INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA"

Transcript

1 INTRODUZIONE ALLA CINEMATICA DEL PUNTO MATERIALE PROF. FRANCESCO DE PALMA

2 Sommario MOTO E TRAIETTORIA... 3 PUNTO MATERIALE... 3 TRAIETTORIA... 3 VELOCITÀ... 4 VELOCITÀ MEDIA... 4 VELOCITÀ ISTANTANEA... 6 ACCELERAZIONE... 6 ACCELERAZIONE MEDIA... 6 ACCELERAZIONE ISTANTANEA... 7 ESEMPIO... 8 BIBLIOGRAFIA di 11

3 Moto e traiettoria Punto materiale Nel seguito di questa lezione verrà discussa la cinematica del punto, in essa consideriamo unicamente il moto e come esso avviene a prescindere da ciò che lo causa. Per la descrizione dei corpi in moto utilizzeremo l approssimazione del punto materiale, ovvero un corpo in moto con dimensioni trascurabili rispetto al fenomeno in studio di massa non nulla. Esso, pertanto, può essere considerato puntiforme ma ha una massa associata. Traiettoria Ciascun punto, nel suo moto nel piano (o in generale nello spazio), può essere individuato da un raggio vettore rispetto all origine. Esso ovviamente dipende dal sistema di riferimento considerato, pertanto in generale si ha che, come mostrato in Figura 1. Se consideriamo delle coordinate cartesiane nel piano, il raggio vettore può essere scomposto in una componente lungo x ed una lungo y, con i rispettivi vettori, ovvero: Figura 1: traiettoria di un punto P, osservato da due sistemi di riferimento. Se e solo se il punto è in moto, rispetto al sistema di riferimento considerato, si ha che il raggio vettore varia nel tempo, ovvero si ha: 3 di 11

4 L insieme dei punti percorsi dal punto P al passare del tempo si chiama traiettoria; essa è indicata tramite la linea nera in Figura 1. Spesso il tipo di traiettoria è usato per denominare il moto, ad esempio, se: la traiettoria è una retta si ha un moto rettilineo, la traiettoria è una curva piana si ha un moto curvilineo piano, la traiettoria è una circonferenza si ha un moto circolare, la traiettoria è una ellisse si ha un moto ellittico. Si definisce moto unidimensionale un moto descrivibile da una sola variabile dipendente dal tempo, lungo una retta si ha x=x(t), lungo una traiettoria curvilinea si ha s=s(t), come in Figura 2. Figura 2: moti in una sola dimensione Velocità Velocità media Per definire la velocità e nel seguito l accelerazione, inizieremo considerando solo moti monodimensionali e pertanto la posizione del corpo è completamente descritta dalla funzione posizione x(t). Nel moto di un punto materiale da 0 a 1 lungo una traiettoria lineare con una variazione della posizione pari a,, come in Figura 3, in un tempo, si definisce la velocità media: Essa è indipendente da come è avvenuto il moto nelle fasi intermedie ma dipende solo dalle posizioni iniziali e finali e dal tempo intercorso. 4 di 11

5 Figura 3: Variazione della posizione Data la definizione della velocità media come rapporto tra una lunghezza e un tempo si ha che essa si misura in Il segno della velocità media può essere valutato, come in Figura 4, grazie ad un esempio numerico e grafico. In tutto l esempio consideriamo sempre un asse positivo, verso destra, come indicato in Figura 4. Quando un corpo ha un moto concorde con il verso scelto per l asse orientato di riferimento, quindi si muove verso destra nell esempio, la, ovvero avremo una velocità media positiva (assumendo intervalli di tempo sempre positivi). Se il moto del corpo avviene nel verso opposto all asse orientato scelto, ovvero è un moto discorde avremo che. Pertanto, come evidenziato dall esempio in Figura 4, il segno della velocità dipende unicamente dal verso relativo del moto rispetto all asse orientato scelto. Figura 4: Valutazione del segno della velocità media. 5 di 11

6 Velocità istantanea Poiché la velocità media non descrive il moto in ogni istante ma dipende semplicemente dagli stati iniziale e finale è necessario introdurre una nuova quantità che ci consenta di studiare in modo più completo il moto. Se valutiamo la velocità media per un intervallo di tempo infinitesimo avremmo la velocità istantanea : La velocità istantanea di un punto è la rapidità di variazione della posizione occupata dal punto nel tempo. In altri termini è il limite per del rapporto incrementale della funzione x(t), ovvero la derivata prima rispetto al tempo della posizione spaziale x(t): In tal modo per ogni istante, pertanto per ogni punto della traiettoria, possiamo conoscere la velocità istantanea del corpo 1. Nel seguito assumeremo Accelerazione Accelerazione media In generale anche la velocità istantanea dipende dal tempo, ovvero. Se il corpo passa da una velocità al tempo ad una velocità al tempo (come mostrato in Figura 5), possiamo caratterizzare ulteriormente il moto valutando l accelerazione media, definita: Poiché l accelerazione media è definita come un rapporto tra una variazione della velocità ed un intervallo di tempo, essa si misura in. 1 Assumendo che la funzione x(t) sia derivabile. 6 di 11

