratteristica diodi) quindi quando le resistenze si scaldano dissipando potenza fanno variare l intensità di corrente. Ciò causa una variazione sulla caduta di tensione ai capi delle resistenze medesime misurata poi dal voltmetro in continua Rosmetri I voltmetri che misurano il valore di picco per frequenze molto alte (microonde) sono i rosmetri. 35

36 Figura 14: realizzazione voltmetri con transistor Con l analisi dei rosmetri si è conclusa la trattazione degli strumenti analogici ed ora prenderemo in esame i voltmetri numerici. 6.2 Voltmetri numerici Lo scopo è sempre quello di misurare una tensione: con lo strumento numerico occorre quindi discretizzare il segnale di ingresso con un convertitore ADC preceduto da un sample & hold. Ecco lo schema generale: Il problema è che le misure sono spot, fatte su un istante preciso di tempo, quindi se il rumore in quel momento è molto forte perturba notevolemente la misura. 36

37 Se invece prendiamo le misure su un periodo di tempo t limitiamo l influenza del rumore perchè esso viene distribuito uniformemente sulla banda essendo bianco. Le tecniche utilizzate sono di integrazione sul periodo: singola o doppia Voltmetri a semplice integrazione I voltmetri a semplice integrazione si chiamano anche voltmetri a conversione di frequenza perchè è possibile dato un ingresso in tensione misurare con un contatore la frequenza in uscita. Riportiamo lo schema: Figura 15: modello voltmetro a semplice integrazione La fdt dell integratore è: V out = 1 T0 V in dt RC 0 se non fosse presente il generatore di impulsi il sistema tenderebbe a saturare alla tensione di alimentazione con una retta negativa di pendenza 1 RC. Invece con il generatore di impulsi che genera un onda quadra di ampiezza V 0 e periodo T 0 il comportamento è di questo tipo: figura quando la tensione di ingresso raggiunge la soglia posta a V S = V 0T 0 R 2 C vengono generati gli impulsi con periodo T: l incremento fra T in = 0 e T/2 deve 37

38 essere pari a quello fra T/2 e T. V salita = 1 T/2 (V in )dt + V 0T 0 R 1 C T in R 2 C = V int/2 R 1 C + V 0T 0 R 2 C per l incremento in salita, mentre quello in discesa risulta essere: V discesa = V in(t T/2) R 1 C per cui uguagliando i termini otteniamo: dove i termini V int/2 R 1 C da cui ricaviamo: V int/2 R 1 C + V 0T 0 R 2 C = V int R 1 C V int/2 R 1 C si elidono. Per cui: V 0 T 0 R 2 C = V int R 1 C V in = V 0T 0 R 1 R 2 T = V 0T 0 R 1 f R 2 f frequenza di generazione degli impulsi. Da questa formula possiamo immediatamente capire che tale strumento sarà poco accurato in quanto le cause di incertezza sono molteplici: δv in V in = δv 0 V 0 + δt δr R + δf f T 0 La risoluzione di questo strumento dunque è data dalla risoluzione della frequenza f che sappiamo essere 1 τg. Abbiamo considerato fino ad ora il comportamento ideale, trascurando cioè l effetto degli offset che saranno sicuramente presenti sia sull integratore sia sul comparatore di soglia. Analizziamo separatamente i due casi cercando di capire come influenzano la misura del voltmetro:. effetto sull integratore: la tensione che integriamo non è più V in, ma V I data dalla somma fra V in e V off. Provvediamo dunque a rifare velocemente i calcoli: V salita = 1 R 1 C deve essere uguale a: T/2 (V in + V off )dt + (V 0 + V off )T 0 T in R 2 C V discesa = (V in + V off )(T T/2) R 1 C 38

39 da cui trascurando alcuni passaggi otteniamo: (V 0 + V off )T 0 R 2 C V in = V 0 T 0 R 1 R 2 T = (V in + V off )T R 1 C V off ( 1 T 0 R 1 T R 2 il fattore chiave dunque è V off (1 T 0R 1 che rappresenta l errore commesso integrando come tensione di ingresso V I ; TR 2 ). effetto sul comparatore di soglia: guardando il grafico in figura osserviamo che la tensione di soglia si sposta (V SO = V S + V off ) quindi la retta a pendenza positiva inizia dopo; poichè stiamo integrando sempre per un periodo di tempo fisso deduciamo immediatamente che il punto in cui ci sarà l inversione di tendenza sarà ad un livello di tensione 0+V off. Il risultato complessivo dunque è una semplice traslazione che non influisce sulla frequenza della forma d onda. - inserire grafico - ) Voltmetri a doppia integrazione Schema: Figura 16: modello voltmetro a doppia integrazione Lo scopo è di integrare per un tempo noto una tensione incognita (prima integrazione) e per un tempo incognito una tensione nota. 39

40 grafico - Vediamo il contributo dato dall integrazione per un periodo noto (0-T 0 ): V 1 = 1 T0 V in dt = V int 0 RC 0 RC che deve essere uguale al contributo dell integrazione per un tempo incognito del livello di tensione V R raggiunto a T 0 : uguagliando le espressioni ricaviamo: V 1 = 1 Tx V R dt = V RT x RC 0 RC V int 0 RC = V RT x RC per cui possiamo esprimere la tensione di ingresso come: V in = V R T x T 0 (7) Se vengono generati dal clock NT ck impulsi in T 0 ed nt ck in T x : V in = V R n N con T ck = 1 f ck frequenza del clock (quarzo ad esempio). Abbiamo implicitamente eliso T ck sia a numeratore che a denominatore quindi si è ipotizzato che il clock generi in modo uguale gli impulsi in entrambi i periodi T 0 e T x ; con questa supposizione lo strumento a doppia integrazione presenta le seguenti incertezze: o, altrimenti, più in generale: δv in V in = δv in V in = δv R V R δv R V R + 1 n + δt 0 + δt x Notiamo che questo strumento è più intrinsecamente accurato in quanto non è presente alcuna incertezza sulla componenetistica come nel caso di semplice integrazione in cui comparivano le incertezze dovute alle resistenze presenti nel circuito. La risoluzione del voltmetro a doppia integrazione risulta essere V R N. Come per i voltemetri a semplice integrazione ora prendiamo in analisi gli effetti dovuti agli offset: T 0 T x 40

41 . effetto sull integratore: il procedimento è il medesimo di prima quindi saltando alcuni passaggi si ottiene: da cui si può ricavare: (V in + V off )T 0 RC V in = V R T x T 0 V off = (V R + V off )T x RC ( 1 T ) x T 0 in questo caso V off (1 Tx rappresenta l errore dovuto agli offset presenti sulla maglia di ingresso dell integratore; T 0 ). effetto sul comparatore di soglia: questa volta cambia il tempo incognito su cui integro la tensione nota; anzichè integrare su T x = T x + T err si integra su T x. inserire grafici Valutiamo in T err il livello di tensione: V off = V RT err RC dunque T err = V off RC V R. Sostituendo nella (7) T x = T x + T err e T err = V offrc V R otteniamo: V in = V R T x + T err T Amperometro Tx + V offrc V = V R R T 0 = V R T x T 0 V off RC T Amperometri in continua Analogamente con quanto enunciato per il voltmetro possiamo dire che la misura di corrente idealmente non sarebbe perturbata nel caso in cui la resistenza dell amperometro fosse nulla. Per dualità modelliziamo il misurando con un circuito di Norton ottenendo: L amperometro misura una corrente pari a: R A I m = I 0 = I 0 R A + R 0 1 G A 1 G G A = I 0 1 G A 1 G A +G 0 = I 0 G G 0 G A A G 0 G A G 0 = I 0 G 0 + G A G A + G 0 in quanto si calcola il partitore di corrente fra le resistenze del circuito mostrato in figura: il cui errore assoluto è uguale a: G A G 0 I = I 0 I 0 = I 0 G A + G 0 G 0 + G A 41

42 mentre l errore relativo: δi I = G A G 0 + G A Anche in questo caso le espressioni sono da considerarsi errori sistematici definiti come errori di consumo o anche effetti di carico. Questi errori che abbiamo trattato per i voltmetri e multimetri in realtà sono riscontrabili in tutti gli strumenti Amperometri in alternata Per quanto riguarda questi strumenti di misura valgono le stesse considerazioni fatte per i voltmetri in alternata. 6.4 Fasometro Fasometri analogici Il fasometro è uno strumento che, dati due ingressi, un segnale di test e un segnale di reference misura lo sfasamento tra il primo ed il secondo. Questo è il modello di un fasometro a lettura diretta: - 42

43 figura - I due segnali di ingresso sono inviati ad uno squadratore che genera degli impulsi; essi sono gli ingressi di un flip flop S-R il quale genera un onda quadra con duty cycle proporzionale allo sfasamento misurata da un voltmetro in continua. - figura - V DC = V M T 1 T 2 Indicando dunque con T 1 il periodo alto del segnale e con T 2 il periodo complessivo descriviamo lo sfasamento mediante la proporzione: ϕ : T 1 = 360 : T 2 Da cui ricaviamo che: ϕ = 360 T1 T 2 sostituiamo nell espressione in cui si determina V DC : V DC = V M T 1 T 2 = V M ϕ 360 Osserviamo che abbiamo a disposizione una formula che permette di ottenere immediatamente la misura di fase con una misura indiretta di tensione, informazione che ci viene data dal voltmetro in continua tarando opportunamente lo strumento. La fase è una grandezza periodica, si ripete uguale a se stessa a multipli di k 2π (k N), per cui misurare una fase di 0 gradi o di 359 gradi è un rilevamento molto simile. Tuttavia sullo strumento l ago continuerà ad oscillare fra il minimo del fondo scala ed il massimo in quanto seppure lo sfasamento tra 0 e 359 è minimo. Questo comportamento accade solo per segnali la cui fase è prossima a 2π. Cosa succede se poniamo un inverter su un ingresso del flip flop? Ciò che accade è che uno dei due segnali viene negato e il duty cycle diventa pari al 50%. In questo modo sullo strumento riusciamo ad apprezzare sfasamenti piccoli vicini allo 0, ma al contempo spostiamo il problema a π: il risultato sarà dunque di non riuscire più ad osservare una misura di fase prossima a 180 gradi senza che lo strumento oscilli tra il minimo ed il massimo del fondoscala. Questi strumenti vengono definiti a zero centrale perchè appunto lo zero della scala si trova a metà del periodo complessivo del segnale. 43

44 6.4.2 Fasometri ad alta frequenza Per realizzare lo strumento ad alta frequenza si utilizza il principio dell eterodina Fasometri numerici Se si utilizzano fasometri numerici il problema della visualizzazione di sfasamenti piccoli prossimi ad un punto particolare (π oppure 2π) in quanto il risultato viene fornito direttamente in cifre. Occorre convertire in digitale una parte del segnale, ovvero la sua componente continua poi sovracampionare il segnale per avere una buona risoluzione. Altre soluzioni, come quella di convertire gli ingressi non sono praticabili perchè è molto difficile calcolare uno sfasamento partendo solo da tabelle numeriche; in teoria è possibile, guardando per i due segnali gli istanti di attraversamento dello zero, ma bisogna tenere conto che si commette un errore dovuto quanto meno alla quantizzazione (su una certa fascia ± V 0 tutti i campioni vengono approssimati a 0) che dipende ovviamente dal campionamento e dalla risoluzione del quantizzatore in numero di bit, quindi non è un metodo valido. 7 Sintetizzatori di frequenza I sintetizzatori di frequenza generano (processo di sintesi), data in ingresso una frequenza f in, una frequenza diversa: con κ idealmente reale (κ R). f out = κ f in Sulla base del modo in cui si può effettuare la sintesi distinguiamo due categorie di dispositivi: PLL e DDS. 44