7 Figura 5: rappresentazione grafica della variazione della posizione Per studiare come varia il segno dell accelerazione media, consideriamo due corpi in moto concorde ad un asse orientato, come mostrato in Figura 6. In tal caso avremo che l accelerazione è positiva se la velocità aumenta ( ) ed è negativa se la velocità diminuisce ( ). Pertanto a differenza della velocità media il segno dell accelerazione non dipende dal verso del moto rispetto all asse orientato. Figura 6: Valutazione del segno dell'accelerazione media. Accelerazione istantanea Come per la velocità media anche l accelerazione media non dipende dalle velocità istantanee lungo la traiettoria ma solo dalla velocità iniziale e finale e dall intervallo di tempo intercorso. Per descrivere completamente il moto è necessario valutare l accelerazione in ogni punto della traiettoria. Valutando l accelerazione media per un intervallo di tempo infinitesimo avremmo l accelerazione istantanea. Definita: 7 di 11

8 L accelerazione istantanea di un punto è la rapidità di variazione della velocità del punto nel tempo. In altri termini è il limite per del rapporto incrementale della funzione v(t), ovvero la derivata prima rispetto al tempo della velocità v(t): Nel seguito della trattazione, quando ci riferiremo all accelerazione, parleremo di accelerazione istantanea. Poiché sappiamo che la velocità istantanea è la derivata dello spostamento, possiamo sostituire nella formula precedente il valore della velocità ed otteniamo: da cui risulta che l accelerazione è la derivata seconda dello spostamento. Pertanto nota la funzione, assumendo che sia derivabile due volte, possiamo conoscere ad ogni istante la velocità e l accelerazione del corpo. Esempio Per analizzare meglio il significato delle relazioni tra lo spostamento, la velocità e l accelerazione, consideriamo il caso di un ascensore espresso in Figura 7. Tra il tempo 1 ed il tempo 2 l ascensore è in quiete, tra 2 e 3 si ha un accelerazione costante, tra 3 e 4 l ascensore ha una velocità costante, tra 4 e 5 si ha una decelerazione costante, tra 5 e 6 il corpo è nuovamente in quiete. Come si può vedere solo nei due intervalli in cui il corpo è in quiete x(t) risulta costante, in tali intervalli si ha che sia la velocità che l accelerazione sono nulle. Durante la fase di accelerazione costante tra 2 e 3, la velocità aumenta linearmente. Tra 3 e 4 l accelerazione è nuovamente nulla e la velocità resta costante, lo spostamento del corpo aumenta linearmente. Tra 4 e 5 l accelerazione è costante ma negativa e la velocità del corpo diminuisce linearmente sino a diventare nulla nel punto 5, lasciando il corpo fermo. 8 di 11

9 Figura 7: Funzioni orarie del caso dell'ascensore. Possiamo anche studiare il caso rappresentato nella Figura 7 tramite un esempio numerico. Nella Tabella 1 sono riportate le diverse posizioni raggiunte dal corpo e gli istanti in cui li raggiunge. Tabella 1: valori numerici dello spostamento del corpo. Posizione x 1 = 0 m x 2 = 0 m x 3 = 4 m x 4 = 24 m x 5 = 28 m x 6 = 28 m Tempo t 1 =0 s t 2 =1 s t 3 =3 s t 4 =8 s t 4 =10 s t 6 =11 s Grazie ai valori in Tabella 1, possiamo valutare i valori delle velocità medie e delle accelerazioni medie grazie alle definizioni viste in precedenza. La velocità media nell intervallo tra 3 e 4, quando la velocità è costante, risulta pari a: 9 di 11

10 Data tale velocità e conoscendo che il corpo era in quiete al tempo 2 ed al tempo 5, e pertanto, possiamo valutare l accelerazione e la decelerazione media, rispettivamente negli intervalli 2-3 e 4-5. Esse risulteranno pari a: 10 di 11

11 Bibliografia P. Mazzoldi, M. Nigro, C. Voci, Fisica Vol I, Edises D. Halliday, R. Resnick, J. Walker, Fondamenti di fisica. Meccanica, termologia, CEA 11 di 11

MOMENTI DI INERZIA PER CORPI CONTINUI

MOMENTI DI INERZIA PER CORPI CONTINUI MOMENTI D INERZIA E PENDOLO COMPOSTO PROF. FRANCESCO DE PALMA Indice 1 INTRODUZIONE -------------------------------------------------------------------------------------------------------------- 3 2 MOMENTI

Dettagli

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1

COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Studio del MOTO DEI CORPI e delle CAUSE che lo DETERMINANO. Fisica con Elementi di Matematica 1 COSA E LA MECCANICA? Viene tradizionalmente suddivisa in: CINEMATICA DINAMICA STATICA

Dettagli

parametri della cinematica

parametri della cinematica Cinematica del punto Consideriamo il moto di una particella: per particella si intende sia un corpo puntiforme (ad es. un elettrone), sia un qualunque corpo esteso che si muove come una particella, ovvero

Dettagli

6. IL MOTO Come descrivere un moto.

6. IL MOTO Come descrivere un moto. 6. IL MOTO Per definire il movimento di un corpo o il suo stato di quiete deve sempre essere individuato un sistema di riferimento e ogni movimento è relativo al sistema di riferimento in cui esso avviene.

Dettagli

Meccanica: Introduzione. Lo Studio del moto degli oggetti

Meccanica: Introduzione. Lo Studio del moto degli oggetti Meccanica: Introduzione Lo Studio del moto degli oggetti 1 Grandezze fisiche n Scalari : esprimibili mediante singoli numeri (es. massa,temperatura, energia, carica elettrica ecc.) n Vettoriali : per essere

Dettagli

Dispense del corso di Fisica per Farmacia del Prof. Claudio Luci

Dispense del corso di Fisica per Farmacia del Prof. Claudio Luci Anno Accademico 2003-2004 Dispense del corso di Fisica per Farmacia del Prof. Claudio Luci http://www.roma1.infn.it/people/luci/corso_farmacia.html Parte I Meccanica del punto Meccanica dei fluidi LIBRI

Dettagli

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2

Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 1 Quando un corpo è in movimento??? Ulteriori attività formative a.a. 2011/12 2 Infatti un passeggero seduto su un treno in corsa è in moto rispetto alla stazione, ma è fermo rispetto al treno stesso!

Dettagli

I MOTI NEL PIANO. Vettore posizione e vettore spostamento

I MOTI NEL PIANO. Vettore posizione e vettore spostamento I MOTI NEL IANO Vettore posizione e vettore spostamento Si parla di moto in un piano quando lo spostamento non avviene lungo una retta, ma in un piano, e può essere descritto usando un sistema di riferimento

Dettagli

Cinematica. Descrizione dei moti

Cinematica. Descrizione dei moti Cinematica Descrizione dei moti Moto di un punto materiale Nella descrizione del moto di un corpo (cinematica) partiamo dal caso più semplice: il punto materiale, che non ha dimensioni proprie. y. P 2

Dettagli

Lezione 3. Principi generali della Meccanica Cinematica, Statica e Dinamica

Lezione 3. Principi generali della Meccanica Cinematica, Statica e Dinamica Lezione 3 Principi generali della Meccanica Cinematica, Statica e Dinamica Premessa L Universo in cui viviamo costituisce un sistema dinamico, cioè un sistema in evoluzione nel tempo secondo opportune

Dettagli

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento.

1. LA VELOCITA. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento. 1. LA VELOCITA La traiettoria. Si chiama traiettoria la linea che unisce le posizioni successive occupate da un punto materiale in movimento Il moto rettilineo: si definisce moto rettilineo quello di un

Dettagli

Università del Sannio

Università del Sannio Università del Sannio Corso di Fisica 1 Lezione 6 Dinamica del punto materiale II Prof.ssa Stefania Petracca 1 Lavoro, energia cinetica, energie potenziali Le equazioni della dinamica permettono di determinare

Dettagli

Fisica 1 Anno Accademico 2011/2011

Fisica 1 Anno Accademico 2011/2011 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 011/011 (1 Marzo - 17 Marzo 01) Sintesi Abbiamo introdotto lo studio del moto di un punto materiale partendo da un approccio cinematico.

Dettagli

Introduzione alla Meccanica: Cinematica

Introduzione alla Meccanica: Cinematica Introduzione alla Meccanica: Cinematica La Cinematica si occupa della descrizione geometrica del moto, senza riferimento alle sue cause. E invece compito della Dinamica mettere in relazione il moto con

Dettagli

Esercizio (tratto dal Problema 1.6 del Mazzoldi)

Esercizio (tratto dal Problema 1.6 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.6 del Mazzoldi) Una particella si muove lungo l asse x nel verso positivo con accelerazione costante a 1 = 3.1 m/s 2. All istante t = 0 la particella si trova nell origine

Dettagli

Appunti di Cinematica

Appunti di Cinematica Appunti di Cinematica Thomas Bellotti 28 novembre 2010 Indice 1 Punto materiale, traiettoria e legge oraria 1 1.1 Il punto materiale.......................... 1 1.2 La traiettoria.............................

Dettagli

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A

Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A Corso di Laurea in Ingegneria Civile Questionario di Fisica Generale A I vettori 1) Cosa si intende per grandezza scalare e per grandezza vettoriale? 2) Somma graficamente due vettori A, B. 3) Come è definito

Dettagli

Teoria dei mezzi continui

Teoria dei mezzi continui Teoria dei mezzi continui Il modello di un sistema continuo è un modello fenomenologico adatto a descrivere sistemi fisici macroscopici nei casi in cui le dimensione dei fenomeni osservati siano sufficientemente

Dettagli

Per semplicità ci limitiamo al caso del moto in una o due dimensioni.

Per semplicità ci limitiamo al caso del moto in una o due dimensioni. PROBLEMA 1: una collisione tra meteoriti. Introduzione su alcuni concetti fondamentali di cinematica Prima di passare allo svolgimento risolutivo è opportuno puntualizzare alcuni concetti relativi allo

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

Cinematica del punto materiale

Cinematica del punto materiale Cinematica del punto materiale E ` la parte piu` elementare della meccanica: studia il moto dei corpi senza riferimento alle sue cause Il moto e` determinato se e` nota la posizione del corpo in funzione

Dettagli

Lezione 5 MOTO CIRCOLARE UNIFORME

Lezione 5 MOTO CIRCOLARE UNIFORME Corsi di Laurea in Scienze motorie - Classe L-22 (D.M. 270/04) Dr. Andrea Malizia 1 MOTO CIRCOLARE UNIFORME 2 Per descrivere un moto curvilineo occorrono due assi cartesiani ortogonali ed un orologio.