45 7.1 PLL I sintetizzatori di frequenza utilizzati negli oscillatori locali prendono il nome di PLL: essi effettuano una sintesi diretta. Un PLL o (Phase-locked-loop) nel caso più generale è formato da un comparatore di fase, un filtro ad anello ed un Vco (Voltage Controlled oscillator). Il Vco è un circuito oscillante la cui componente principale è un varactor, un diodo che polarizzato inversamente viene utilizzato come capacità variabile controllata in tensione. Figura 17: schema generale PLL Ci occupiamo ora di creare un sintetizzatore che abbia la costante κ reale. Data in ingresso una f in inseriamo un divisore per N prima del comparatore di fase in modo da ottenere f 1 ; inseriamo ora un secondo divisore, per M questa volta tra il comparatore di fase, il V.c.o. e l uscita del sistema che garantisca di avere di nuovo f 1. In questo modo abbiamo creato una relazione tra la frequenza di ingresso e quella in uscita data da: f in N = f out M da cui banalmente ricaviamo: f out = f in M N del tutto simile alla relazione precedentemente riportata nell introduzione generale. 45

46 Ora poichè i divisori non possono che avere sia N che M reali (N, M R) il risultato è di aver creato una costante κ R. Figura 18: schema PLL con κ R Analizziamo alcuni parametri fondamentali come il range di frequenze che possono essere utilizzate, il passo minimo quindi la sensibilità e la risoluzione. Per quanto riguarda il passo minimo si osserva che è pari a f in N max, ovvero la frequenza più bassa che può essere introdotta in ingresso (si guardi il ramo iniziale dello schema); per questo motivo il divisore per N prende il nome di divisore di riferimento. Il range del sintetizzatore invece risulta essere f in M max la massima frequenza ottenibile quando N=1 (non viene cioè divisa la frequenza di ingresso, mentre viene divisa al massimo la frequenza di uscita) e f inm min N max la minima. Range = [ ] fin M min (f in M max ) N max Già da queste osservazioni si può intuire che la risoluzione è fortemente vincolata dai fattori di divisione N ed M. Supponiamo N elevato e che si voglia avere una buona risoluzione (1 Hz): il PLL sarà lento perchè la banda del filtro ad anello è dell ordine dei khz quindi il V.c.o non riesce ad agganciare il segnale. Una soluzione può essere quella di restringere la banda del filtro in modo tale che sia compatibile con il campo d aggancio; queste considerazioni portano a concludere che in prima approssimazione possiamo ipotizzare la risoluzione 46

47 del PLL pari a quella del suo filtro ad anello. Se invece, in un applicazione come può essere la telefonia cellulare, il parametro fondamentale è la velocità del sistema, possiamo introdurre un secondo filtro ad anello che permette di risolvere i problemi legati alla banda ottenendo un buon compromesso tra risoluzione, velocità ed accuratezza. Come succede per quasi tutti gli strumenti da noi affrontati, quando si tratta di lavorare a radiofrequenza, non è possibile utilizzare lo strumento senza alcuni cambiamenti. Per quanto riguarda i PLL è il Vco che avendo una banda di funzionamento stretta non permette il solito funzionamento del dispositivo. Una soluzione è far seguire al PLL un moltiplicatore, realizzato con un diodo SRD (Step Recovery Diod) come mostrato in figura: I sintetizzatori di questo tipo seguiti da un moltiplicatore prendono il nome di Single Band Multiplie (SBM). Essi vengono seguiti da un filtro variabile che serve a selezionare una specifica armonica: ad esempio, se si deve sintetizzare una frequenza di 10GHz il PLL può funzionare ad 1GHz e il filtro variabile verrà posto sulla 10 armonica creata dal moltiplicatore. La velocità complessiva del sistema risulta essere quella del PLL, ma questo meccanismo peggiora la qualità perchè il jitter aumenta. Una seconda soluzione è quella di realizzare direttamente oscillatori a larga banda utilizzando alcune terre rare che godono di buone proprietà su larga banda: tali dispositi vengono definiti Yig filter (Yittering Ipon Garnet). Gli Yig sono pilotati con un campo magnetico statico generato da una corrente che scorre in una bobina e il loro circuito equivalente alle alte frequenze 47

48 è di questo tipo: Essi sono tunabili a larga banda (2 40GHz), mantengono un Q molto buono ed una selettività elevata (20MHz). Analizziamo ora un dispositivo PLL con Vco Yig: si utilizza la tecnica subsampling già vista negli oscilloscopi perchè il divisore M non riesce ad operare a frequenze così alte. Il campionatore deve riuscire a garantire una frequenza di campionamento adeguata per agganciare il Vco Yig quindi la f campionamento deve essere anch essa ottenuta per sintesi mediante un PLL. 48

Strumenti Elettronici Analogici/Numerici

Strumenti Elettronici Analogici/Numerici Facoltà di Ingegneria Università degli Studi di Firenze Dipartimento di Elettronica e Telecomunicazioni Strumenti Elettronici Analogici/Numerici Ing. Andrea Zanobini Dipartimento di Elettronica e Telecomunicazioni

Dettagli

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni

IL SAMPLE AND HOLD UNIVERSITÀ DEGLI STUDI DI MILANO. Progetto di Fondamenti di Automatica. PROF.: M. Lazzaroni UNIVERSITÀ DEGLI STUDI DI MILANO FACOLTÀ DI SCIENZE MATEMATICHE, FISICHE E NATURALI Corso di Laurea in Informatica IL SAMPLE AND HOLD Progetto di Fondamenti di Automatica PROF.: M. Lazzaroni Anno Accademico