Dettagli

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi

Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi Liceo Ginnasio Luigi Galvani Classe 3GHI (scientifica) PROGRAMMA di FISICA a.s. 2016/2017 Prof.ssa Paola Giacconi 1) Cinematica 1.1) Ripasso: Il moto rettilineo Generalità sul moto: definizione di sistema

Dettagli

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3

Serway, Jewett Principi di Fisica IV Ed. Capitolo 3. Serway, Jewett Principi di Fisica, IV Ed. Capitolo 3 Serway, Jewett Principi di Fisica IV Ed. Capitolo 3 Moti in due dimensioni Caso bidimensionale: tutte le grandezze viste fino ad ora (posizione, velocità, accelerazione devono essere trattate come vettori).

Dettagli

Moto del Punto - Cinematica del Punto

Moto del Punto - Cinematica del Punto Moto del Punto - Cinematica del Punto Quiz 1 Posizione, spostamento e traiettoria 1. Un ciclista si sposta di 10km in una direzione formante un angolo di 30 rispetto all asse x di un fissato riferimento.

Dettagli

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi)

x =0 x 1 x 2 Esercizio (tratto dal Problema 1.4 del Mazzoldi) 1 Esercizio (tratto dal Problema 1.4 del Mazzoldi) Un punto materiale si muove con moto uniformemente accelerato lungo l asse x. Passa per la posizione x 1 con velocità v 1 1.9 m/s, e per la posizione

Dettagli

Unità didattica 1. Prima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 1. Prima unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 1 Unità di misura Cinematica Posizione e sistema di riferimento....... 3 La velocità e il moto rettilineo uniforme..... 4 La velocità istantanea... 5 L accelerazione 6 Grafici temporali.

Dettagli

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia

Appunti sul moto circolare uniforme e sul moto armonico- Fabbri Mariagrazia Moto circolare uniforme Il moto circolare uniforme è il moto di un corpo che si muove con velocità di modulo costante lungo una traiettoria circolare di raggio R. Il tempo impiegato dal corpo per compiere

Dettagli

MOTO CIRCOLARE VARIO

MOTO CIRCOLARE VARIO MOTO ARMONICO E MOTO VARIO PROF. DANIELE COPPOLA Indice 1 IL MOTO ARMONICO ------------------------------------------------------------------------------------------------------ 3 1.1 LA LEGGE DEL MOTO

Dettagli

INTERPRETAZIONE CINEMATICA DELLA DERIVATA

INTERPRETAZIONE CINEMATICA DELLA DERIVATA INTERPRETAZIONE CINEMATICA DELLA DERIVATA Consideriamo un punto mobile sopra una qualsiasi linea Fissiamo su tale linea un punto O, come origine degli archi, e un verso di percorrenza come verso positivo;

Dettagli

Derivata materiale (Lagrangiana) e locale (Euleriana)

Derivata materiale (Lagrangiana) e locale (Euleriana) ispense di Meccanica dei Fluidi 0 0 det 0 = [ (0 ) + ( ( ) ) + (0 0 ) ] = 0. Pertanto, v e µ sono indipendenti tra loro e costituiscono una nuova base. Con essi è possibile descrivere altre grandezze,

Dettagli

Teorema dell energia cinetica

Teorema dell energia cinetica Teorema dell energia cinetica L. P. 23 Marzo 2010 Il teorema dell energia cinetica Il teorema dell energia cinetica è una relazione molto importante in Meccanica. L enunceremo nel caso semplice di un punto

Dettagli

Applicazioni delle leggi della meccanica: moto armnico

Applicazioni delle leggi della meccanica: moto armnico Applicazioni delle leggi della meccanica: moto armnico Discutiamo le caratteristiche del moto armonico utilizzando l esempio di una molla di costante k e massa trascurabile a cui è fissato un oggetto di

Dettagli

Il moto uniformemente accelerato. Prof. E. Modica

Il moto uniformemente accelerato. Prof. E. Modica Il moto uniformemente accelerato! Prof. E. Modica www.galois.it La velocità cambia... Quando andiamo in automobile, la nostra velocità non si mantiene costante. Basta pensare all obbligo di fermarsi in

Dettagli

Esercitazioni Fisica Corso di Laurea in Chimica A.A

Esercitazioni Fisica Corso di Laurea in Chimica A.A Esercitazioni Fisica Corso di Laurea in Chimica A.A. 2016-2017 Esercitatore: Marco Regis 1 I riferimenti a pagine e numeri degli esercizi sono relativi al libro Jewett and Serway Principi di Fisica, primo

Dettagli

FISICA Corso di laurea in Informatica e Informatica applicata

FISICA Corso di laurea in Informatica e Informatica applicata FISICA Corso di laurea in Informatica e Informatica applicata I semestre AA 2004-2005 G. Carapella Generalita Programma di massima Testi di riferimento Halliday Resnick Walker CEA Resnick Halliday Krane

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

Cap 1 - Cinematica (Mazzoldi)

Cap 1 - Cinematica (Mazzoldi) 1 DEFINIZIONI COMUNI NELLA MECCANICA Cap 1 - Cinematica (Mazzoldi) Cap 1 - Cinematica (Mazzoldi) La meccanica è la parte della fisica che studia il moto dei corpi e le cause del loro moto. Per trovare

Dettagli

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA

DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA DEDUZIONE DEL TEOREMA DELL'ENERGIA CINETICA DELL EQUAZIONE SIMBOLICA DELLA DINAMICA Sia dato un sistema con vincoli lisci, bilaterali e FISSI. Ricaviamo, dall equazione simbolica della dinamica, il teorema

Dettagli

Cinematica nello Spazio

Cinematica nello Spazio Cinematica nello Spazio Abbiamo introdotto, nelle precedenti lezioni, le grandezze fisiche: 1) Spostamento; 2) Velocità; 3) Accelerazione; 4) Tempo. Abbiamo ricavato le equazioni per i moti: a) uniforme;

Dettagli

Fisica dello Sport Lezione 1:

Fisica dello Sport Lezione 1: 1 of 6 09/05/02 9.08 Fisica dello Sport Lezione 1: Il Linguaggio della Fisica; Introduzione ai Vettori ultimo aggiornamento V.O. 3/29/99 Traduzione in italiano a cura di Barbara Fiammengo e Cristiana Peroni

Dettagli

4. I principi della meccanica

4. I principi della meccanica 1 Leggi del moto 4. I principi della meccanica Come si è visto la cinematica studia il moto dal punto di vista descrittivo, ma non si sofferma sulle cause di esso. Ciò è compito della dinamica. Alla base

Dettagli

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele

LE RETTE PERPENDICOLARI E LE RETTE PARALLELE Le rette perpendicolari Le rette tagliate da una trasversale Le rette parallele PROGRAMMA DI MATEMATICA Classe prima (ex quarta ginnasio) corso F NUMERI: Numeri per contare: insieme N. I numeri interi: insieme Z. I numeri razionali e la loro scrittura: insieme Q. Rappresentare frazioni

Dettagli

Fisica per scienze ed ingegneria

Fisica per scienze ed ingegneria Serway, Jewett Fisica per scienze ed ingegneria Capitolo 15 Blocchetto legato ad una molla in moto su un piano orizzontale privo di attrito. Forza elastica di richiamo: F x =-Kx (Legge di Hooke). Per x>0,

Dettagli

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri

Le Derivate. Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Le Derivate Appunti delle lezioni di matematica di A. Pisani Liceo Classico Dante Alighieri Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato durante

Dettagli

Analisi del moto dei proietti

Analisi del moto dei proietti Moto dei proietti E il moto di particelle che vengono lanciate con velocità iniziale v 0 e sono soggette alla sola accelerazione di gravità g supposta costante. La pallina rossa viene lasciata cadere da

Dettagli

Problemi di dinamica del punto materiale

Problemi di dinamica del punto materiale Problemi di dinamica del punto materiale 1. Un corpo di massa M = 200 kg viene lanciato con velocità v 0 = 36 km/ora su un piano inclinato di un angolo θ = 30 o rispetto all orizzontale. Nel salire, il

Dettagli

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella

Programma di fisica. Classe 1^ sez. F A. S. 2015/2016. Docente: prof. ssa Laganà Filomena Donatella Programma di fisica. Classe 1^ sez. F A. S. 2015/2016 Docente: prof. ssa Laganà Filomena Donatella MODULO 1: LE GRANDEZZE FISICHE. Notazione scientifica dei numeri, approssimazione, ordine di grandezza.

Dettagli

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2)

Esercizio (tratto dal Problema 2.8 del Mazzoldi 2) 1 Esercizio (tratto dal Problema.8 del Mazzoldi ) Una particella si muove lungo una circonferenza di raggio R 50 cm. Inizialmente parte dalla posizione A (θ 0) con velocità angolare nulla e si muove di

Dettagli

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO

CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO CORSO DI BIOFISICA IL MATERIALE CONTENUTO IN QUESTE DIAPOSITIVE E AD ESCLUSIVO USO DIDATTICO PER L UNIVERSITA DI TERAMO LE IMMAGINE CONTENUTE SONO STATE TRATTE DAL LIBRO FONDAMENTI DI FISICA DI D. HALLIDAY,

Dettagli

b) DIAGRAMMA DELLE FORZE

b) DIAGRAMMA DELLE FORZE DELLO SCRITTO DELL SETTEMBRE 5 - ESERCIZIO - Un corpo di massa m = 9 g e dimensioni trascurabili è appeso ad uno dei capi di una molla di costante elastica k = 5 N/m e lunghezza a riposo L = cm. L'altro

Dettagli

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente

8. Energia e lavoro. 2 Teorema dell energia per un moto uniformemente 1 Definizione di lavoro 8. Energia e lavoro Consideriamo una forza applicata ad un corpo di massa m. Per semplicità ci limitiamo, inizialmente ad una forza costante, come ad esempio la gravità alla superficie

Dettagli

Principio di inerzia

Principio di inerzia Dinamica abbiamo visto come si descrive il moto dei corpi (cinematica) ma oltre a capire come si muovono i corpi è anche necessario capire perchè essi si muovono Partiamo da una domanda fondamentale: qual

Dettagli

CORSO DI TECNICA ED ECONOMIA DEI TRASPORTI A.A. 2006-07 DIAGRAMMI DEL MOTO SEMPLIFICATI

CORSO DI TECNICA ED ECONOMIA DEI TRASPORTI A.A. 2006-07 DIAGRAMMI DEL MOTO SEMPLIFICATI POLITECNICO DI BARI II FACOLTA DI INGEGNERIA CORSO DI TECNICA ED ECONOMIA DEI TRASPORTI A.A. 2006-07 DIAGRAMMI DEL MOTO SEMPLIFICATI Diagrammi del moto semplificati slide 1 di 21 DESCRIZIONE DEL MOTO DI

Dettagli

Funzioni vettoriali di variabile scalare

Funzioni vettoriali di variabile scalare Capitolo 11 Funzioni vettoriali di variabile scalare 11.1 Curve in R n Abbiamo visto (capitolo 2) come la posizione di un punto in uno spazio R n sia individuata mediante le n coordinate di quel punto.