Dettagli

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante

Circuiti Elettrici. Schema riassuntivo. Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante Circuiti Elettrici Schema riassuntivo Leggi fondamentali dei circuiti elettrici lineari Assumendo positive le correnti uscenti da un nodo e negative quelle entranti si formula l importante La conseguenza

Dettagli

Generatori di segnale. Generatore sinusoidale BF. Generatori di funzione. Generatori sinusoidali a RF. Generatori a battimenti. Oscillatori a quarzo

Generatori di segnale. Generatore sinusoidale BF. Generatori di funzione. Generatori sinusoidali a RF. Generatori a battimenti. Oscillatori a quarzo Generatori di segnale Generatore sinusoidale BF Generatori di funzione Generatori sinusoidali a RF Generatori a battimenti Oscillatori a quarzo Generatori per sintesi indiretta 2 2006 Politecnico di Torino

Dettagli

L OSCILLOSCOPIO. L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei

L OSCILLOSCOPIO. L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei L OSCILLOSCOPIO L oscilloscopio è il più utile e versatile strumento di misura per il test delle apparecchiature e dei circuiti elettronici. Nel suo uso abituale esso ci consente di vedere le forme d onda

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua

LABORATORIO I-A. Cenni sui circuiti elettrici in corrente continua 1 UNIVERSITÀ DIGENOVA FACOLTÀDISCIENZEM.F.N. LABORATORIO IA Cenni sui circuiti elettrici in corrente continua Anno Accademico 2001 2002 2 Capitolo 1 Richiami sui fenomeni elettrici Esperienze elementari

Dettagli

Cenni di Elettronica non Lineare

Cenni di Elettronica non Lineare 1 Cenni di Elettronica non Lineare RUOLO DELL ELETTRONICA NON LINEARE La differenza principale tra l elettronica lineare e quella non-lineare risiede nel tipo di informazione che viene elaborata. L elettronica

Dettagli

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale

Elettronica delle Telecomunicazioni Esercizi cap 2: Circuiti con Ampl. Oper. 2.1 Analisi di amplificatore AC con Amplificatore Operazionale reale 2. Analisi di amplificatore AC con Amplificatore Operazionale reale Un amplificatore è realizzato con un LM74, con Ad = 00 db, polo di Ad a 0 Hz. La controreazione determina un guadagno ideale pari a 00.

Dettagli

Curve di risonanza di un circuito

Curve di risonanza di un circuito Zuccarello Francesco Laboratorio di Fisica II Curve di risonanza di un circuito I [ma] 9 8 7 6 5 4 3 0 C = 00 nf 0 5 0 5 w [KHz] RLC - Serie A.A.003-004 Indice Introduzione pag. 3 Presupposti Teorici 5

Dettagli

v in v out x c1 (t) Molt. di N.L. H(f) n

v in v out x c1 (t) Molt. di N.L. H(f) n Comunicazioni elettriche A - Prof. Giulio Colavolpe Compito n. 3 3.1 Lo schema di Fig. 1 è un modulatore FM (a banda larga). L oscillatore che genera la portante per il modulatore FM e per la conversione

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

Le misure di energia elettrica

Le misure di energia elettrica Le misure di energia elettrica Ing. Marco Laracca Dipartimento di Ingegneria Elettrica e dell Informazione Università degli Studi di Cassino e del Lazio Meridionale Misure di energia elettrica La misura

Dettagli

Introduzione agli oscilloscopi

Introduzione agli oscilloscopi o s c i l l o s c o p i Indice Introduzione...3 Integrità del segnale Significato dell integrità del segnale..................................4 Perché l integrità del segnale è un problema?...........................4

Dettagli

Dinamica e Misura delle Vibrazioni

Dinamica e Misura delle Vibrazioni Dinamica e Misura delle Vibrazioni Prof. Giovanni Moschioni Politecnico di Milano, Dipartimento di Meccanica Sezione di Misure e Tecniche Sperimentali giovanni.moschioni@polimi.it VibrazionI 2 Il termine

Dettagli

Introduzione. Classificazione delle non linearità

Introduzione. Classificazione delle non linearità Introduzione Accade spesso di dover studiare un sistema di controllo in cui sono presenti sottosistemi non lineari. Alcuni di tali sottosistemi sono descritti da equazioni differenziali non lineari, ad

Dettagli

Oscilloscopi serie WaveAce

Oscilloscopi serie WaveAce Oscilloscopi serie WaveAce 60 MHz 300 MHz Il collaudo facile, intelligente ed efficiente GLI STRUMENTI E LE FUNZIONI PER TUTTE LE TUE ESIGENZE DI COLLAUDO CARATTERISTICHE PRINCIPALI Banda analogica da

Dettagli

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA

MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA MODELLIZZAZIONE, CONTROLLO E MISURA DI UN MOTORE A CORRENTE CONTINUA ANDREA USAI Dipartimento di Informatica e Sistemistica Antonio Ruberti Andrea Usai (D.I.S. Antonio Ruberti ) Laboratorio di Automatica

Dettagli

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca

ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca ESAME DI STATO DI LICEO SCIENTIFICO 2006 Indirizzo Scientifico Tecnologico Progetto Brocca Trascrizione del testo e redazione delle soluzioni di Paolo Cavallo. La prova Il candidato svolga una relazione

Dettagli

1. Determinazione del valore di una resistenza mediante misura voltamperometrica

1. Determinazione del valore di una resistenza mediante misura voltamperometrica 1. Determinazione del valore di una resistenza mediante misura voltamperometrica in corrente continua Si hanno a disposizione : 1 alimentatore di potenza in corrente continua PS 2 multimetri digitali 1

Dettagli

Progetto di un alimentatore con Vo = +5 V e Io = 1 A

Progetto di un alimentatore con Vo = +5 V e Io = 1 A Progetto di un alimentatore con o +5 e Io A U LM7805/TO IN OUT S F T 5 4 8 - ~ ~ + + C GND + C + C3 3 R D LED Si presuppongono noti i contenuti dei documenti Ponte di Graetz Circuito raddrizzatore duale

Dettagli

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT

Le Armoniche INTRODUZIONE RIFASAMENTO DEI TRASFORMATORI - MT / BT Le Armoniche INTRODUZIONE Data una grandezza sinusoidale (fondamentale) si definisce armonica una grandezza sinusoidale di frequenza multipla. L ordine dell armonica è il rapporto tra la sua frequenza

Dettagli

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione.

ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. ALLEGATO al verbale della riunione del 3 Settembre 2010, del Dipartimento di Elettrotecnica e Automazione. COMPETENZE MINIME- INDIRIZZO : ELETTROTECNICA ED AUTOMAZIONE 1) CORSO ORDINARIO Disciplina: ELETTROTECNICA

Dettagli

GENERALITA SUI CONVERTITORI DAC E ADC CONVERTITORI DIGITALE-ANALOGICO DAC

GENERALITA SUI CONVERTITORI DAC E ADC CONVERTITORI DIGITALE-ANALOGICO DAC I.T.I. Modesto PANETTI A R I ia Re David, 86-8-54.54. - 75 ARI Fax 8-54.64.3 Internet http://www.itispanetti.it email : ATF5C@istruzione.it Tesina sviluppata dall alunno Antonio Gonnella della classe 5

Dettagli

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici

Deviazione standard delle misure : dove è la varianza e sono gli scarti quadratici ELEMENTI DI PROBABILITA Media : migliore stima del valore vero in assenza di altre info. Aumentare il numero di misure permette di approssimare meglio il valor medio e quindi ridurre l influenza degli

Dettagli

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t;

dove Q è la carica che attraversa la sezione S del conduttore nel tempo t; CAPITOLO CIRCUITI IN CORRENTE CONTINUA Definizioni Dato un conduttore filiforme ed una sua sezione normale S si definisce: Corrente elettrica i Q = (1) t dove Q è la carica che attraversa la sezione S

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it

Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Corso di laurea magistrale in Ingegneria delle Telecomunicazioni Metodi e Strumenti per la Caratterizzazione e la Diagnostica di Trasmettitori Digitali RF ing. Gianfranco Miele g.miele@unicas.it Trasmettitore

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Elettronica Circuiti nel dominio del tempo

Elettronica Circuiti nel dominio del tempo Elettronica Circuiti nel dominio del tempo Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Circuiti nel dominio del tempo 14 aprile 211

Dettagli

Studio sperimentale della propagazione di un onda meccanica in una corda

Studio sperimentale della propagazione di un onda meccanica in una corda Studio sperimentale della propagazione di un onda meccanica in una corda Figura 1: Foto dell apparato sperimentale. 1 Premessa 1.1 Velocità delle onde trasversali in una corda E esperienza comune che quando

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

SVILUPPO IN SERIE DI FOURIER

SVILUPPO IN SERIE DI FOURIER SVILUPPO IN SERIE DI FOURIER Cenni Storici (Wikipedia) Jean Baptiste Joseph Fourier ( nato a Auxerre il 21 marzo 1768 e morto a Parigi il 16 maggio 1830 ) è stato un matematico e fisico, ma è conosciuto

Dettagli

1. Scopo dell esperienza.

1. Scopo dell esperienza. 1. Scopo dell esperienza. Lo scopo di questa esperienza è ricavare la misura di tre resistenze il 4 cui ordine di grandezza varia tra i 10 e 10 Ohm utilizzando il metodo olt- Amperometrico. Tale misura

Dettagli

ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE

ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE NOTE PER IL TECNICO ELABORAZIONE DEL VALORE MEDIO NELLE MISURE ELETTRONICHE da BRUEL & KJAER Le cosiddette «application notes» pubblicate a cura della Bruel & Kjaer, nota Fabbrica danese specializzata

Dettagli

Unità 12. La corrente elettrica

Unità 12. La corrente elettrica Unità 12 La corrente elettrica L elettricità risiede nell atomo Modello dell atomo: al centro c è il nucleo formato da protoni e neutroni ben legati tra di loro; in orbita intorno al nucleo si trovano

Dettagli

1 LA CORRENTE ELETTRICA CONTINUA

1 LA CORRENTE ELETTRICA CONTINUA 1 LA CORRENTE ELETTRICA CONTINUA Un conduttore ideale all equilibrio elettrostatico ha un campo elettrico nullo al suo interno. Cosa succede se viene generato un campo elettrico diverso da zero al suo

Dettagli

Forma d onda rettangolare non alternativa.

Forma d onda rettangolare non alternativa. Forma d onda rettangolare non alternativa. Lo studio della forma d onda rettangolare è utile, perché consente di conoscere il contenuto armonico di un segnale digitale. FIGURA 33 Forma d onda rettangolare.

Dettagli

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il

Circuiti in Corrente Continua (direct current=dc) RIASSUNTO: La carica elettrica La corrente elettrica Il Potenziale Elettrico La legge di Ohm Il Circuiti in Corrente Continua direct currentdc ASSUNTO: La carica elettrica La corrente elettrica l Potenziale Elettrico La legge di Ohm l resistore codice dei colori esistenze in serie ed in parallelo

Dettagli

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente

Il motore a corrente continua, chiamato così perché per. funzionare deve essere alimentato con tensione e corrente 1.1 Il motore a corrente continua Il motore a corrente continua, chiamato così perché per funzionare deve essere alimentato con tensione e corrente costante, è costituito, come gli altri motori da due

Dettagli

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno

bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non cambiano mai segno Parametri dei segnali periodici I segnali, periodici e non periodici, si suddividono in: bipolari, quando essi, al variare del tempo, assumono valori sia positivi che negativi unipolari, quando essi non

Dettagli

Corso di Informatica Industriale

Corso di Informatica Industriale Corso di Informatica Industriale Prof. Giorgio Buttazzo Dipartimento di Informatica e Sistemistica Università di Pavia E-mail: buttazzo@unipv.it Informazioni varie Telefono: 0382-505.755 Email: Dispense:

Dettagli

sensori di livello Sensori di livello Interruttori tt idi livello Usata nei sistemi di regolazione

sensori di livello Sensori di livello Interruttori tt idi livello Usata nei sistemi di regolazione sensori di livello Introduzione Misura di livello: determinare la posizione, rispetto ad un piano di riferimento, dell interfaccia tra due fluidi separati per azione della forza di gravità Usata nei sistemi

Dettagli

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale

Circuiti Elettrici. Elementi di circuito: resistori, generatori di differenza di potenziale Circuiti Elettrici Corrente elettrica Legge di Ohm Elementi di circuito: resistori, generatori di differenza di potenziale Leggi di Kirchhoff Elementi di circuito: voltmetri, amperometri, condensatori

Dettagli

Appunti di Misure Elettriche Richiami vari Quantità elettriche corrente ampere elettroni

Appunti di Misure Elettriche Richiami vari Quantità elettriche corrente ampere elettroni Appunti di Misure Elettriche Richiami vari QUANTITÀ ELETTRICHE... 1 Corrente... 1 Tensione... 2 Resistenza... 3 Polarità... 3 Potenza... 4 CORRENTE ALTERNATA... 4 Generalità... 4 Valore efficace... 5 Valore

Dettagli

Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI

Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI Materiale e strumenti: Prof. Antonino Cucinotta LABORATORIO DI ELETTRONICA CIRCUITI RADDRIZZATORI -Diodo raddrizzatore 1N4001 (50 V 1A) -Ponte raddrizzatore da 50 V 1 A -Condensatori elettrolitici da 1000

Dettagli

PRINCIPI BASILARI DI ELETTROTECNICA

PRINCIPI BASILARI DI ELETTROTECNICA PRINCIPI BASILARI DI ELETTROTECNICA Prerequisiti - Impiego di Multipli e Sottomultipli nelle equazioni - Equazioni lineari di primo grado e capacità di ricavare le formule inverse - nozioni base di fisica

Dettagli

TRASMISSIONE DATI SU RETE TELEFONICA. 1 Fondamenti Segnali e Trasmissione

TRASMISSIONE DATI SU RETE TELEFONICA. 1 Fondamenti Segnali e Trasmissione TRASMISSIONE DATI SU RETE TELEFONICA Fondamenti Segnali e Trasmissione Trasmissione dati su rete telefonica rete telefonica analogica ISP (Internet Service Provider) connesso alla WWW (World Wide Web)

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO

I.T.I. A. MALIGNANI UDINE CLASSI 3 e ELT MATERIA: ELETTROTECNICA PROGRAMMA PREVENTIVO CORRENTE CONTINUA: FENOMENI FISICI E PRINCIPI FONDAMENTALI - Richiami sulle unità di misura e sui sistemi di unità di misura. - Cenni sulla struttura e sulle proprietà elettriche della materia. - Le cariche

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

L'amplificatore operazionale - principi teorici

L'amplificatore operazionale - principi teorici L'amplificatore operazionale - principi teorici Cos'è? L'amplificatore operazionale è un circuito integrato che produce in uscita una tensione pari alla differenza dei suoi due ingressi moltiplicata per

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

1. Diodi. figura 1. figura 2

1. Diodi. figura 1. figura 2 1. Diodi 1.1. Funzionamento 1.1.1. Drogaggio 1.1.2. Campo elettrico di buil-in 1.1.3. Larghezza della zona di svuotamento 1.1.4. Curve caratteristiche Polarizzazione Polarizzazione diretta Polarizzazione

Dettagli

GUIDA ALLE SOLUZIONI

GUIDA ALLE SOLUZIONI La caratteristica delle trasmissioni digitali è " tutto o niente ": o il segnale è sufficiente, e quindi si riceve l'immagine, oppure è insufficiente, e allora l'immagine non c'è affatto. Non c'è quel

Dettagli

U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA

U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA U.D. 6.2 CONTROLLO DI VELOCITÀ DI UN MOTORE IN CORRENTE ALTERNATA Mod. 6 Applicazioni dei sistemi di controllo 6.2.1 - Generalità 6.2.2 - Scelta del convertitore di frequenza (Inverter) 6.2.3 - Confronto

Dettagli

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1

LATCH E FLIP-FLOP. Fig. 1 D-latch trasparente per ck=1 LATCH E FLIPFLOP. I latch ed i flipflop sono gli elementi fondamentali per la realizzazione di sistemi sequenziali. In entrambi i circuiti la temporizzazione è affidata ad un opportuno segnale di cadenza

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1

CAPITOLO I CORRENTE ELETTRICA. Copyright ISHTAR - Ottobre 2003 1 CAPITOLO I CORRENTE ELETTRICA Copyright ISHTAR - Ottobre 2003 1 INDICE CORRENTE ELETTRICA...3 INTENSITÀ DI CORRENTE...4 Carica elettrica...4 LE CORRENTI CONTINUE O STAZIONARIE...5 CARICA ELETTRICA ELEMENTARE...6

Dettagli

Elementi di analisi delle reti elettriche. Sommario

Elementi di analisi delle reti elettriche. Sommario I.T.I.S. "Antonio Meucci" di Roma Elementi di analisi delle reti elettriche a cura del Prof. Mauro Perotti Anno Scolastico 2009-2010 Sommario 1. Note sulla simbologia...4 2. Il generatore (e l utilizzatore)

Dettagli

Lo schema a blocchi di uno spettrofotometro

Lo schema a blocchi di uno spettrofotometro Prof.ssa Grazia Maria La Torre è il seguente: Lo schema a blocchi di uno spettrofotometro SORGENTE SISTEMA DISPERSIVO CELLA PORTACAMPIONI RIVELATORE REGISTRATORE LA SORGENTE delle radiazioni elettromagnetiche