Dettagli

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico

Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema. Laboratori del Sapere Scientifico Prodotto realizzato con il contributo della Regione Toscana nell'ambito dell'azione regionale di sistema Laboratori del Sapere Scientifico Liceo Statale C. Lorenzini Classico, Linguistico, Scientifico,Scienze

Dettagli

Progetto lauree scientifiche Scheda 2 Studente:. Scuola e classe: Data:.. Programma DataStudio Sensore di moto PASPORT Interfaccia PASPORT-USB Link

Progetto lauree scientifiche Scheda 2 Studente:. Scuola e classe: Data:.. Programma DataStudio Sensore di moto PASPORT Interfaccia PASPORT-USB Link Progetto lauree scientifiche Scheda 2 Studente:. Scuola e classe: Data:.. Laboratorio Materiali Introduzione Programma DataStudio Sensore di moto PASPORT Interfaccia PASPORT-USB Link Userai un sensore

Dettagli

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO

MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO MOTO DI UNA PARTICELLA IN UN CAMPO ELETTRICO Sappiamo che mettendo una carica positiva q chiamata carica di prova o carica esploratrice in un punto vicino all oggetto carico si manifesta un vettore campo

Dettagli

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica

Corso di Chimica-Fisica A.A. 2008/09. Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica. Esercizi: Dinamica Corso di Chimica-Fisica A.A. 2008/09 Prof. Zanrè Roberto E-mail: roberto.zanre@gmail.com Oggetto: corso chimica-fisica Esercizi: Dinamica Appunti di lezione Indice Dinamica 3 Le quattro forze 4 Le tre

Dettagli

prof. Antonio Marino a.s Liceo Zucchi Monza Il moto circolare uniforme

prof. Antonio Marino a.s Liceo Zucchi Monza Il moto circolare uniforme Il moto circolare uniforme 1. Definizione di moto circolare uniforme Un punto P si muove di moto circolare uniforme 1 se percorre una circonferenza con velocità scalare costante. Pertanto, il modulo della

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

Secondo parziale di Matematica per l Economia (esempio)

Secondo parziale di Matematica per l Economia (esempio) Corso di Laurea in Economia e Management Secondo parziale di Matematica per l Economia (esempio) lettere E-Z, a.a. 206 207 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a scelta

Dettagli

Capitolo 12. Moto oscillatorio

Capitolo 12. Moto oscillatorio Moto oscillatorio INTRODUZIONE Quando la forza che agisce su un corpo è proporzionale al suo spostamento dalla posizione di equilibrio ne risulta un particolare tipo di moto. Se la forza agisce sempre

Dettagli

2. SIGNIFICATO FISICO DELLA DERIVATA

2. SIGNIFICATO FISICO DELLA DERIVATA . SIGNIFICATO FISICO DELLA DERIVATA Esempi 1. Un auto viaggia lungo un percorso rettilineo, con velocità costante uguale a 70 km/h. Scrivere la legge oraria s= s(t) e rappresentarla graficamente. 1. Scriviamo

Dettagli

Correzione 1 a provetta del corso di Fisica 1,2

Correzione 1 a provetta del corso di Fisica 1,2 Correzione 1 a provetta del corso di Fisica 1, novembre 005 1. Primo Esercizio (a) Indicando con r (t) il vettore posizione del proiettile, la legge oraria del punto materiale in funzione del tempo t risulta

Dettagli

MODULO BIMESTRALE N.1:Le Grandezze in Fisica

MODULO BIMESTRALE N.1:Le Grandezze in Fisica CLASSE PRIMAFISICA MODULO BIMESTRALE N.1:Le Grandezze in Fisica Conoscere il concetto di grandezza, di misura, di unità di misura, di equivalenza e gli strumenti matematici per valutare le grandezze. ABILITA

Dettagli

Problemi di massimo e minimo

Problemi di massimo e minimo Problemi di massimo e minimo Supponiamo di avere una funzione continua in Per il teorema di Weierstrass esistono il massimo assoluto M e il minimo assoluto m I problemi di massimo e minimo sono problemi

Dettagli

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura.

VETTORI E SCALARI DEFINIZIONI. Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. VETTORI E SCALARI DEFINIZIONI Si definisce scalare una grandezza definita interamente da un solo numero, affiancato dalla sua unità di misura. Un vettore è invece una grandezza caratterizzata da 3 entità:

Dettagli

CAMPO ELETTRICO. F r e = q E r. Newton ;

CAMPO ELETTRICO. F r e = q E r. Newton ; 1 CAMPO ELETTRICO Si definisce campo elettrico (o elettrostatico) una qualunque regione dello spazio nella quale si manifestano azioni su cariche elettriche. 1. DESCRIZIONE DEL CAMPO Per descrivere un

Dettagli

Sistemi di riferimento e sistemi di coordinate

Sistemi di riferimento e sistemi di coordinate Capitolo 1 Sistemi di riferimento e sistemi di coordinate 1.1 La descrizione geometrica Inizieremo lo studio del moto di sistemi materiali nello spazio riprendendo alcuni concetti elementari applicati

Dettagli

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica

Don Bosco 2014/15, Classe 3B - Primo compito in classe di Fisica Don Bosco 014/15, Classe B - Primo compito in classe di Fisica 1. Enuncia il Teorema dell Energia Cinetica. Soluzione. Il lavoro della risultante delle forze agenti su un corpo che si sposta lungo una

Dettagli

Moto Rettilineo Uniformemente Accelerato

Moto Rettilineo Uniformemente Accelerato Moto Rettilineo Uniformemente Accelerato E il moto rettilineo con accelerazione costante. Per definizione: a(t) a Velocità e legge oraria sono: v(t)at+v 0 s(t)½at +v 0 t+s 0 (v 0 è la velocità iniziale

Dettagli

Prodotto Multimediale

Prodotto Multimediale Prodotto Multimediale Relativo al Laboratorio 2: "Multimedialità e Didattica" Autore: Zumbo Francesco Breve presentazione del Moto Rettilineo Uniforme e Uniformemente Accelerato I moti, a seconda della

Dettagli

La cinematica dei moti rettilinei

La cinematica dei moti rettilinei Capitolo 11 11.1 La cinematica Lo studio del moto ha inizio con gli antichi Greci e da allora ha sempre costituito uno degli argomenti principali nell indagine dei fenomeni naturali. La parte della fisica

Dettagli

Curve e lunghezza di una curva

Curve e lunghezza di una curva Curve e lunghezza di una curva Definizione 1 Si chiama curva il luogo geometrico dello spazio di equazioni parametriche descritto da punto p, chiuso e limitato. Definizione 2 Si dice che il luogo C è una

Dettagli

a.a. : Ore: 56 Crediti totali: 6 Tipologia di insegnamento: intero Docente: Prof. Emilio Mariotti associato

a.a. : Ore: 56 Crediti totali: 6 Tipologia di insegnamento: intero Docente: Prof. Emilio Mariotti associato Titolo: FISICA SPERIMENTALE per geologia (I modulo, mutuato come Istituzioni di Fisica da Scienze Naturali e Scienze Ambientali) Facoltà: Scienze M.F.N. a.a. : 2004-2005 Ore: 56 Crediti totali: 6 Tipologia

Dettagli

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti.

15/04/2014. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8. Generalizziamo, considerando due particelle interagenti. Serway, Jewett Principi di Fisica IV Ed. Capitolo 8 Esempio arciere su una superficie ghiacciata che scocca la freccia: l arciere (60 kg) esercita una forza sulla freccia 0.5 kg (che parte in avanti con

Dettagli

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi

Sulla superficie interna del guscio sferico (induzione totale) si avrà la carica indotta q distribuita uniformemente, quindi 1) Una sfera conduttrice di raggio r = 5 cm possiede una carica q = 10 8 C ed è posta nel centro di un guscio sferico conduttore, di raggio interno R = 20 cm, posto in contatto con la terra (a massa).

Dettagli

PIANO DI STUDIO D ISTITUTO

PIANO DI STUDIO D ISTITUTO PIANO DI STUDIO D ISTITUTO Materia: FISICA Casse 2 1 Quadrimestre Modulo 1 - RIPASSO INIZIALE Rappresentare graficamente nel piano cartesiano i risultati di un esperimento. Distinguere fra massa e peso

Dettagli

Facoltà di Medicina e Chirurgia Università degli Studi di Firenze Precorsi Problemi di Fisica. Giovanni Romano. Principali argomenti di teoria

Facoltà di Medicina e Chirurgia Università degli Studi di Firenze Precorsi Problemi di Fisica. Giovanni Romano. Principali argomenti di teoria Facoltà di Medicina e Chirurgia Università degli Studi di Firenze Precorsi 2011 Problemi di Fisica Giovanni Romano Principali argomenti di teoria Cinematica Dinamica Termodinamica Elettromagnetismo Ottica

Dettagli

Massimi, minimi, monotonia, e derivate

Massimi, minimi, monotonia, e derivate Massimi, minimi, monotonia, e derivate Punti di massimo, minimo per una funzione Definizione 1 Si dice che un punto c di un sottinsieme A di R e un punto interno ad A se e solo se c possiede qualche intorno

Dettagli

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf.

Dati numerici: f = 200 V, R 1 = R 3 = 100 Ω, R 2 = 500 Ω, C = 1 µf. ESERCIZI 1) Due sfere conduttrici di raggio R 1 = 10 3 m e R 2 = 2 10 3 m sono distanti r >> R 1, R 2 e contengono rispettivamente cariche Q 1 = 10 8 C e Q 2 = 3 10 8 C. Le sfere vengono quindi poste in

Dettagli

Lavoro. Energia. Mauro Saita Versione provvisoria, febbraio Lavoro è forza per spostamento

Lavoro. Energia. Mauro Saita   Versione provvisoria, febbraio Lavoro è forza per spostamento Lavoro. Energia. Mauro Saita e-mail: maurosaita@tiscalinet.it Versione provvisoria, febbraio 2015. Indice 1 Lavoro è forza per spostamento 1 1.1 Lavoro compiuto da una forza variabile. Caso bidimensionale..........