Dettagli

La funzione di risposta armonica

La funzione di risposta armonica 0.0. 3.1 1 La funzione di risposta armonica Se ad un sistema lineare stazionario asintoticamente stabile si applica in ingresso un segnale sinusoidale x(t) = sen ωt di pulsazione ω: x(t) = sin ωt (s) =

Dettagli

Filtri attivi del primo ordine

Filtri attivi del primo ordine Filtri attivi del primo ordine Una sintesi non esaustiva degli aspetti essenziali (*) per gli allievi della 4 A A T.I.E. 08-09 (pillole per il ripasso dell argomento, da assumere in forti dosi) (*) La

Dettagli

Esposizioni in condizioni complesse. Gian Marco Contessa grazie a Rosaria Falsaperla gianmarco.contessa@ispesl.it

Esposizioni in condizioni complesse. Gian Marco Contessa grazie a Rosaria Falsaperla gianmarco.contessa@ispesl.it Esposizioni in condizioni complesse Gian Marco Contessa grazie a Rosaria Falsaperla gianmarco.contessa@ispesl.it Valutazione dell esposizione a CEM La valutazione pratica dell esposizione ai campi elettrici

Dettagli

I sistemi di acquisizione dati

I sistemi di acquisizione dati I sistemi di acquisizione dati L'utilizzo dei computers, e dei PC in particolare, ha notevolmente aumentato la produttività delle attività sperimentali. Fenomeno fisico Sensore/ trasduttore Acquisizione

Dettagli

tanhαl + i tan(ωl/v) 1 + i tanh αl tan(ωl/v). (10.1)

tanhαl + i tan(ωl/v) 1 + i tanh αl tan(ωl/v). (10.1) 10 - La voce umana Lo strumento a fiato senz altro più importante è la voce, ma è anche il più difficile da trattare in modo esauriente in queste brevi note, a causa della sua complessità. Vediamo innanzitutto

Dettagli

Analisi termografica su celle litio-ione sottoposte ad esperienze di "second life" Francesco D'Annibale, Francesco Vellucci. Report RdS/PAR2013/191

Analisi termografica su celle litio-ione sottoposte ad esperienze di second life Francesco D'Annibale, Francesco Vellucci. Report RdS/PAR2013/191 Agenzia nazionale per le nuove tecnologie, l energia e lo sviluppo economico sostenibile MINISTERO DELLO SVILUPPO ECONOMICO Analisi termografica su celle litio-ione sottoposte ad esperienze di "second

Dettagli

TERMODINAMICA DI UNA REAZIONE DI CELLA

TERMODINAMICA DI UNA REAZIONE DI CELLA TERMODINAMICA DI UNA REAZIONE DI CELLA INTRODUZIONE Lo scopo dell esperienza è ricavare le grandezze termodinamiche per la reazione che avviene in una cella galvanica, attraverso misure di f.e.m. effettuate

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Risposte canoniche e sistemi elementari Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. +39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1

Dettagli

Campioni atomici al cesio

Campioni atomici al cesio Campioni atomici al cesio Introduzione Gli orologi con oscillatore a cristallo di quarzo, che si sono via via rivelati più affidabili e precisi degli orologi a pendolo, hanno iniziato a sostituire questi

Dettagli

STUDIO DI UNA FUNZIONE

STUDIO DI UNA FUNZIONE STUDIO DI UNA FUNZIONE OBIETTIVO: Data l equazione Y = f(x) di una funzione a variabili reali (X R e Y R), studiare l andamento del suo grafico. PROCEDIMENTO 1. STUDIO DEL DOMINIO (CAMPO DI ESISTENZA)

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Macchine rotanti. Premessa

Macchine rotanti. Premessa Macchine rotanti Premessa Sincrono, asincrono, a corrente continua, brushless sono parecchi i tipi di motori elettrici. Per ognuno teoria e formule diverse. Eppure la loro matrice fisica è comune. Unificare

Dettagli

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.)

Statiche se la trasformazione dell energia avviene senza organi in movimento (es. Trasformatori.) Macchine elettriche parte Macchine elettriche Generalità Definizioni Molto spesso le forme di energia in natura non sono direttamente utilizzabili, ma occorre fare delle conversioni. Un qualunque sistema

Dettagli

I db, cosa sono e come si usano. Vediamo di chiarire le formule.

I db, cosa sono e come si usano. Vediamo di chiarire le formule. I db, cosa sono e come si usano. Il decibel è semplicemente una definizione; che la sua formulazione è arbitraria o, meglio, è definita per comodità e convenienza. La convenienza deriva dall osservazione

Dettagli

Introduzione all elettronica

Introduzione all elettronica Introduzione all elettronica L elettronica nacque agli inizi del 1900 con l invenzione del primo componente elettronico, il diodo (1904) seguito poi dal triodo (1906) i cosiddetti tubi a vuoto. Questa

Dettagli

Sensori di Posizione, Velocità, Accelerazione

Sensori di Posizione, Velocità, Accelerazione Sensori di Posizione, Velocità, Accelerazione POSIZIONE: Sensori di posizione/velocità Potenziometro Trasformatore Lineare Differenziale (LDT) Encoder VELOCITA Dinamo tachimetrica ACCELERAZIONE Dinamo

Dettagli

Moto sul piano inclinato (senza attrito)

Moto sul piano inclinato (senza attrito) Moto sul piano inclinato (senza attrito) Per studiare il moto di un oggetto (assimilabile a punto materiale) lungo un piano inclinato bisogna innanzitutto analizzare le forze che agiscono sull oggetto

Dettagli

Corrente elettrica (regime stazionario)

Corrente elettrica (regime stazionario) Corrente elettrica (regime stazionario) Metalli Corrente elettrica Legge di Ohm Resistori Collegamento di resistori Generatori di forza elettromotrice Metalli Struttura cristallina: ripetizione di unita`