Dettagli

Meccanica: branca della fisica, studio del movimento. Biomeccanica: studio del movimento animale. Padre storico: G. A. Borelli, autore del De Motu

Meccanica: branca della fisica, studio del movimento. Biomeccanica: studio del movimento animale. Padre storico: G. A. Borelli, autore del De Motu Meccanica: branca della fisica, studio del movimento. Biomeccanica: studio del movimento animale. Padre storico: G. A. Borelli, autore del De Motu Animalium, forse il primo trattato di Biomeccanica. Questo

Dettagli

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE

ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE ULTERIORI ESERCIZI SUL CALCOLO DIFFERENZIALE 1 Scrivi l equazione della retta tangente al grafico di f(x) = (1 + 2x) 4 nel suo punto di intersezione con l asse y 2 Scrivi l equazione della retta tangente

Dettagli

Argomenti Capitolo 1 Richiami

Argomenti Capitolo 1 Richiami Argomenti Capitolo 1 Richiami L insieme dei numeri reali R si rappresenta geometricamente con l insieme dei punti di una retta orientata su cui sia stato fissato un punto 0 e un segmento unitario. L insieme

Dettagli

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica

Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Esempio prova di esonero Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. Se il caffè costa 4000 /kg (lire al chilogrammo), quanto costa all incirca alla libbra? (a) 1800 ; (b) 8700 ; (c) 18000

Dettagli

Massa, temperatura, volume, densità sono grandezze scalari. La forza è una grandezza vettoriale

Massa, temperatura, volume, densità sono grandezze scalari. La forza è una grandezza vettoriale Le forze (2 a parte) Massa, temperatura, volume, densità sono grandezze scalari La forza è una grandezza vettoriale Scalari e vettori Si definiscono SCALARI le grandezze fisiche che sono del tutto caratterizzate

Dettagli

Momento angolare L. P. Maggio Prodotto vettoriale

Momento angolare L. P. Maggio Prodotto vettoriale Momento angolare L. P. Maggio 2007 1. Prodotto vettoriale 1.1. Definizione Il prodotto vettoriale di due vettori tridimensionali a e b è un vettore c così definito: a) Il modulo di c è pari all area del

Dettagli

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1

FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 FISICA APPLICATA 2 FENOMENI ONDULATORI - 1 DOWNLOAD Il pdf di questa lezione (onde1.pdf) è scaricabile dal sito http://www.ge.infn.it/ calvini/tsrm/ 08/10/2012 FENOMENI ONDULATORI Una classe di fenomeni

Dettagli

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce

Introduciamo il sistema di riferimento indicato in figura b) con F 1 = ( f, 0) ed F 2 = (f, 0). Se P = (x, y) la condizione (1) fornisce 1 L ellisse 1.1 Definizione Consideriamo due punti F 1 ed F 2 e sia 2f la loro distanza. L ellisse è il luogo dei punti P tali che la somma delle distanze PF 1 e PF 2 da F 1 ed F 2 è costante. Se indichiamo

Dettagli

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia

Unità didattica 2. Seconda unità didattica (Fisica) 1. Corso integrato di Matematica e Fisica per il Corso di Farmacia Unità didattica 2 Dinamica Leggi di Newton.. 2 Le forze 3 Composizione delle forze 4 Esempio di forza applicata...5 Esempio: il piano inclinato.. 6 Il moto del pendolo.. 7 La forza gravitazionale 9 Lavoro

Dettagli

Fisica applicata Lezione 5

Fisica applicata Lezione 5 Fisica applicata Lezione 5 Maurizio Tomasi maurizio.tomasi@unimi.it Dipartimento di Fisica Università degli studi di Milano 8 Novembre 2016 Parte I Lavoro ed energia Definizione di lavoro Il lavoro L compiuto

Dettagli

Integrazioni al corso di Economia Politica (anno accademico ) Marianna Belloc

Integrazioni al corso di Economia Politica (anno accademico ) Marianna Belloc Integrazioni al corso di Economia Politica (anno accademico 2013-2014) Marianna Belloc 1 L elasticità Come è già noto, la funzione di domanda di mercato indica la quantità che il mercato è disposto ad

Dettagli

Cinematica del punto materiale moti rettilinei

Cinematica del punto materiale moti rettilinei Cinematica del punto materiale moti rettilinei DEF La cinematica è lo studio dei moti senza occuparsi dei fenomeni che li provocano. Cominciamo cioè con il descrivere i moti. Penseremo dopo a come mai

Dettagli

Esercizio 5. Risoluzione

Esercizio 5. Risoluzione Esercizio 1 Un sasso viene lasciato cadere da fermo in un pozzo; il rumore dell impatto con l acqua giunge all orecchio del lanciatore dopo un intervallo di tempo t* = 10s. Sapendo che il suono si propaga

Dettagli

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE

Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE Leggi della Dinamica Premessa: Si continua a studiare il moto degli oggetti in approssimazione di PUNTO MATERIALE Fisica con Elementi di Matematica 1 Leggi della Dinamica Perché i corpi cambiano il loro

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Dinamica del corpo rigido

Dinamica del corpo rigido Dinamica del corpo rigido Antonio Pierro Definizione di corpo rigido Moto di un corpo rigido Densità Momento angolare Momento d'inerzia Per consigli, suggerimenti, eventuali errori o altro potete scrivere

Dettagli

Potenziale elettrostatico

Potenziale elettrostatico Doppio strato piano Potenziale elettrostatico Consideriamo il lavoro compiuto dalla forza elettrica quando una particella di prova di carica q viene spostata in un campo elettrico E. Possiamo definire

Dettagli