Dettagli

LA LEGGE DI OHM La verifica sperimentale della legge di Ohm

LA LEGGE DI OHM La verifica sperimentale della legge di Ohm Laboratorio di.... Scheda n. 2 Livello: Base A.S.... Classe. NOME..... DATA... Prof.... LA LEGGE D OHM La verifica sperimentale della legge di Ohm Conoscenze - Conoscere la legge di Ohm - Conoscere lo

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Analogia tra il circuito elettrico e il circuito idraulico

Analogia tra il circuito elettrico e il circuito idraulico UNIVERSITÁ DEGLI STUDI DELL AQUILA Scuola di Specializzazione per la Formazione degli Insegnanti nella Scuola Secondaria Analogia tra il circuito elettrico e il circuito idraulico Prof. Umberto Buontempo

Dettagli

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO

TEORIA PERTURBATIVA DIPENDENTE DAL TEMPO Capitolo 14 EORIA PERURBAIVA DIPENDENE DAL EMPO Nel Cap.11 abbiamo trattato metodi di risoluzione dell equazione di Schrödinger in presenza di perturbazioni indipendenti dal tempo; in questo capitolo trattiamo

Dettagli

Lezione 12: La visione robotica

Lezione 12: La visione robotica Robotica Robot Industriali e di Servizio Lezione 12: La visione robotica L'acquisizione dell'immagine L acquisizione dell immagine Sensori a tubo elettronico (Image-Orthicon, Plumbicon, Vidicon, ecc.)

Dettagli

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia

DERIVATE DELLE FUNZIONI. esercizi proposti dal Prof. Gianluigi Trivia DERIVATE DELLE FUNZIONI esercizi proposti dal Prof. Gianluigi Trivia Incremento della variabile indipendente e della funzione. Se, sono due valori della variabile indipendente, y f ) e y f ) le corrispondenti

Dettagli

Manuale d Istruzioni. Extech EX820 Pinza Amperometrica 1000 A RMS con Termometro IR

Manuale d Istruzioni. Extech EX820 Pinza Amperometrica 1000 A RMS con Termometro IR Manuale d Istruzioni Extech EX820 Pinza Amperometrica 1000 A RMS con Termometro IR Introduzione Congratulazioni per aver acquistato la Pinza Amperometrica Extech EX820 da 1000 A RMS. Questo strumento misura

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

ANALISI DI SEGNALI BIOLOGICI

ANALISI DI SEGNALI BIOLOGICI ANALISI DI SEGNALI BIOLOGICI A.Accardo accardo@units.it LM Neuroscienze A.A. 2010-11 Parte II 1 Analisi in frequenza di un segnale l analisi in frequenza di un segnale o analisi di Fourier descrive il

Dettagli

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI

FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE. a cura di G. SIMONELLI FONDAMENTI TEORICI DEL MOTORE IN CORRENTE CONTINUA AD ECCITAZIONE INDIPENDENTE a cura di G. SIMONELLI Nel motore a corrente continua si distinguono un sistema di eccitazione o sistema induttore che è fisicamente

Dettagli

AUDIOSCOPE Mod. 2813-E - Guida all'uso. Rel. 1.0 DESCRIZIONE GENERALE.

AUDIOSCOPE Mod. 2813-E - Guida all'uso. Rel. 1.0 DESCRIZIONE GENERALE. 1 DESCRIZIONE GENERALE. DESCRIZIONE GENERALE. L'analizzatore di spettro Mod. 2813-E consente la visualizzazione, in ampiezza e frequenza, di segnali musicali di frequenza compresa tra 20Hz. e 20KHz. in

Dettagli

Laboratorio di Elettrotecnica

Laboratorio di Elettrotecnica 1 Laboratorio di Elettrotecnica Rappresentazione armonica dei Segnali Prof. Pietro Burrascano - Università degli Studi di Perugia Polo Scientifico Didattico di Terni 2 SEGNALI: ANDAMENTI ( NEL TEMPO, NELLO

Dettagli

Esperimentatori: Durata dell esperimento: Data di effettuazione: Materiale a disposizione:

Esperimentatori: Durata dell esperimento: Data di effettuazione: Materiale a disposizione: Misura di resistenza con il metodo voltamperometrico. Esperimentatori: Marco Erculiani (n matricola 454922 v.o.) Noro Ivan (n matricola 458656 v.o.) Durata dell esperimento: 3 ore (dalle ore 9:00 alle

Dettagli

Calcolo delle linee elettriche a corrente continua

Calcolo delle linee elettriche a corrente continua Calcolo delle linee elettriche a corrente continua Il calcolo elettrico delle linee a corrente continua ha come scopo quello di determinare la sezione di rame della linea stessa e la distanza tra le sottostazioni,

Dettagli

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015

Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Istituto Superiore Vincenzo Cardarelli Istituto Tecnico per Geometri Liceo Artistico A.S. 2014 2015 Piano di lavoro annuale Materia : Fisica Classi Quinte Blocchi tematici Competenze Traguardi formativi

Dettagli

GRANDEZZE SINUSOIDALI

GRANDEZZE SINUSOIDALI GRANDEE SINUSOIDALI INDICE -Grandezze variabili. -Grandezze periodiche. 3-Parametri delle grandezze periodiche. 4-Grandezze alternate. 5-Grandezze sinusoidali. 6-Parametri delle grandezze sinusoidali.

Dettagli

CONOSCERE I TRANSISTOR

CONOSCERE I TRANSISTOR ONOSR I TRANSISTOR Il transistor è il nome di un semiconduttore utilizzato in elettronica per amplificare qualsiasi tipo di segnale elettrico, cioè dalla assa Frequenza alla Radio Frequenza. Per quanti

Dettagli

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo

Gli attuatori. Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo Gli attuatori Breve rassegna di alcuni modelli o dispositivi di attuatori nel processo di controllo ATTUATORI Definizione: in una catena di controllo automatico l attuatore è il dispositivo che riceve

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli