CONTROLLI AUTOMATICI I 03AKWcc Ing. Elettrica - Consorzio Nettuno Torino

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "CONTROLLI AUTOMATICI I 03AKWcc Ing. Elettrica - Consorzio Nettuno Torino"

Transcript

1 Tipologia Esercizio (modellistica) CONTOLLI AUTOMATICI I 03AKWcc Esercizio. (tema d'esame del //007) Nel sistema in figura, la tensione e u (t) è l ingresso e la tensione v (t) della resistenza è l uscita. L + v e u i L C v C v. Scrivere le equazioni di stato, mettendo prima in evidenza quali sono le variabili di stato scelte. Come di consueto si scelgono le variabili di stato in base a considerazioni energetiche: correnti negli induttori e tensioni sui condensatori (purché linearmente indipendenti fra di loro e con gli ingressi). Quindi si hanno le seguenti tre variabili di stato: x=[i L v v. Ora, per scrivere le equazioni di stato, si considerano le equazioni costitutive dei singoli elementi e gli equilibri di tensioni alle maglie e di correnti ai nodi. Per l'induttore si ha L d i L =v =e v L u, da cui la prima equazione di stato: d i L = L v L e. u d v Per il primo condensatore si ha C =i =v = e u v d v, da cui la seconda equazione di stato: = C v C e u. d v Per il secondo condensatore si ha C =i L, da cui la terza equazione di stato: L'equazione d'uscita è data da: v =e u v. Quindi si ha: d v = i C L. v = v e u. Stefano Malan, Dipartimento di Automatica e Informatica, Politecnico di Torino

2 Volendo scrivere le equazioni in forma matriciale si ottiene: [ d i L t 0 0 L d v 0 [i 0 L t L v C v d v 0 0 C [ eu C 0 [i L v =[0 0 v e u v [ =[ Esercizio. (tema d'esame del 3/7/007) Nel sistema in figura, la corrente i u (t) è l ingresso e la tensione v (t) della resistenza è l uscita. v i u L L C v C i i i C. Scrivere le equazioni di stato, mettendo prima in evidenza quali sono le variabili di stato scelte. Come di consueto si scelgono le variabili di stato in base a considerazioni energetiche: correnti negli induttori e tensioni sui condensatori (purché linearmente indipendenti fra di loro e con gli ingressi). Quindi si hanno le seguenti tre variabili di stato: x=[v c i i. Ora, per scrivere le equazioni di stato, si considerano le equazioni costitutive dei singoli elementi e gli equilibri di tensioni alle maglie e di correnti ai nodi. Per il condensatore si ha C d v c =i c=i u i i, da cui la prima equazione di stato: d v c = C i C i C i u. Stefano Malan, Dipartimento di Automatica e Informatica, Politecnico di Torino

3 Per il primo induttore si ha L d i =v L=v c v =v c i c =v c i u i i, da cui la seconda equazione di stato: d i = L v c L i L i L i u. Per il secondo induttore si ha L d i =v L =v c v =v c i c =v c i u i i, da cui la terza equazione di stato: d i = L v c L i L i L i u. L'equazione d'uscita è data da: v = i c = i u i i. Quindi si ha: v = i i i u. Volendo scrivere le equazioni in forma matriciale si ottiene: [d vc 0 C C d i [vc C i L L L d i i L L L [ iu L L c v =[0 [v [ i t i u i =[ Tipologia Esercizio (analisi di stabilità, risposte nel tempo e in frequenza) Esercizio. (tema d'esame del 0/9/005) 0 0 ẋ=[a x [ 0 b 3 0 u t 4 3 b y =[ 3 0 x t. Determinare l'insieme dei valori dei parametri (a,b) che garantisce la stabilità asintotica del sistema.. Verificato che i valori a = 3, b = stabilizzano il sistema, determinare l espressione analitica dell'uscita y(t) ad un ingresso u(t) a gradino di ampiezza 0.5. Primo punto. Per studiare la stabilità asintotica del sistema, al variare dei due parametri (a,b), si calcola il polinomio caratteristico della matrice A, che descrive il sistema stesso: I A = a b b = a [ b 9 Essendo il polinomio caratteristico già fattorizzato, si ricavano subito le sue radici =a, condizione di stabilità asintotica: a 0, b 0.,3 =b±j3 e la Stefano Malan, Dipartimento di Automatica e Informatica, Politecnico di Torino 3

4 Secondo punto. I valori a = 3, b = soddisfano la precedente condizione e, quindi, stabilizzano asintoticamente il sistema. Date le matrici di stato 0 0 A=[ B=[ C=[ 3 0 D=[0 inserite in Scilab o in Matlab, tramite i comandi syslin e sstf (Scilab) o ss e tf (Matlab) si ottiene la funzione di trasferimento G s = 4s 6s s 3 5s che, moltiplicata per la trasformata di Laplace dell'ingresso U s =0.5 6s 30 s, fornisce la trasformata di Laplace dell'uscita Y s = s 3s s 4 5s 3 6s. Tramite i comandi pfss (Scilab) o 30s residue (Matlab) si ottiene la scomposizione in fratti semplici dell'uscita Y s = s s s.53 s, che può essere antitrasformata fornendo la soluzione: s 0 Esercizio. (tema d'esame del 3//006) y=[ e 3t e t cos 3t a b ẋ=[0 0 [ 0 0 a b x u y =[ 3 x. Determinare l'insieme dei valori dei parametri (a,b) che garantisce la stabilità asintotica del sistema.. Verificato che i valori a = 3, b = stabilizzano il sistema, determinare l espressione analitica dell'uscita y(t) date le condizioni iniziali x(0) = [ T e con ingresso nullo: u(t) = 0. Primo punto. Per studiare la stabilità asintotica del sistema, al variare dei due parametri (a,b), prima si calcola il polinomio caratteristico della matrice A, che descrive il sistema stesso: I A = 0 a b 0 a b = 3 a b a b poi se ne studia la stabilità con il metodo di outh. Si costruisce la tabella di outh: 3 a b a b a b a b 0 a b e si impone che gli elementi della prima colonna siano tutti dello stesso segno, per cui si ottiene la condizione: a b 0. Stefano Malan, Dipartimento di Automatica e Informatica, Politecnico di Torino 4

5 Secondo punto. I valori a = 3, b = soddisfano la precedente condizione e, quindi, stabilizzano asintoticamente il sistema. Date le matrici di stato 0 A=[0 0 C=[ e considerando le condizioni iniziali x(0) = [ T come una fittizia matrice di ingresso B (con, inoltre, la matrice D=[0) e inserendole in Scilab o in Matlab, tramite i comandi syslin e sstf (Scilab) o ss e tf (Matlab) si ottiene direttamente la trasformata di Laplace dell'uscita Y s = 3s 4s 8 s 3 5s. Tramite i comandi pfss (Scilab) o s residue (Matlab) si ottiene la scomposizione in fratti semplici dell'uscita Y s = s s s, che può essere antitrasformata fornendo la soluzione: 0.09s Esercizio.3 (tema d'esame del 3/7/007) y =[ e 4.879t 9.56e t cos t a 0 b ẋ=[0 0 ax y =[ 0 x [ 3 u. Determinare l'insieme dei valori dei parametri (a,b) che garantisce la stabilità asintotica del sistema.. Verificato che i valori a =, b = 3 stabilizzano il sistema, date le condizioni iniziali x(0) = [ 5 3 T, determinare l ampiezza massima U dell'ingresso u(t)=u sin(4t), in modo che l'uscita a regime y r (t)=y sin(4t+φ) abbia ampiezza Y 0.5. Primo punto. Per studiare la stabilità asintotica del sistema, al variare dei due parametri (a,b), prima si calcola il polinomio caratteristico della matrice A, che A = descrive il sistema stesso: 0 a I b 0 a = 3 a b a poi se ne studia la stabilità con il metodo di outh. Si costruisce la tabella di outh: 3 b a a a b a 0 a e si impone che gli elementi della prima colonna siano tutti dello stesso segno, per cui si ottiene la condizione: a 0, b Secondo punto. I valori a =, b = 3 soddisfano la precedente condizione e, quindi, stabilizzano asintoticamente il sistema. Dato che il sistema è asintoticamente stabile, l'uscita transitoria, dovuta sia alle condizioni iniziali sia all'ingresso, tende asintoticamente a zero e, quindi, si può parlare di uscita a regime, la cui espressione è già riportata nel testo dell'esercizio. L'uscita a regime, inoltre, è dovuta solo all'ingresso e non alle condizioni iniziali. Stabilito ciò, dell'uscita a regime y r (t)=y sin(4t+φ) interessa la sua ampiezza Y e si vuole che sia Y 0.5. L'ampiezza Y la si ottiene Stefano Malan, Dipartimento di Automatica e Informatica, Politecnico di Torino 5

6 tramite la risposta in frequenza Y =U G j =4, dove G(s) è la funzione di trasferimento del sistema e ω=4 rappresenta la pulsazione della sinusoide d'ingresso. Date le matrici di stato A=[0 0 B= [ 3 C=[ 0 D=[0 inserite in Scilab o in Matlab, tramite i comandi syslin e sstf (Scilab) o ss e tf (Matlab) si ottiene la funzione di 5 s 5 trasferimento G s = s 3 s e, tramite i comandi repfreq e dbphi (Scilab) o bode (Matlab), il valore 3s G j =4.009, da cui si ha Y =.009U 0.5 e, quindi, U 0.5/.009= Tipologia Esercizio 3 (raggiungibilità, controllabilità, progetto della retroazione dagli stati) Esercizio 3. (tema d'esame del 3//006) 0 7 [ ẋ=[ x u 7 y =[ 0 5 x. È possibile progettare una legge di controllo in retroazione dagli stati u(t) = K x(t) in modo da imporre i seguenti autovalori λ = 3, λ = 4, λ 3 = 5? Se sì, calcolare i guadagni K. Date le matrici di stato 0 7 A=[ B=[ C=[ 0 5 D=[0 inserite in Scilab o in Matlab, tramite i comandi spec (Scilab) o eig (Matlab) si calcolano gli autovalori della matrice A: A ={.96, 4, 9.96}. Si nota subito che uno di questi autovalori coincide con quelli che si vogliono imporre mentre due sono sicuramente da modificare (di questi ultimi, uno è anche instabile). Quindi, tramite i comandi cont_mat (Scilab) o ctrb (Matlab) si calcola la matrice di raggiungibilità M e, tramite il comando rank (Scilab e Matlab), il suo rango: M M =[ =3 Dato che il sistema è completamente raggiungibile M =3=dim A =3, tramite i comandi ppol (Scilab) o place o acker (Matlab) si calcolano i guadagni K della legge di controllo: K =[ , e si verifica che A B K ={ 3, 4, 5}. Stefano Malan, Dipartimento di Automatica e Informatica, Politecnico di Torino 6

7 Esercizio 3. (tema d'esame del 3/7/007) CONTOLLI AUTOMATICI I 03AKWcc ẋ=[ y =[6 3 6 x [4 u x [ u. È possibile progettare una legge di controllo in retroazione dagli stati u(t) = K x(t) in modo da imporre i seguenti autovalori λ =, λ = 3, λ 3 = 5, λ 4 = 6? Se sì, calcolare i guadagni K. Date le matrici di stato A=[ 9 B=[ C=[6 3 6 D=[ 4 inserite in Scilab o in Matlab, tramite i comandi spec (Scilab) o eig (Matlab) si calcolano gli autovalori della matrice A: A =},, 3, 4}. Si nota subito che due di questi autovalori coincidono con quelli che si vogliono imporre mentre due sono sicuramente da modificare. Quindi, tramite i comandi cont_mat (Scilab) o ctrb (Matlab) si calcola la matrice di raggiungibilità M e, tramite il comando rank (Scilab e Matlab), il suo rango: M =[ M = Dato che il sistema non è completamente raggiungibile M = dim A =4 occorre verificare se gli autovalori non raggiungibili (che non si possono modificare) sono contenuti o meno nell'insieme di quelli che si vogliono imporre. Per questo si calcola la forma canonica di Kalman di raggiungibilità e si isola la matrice di stato A N della parte non raggiungibile (Nota: esistono infinite rappresentazioni della forma canonica di Kalman di raggiungibilità, per cui i valori numerici della matrice A N dipendono dal software utilizzato e, a volte, anche dalla versione del software stesso; ciò che non cambia sono, ovviamente, gli autovalori), tramite i comandi contr (Scilab) o ctrbf (Matlab), e se ne calcolano gli autovalori: A N =[ A N = 3, 4 Essendo uno degli autovalori non raggiungibili (λ = 4) non compreso nell'insieme degli autovalori che si vogliono imporre, non è possibile progettare la legge di controllo richiesta. Tipologia Esercizio 4 (osservabilità, ricostruibilità, progetto dello stimatore asintotico dello stato) Esercizio 4. (tema d'esame del 3//006) 0 7 ẋ=[ x [ u 7 y =[ 0 5 x. È possibile progettare uno stimatore asintotico dello stato imponendo opportuni autovalori? Se sì, calcolare i guadagni L. Stefano Malan, Dipartimento di Automatica e Informatica, Politecnico di Torino 7

8 Date le matrici di stato CONTOLLI AUTOMATICI I 03AKWcc A=[ 4 5 B= 5 0 [ 7 C=[ 0 5 D=[0 inserite in Scilab o in Matlab, tramite i comandi spec (Scilab) o eig (Matlab) si calcolano gli autovalori della matrice A: A =}.96, 4, 9.96 }. Si nota subito che uno di questi autovalori è instabile e andrà, di conseguenza, modificato. Quindi, tramite i comandi obsv_mat (Scilab) o obsv (Matlab) si calcola la matrice di osservabilità M O e, tramite il comando rank (Scilab e Matlab), il suo rango: =[ M O M O = Dato che il sistema non è completamente osservabile M O = dim A =3 occorre verificare se gli autovalori non osservabili (che non si possono modificare) sono stabili o meno. Per questo si calcola la forma canonica di Kalman di osservabilità e si isola la matrice di stato A NO della parte non osservabile (Nota: esistono infinite rappresentazioni della forma canonica di Kalman di osservabilità, per cui, in generale, i valori numerici della matrice A NO dipendono dal software utilizzato e, a volte, anche dalla versione del software stesso; ciò che non cambia sono, ovviamente, gli autovalori; in questo esercizio, però, il sottospazio non osservabile è di dimensione e, quindi, la matrice A NO è uno scalare e coincide con l'autovalore non osservabile e non dipende dal software utilizzato), tramite i comandi unobs (Scilab) o obsvf (Matlab), e se ne calcolano gli autovalori: A NO =[ 4, A NO = 4. Essendo l'autovalore non osservabile già stabile, è possibile progettare lo stimatore asintotico, essendo il criterio fondamentale di scelta degli autovalori appunto la stabilità. Stabilito ciò, si impongono due autovalori a parte reale negativa, per esempio λ = 8, λ = 6, oltre a quello non modificabile, λ 3 = 4. Tramite i comandi stabil (Scilab, attenzione al segno della retroazione) o place (Matlab) si calcolano i guadagni L dello stimatore: L=[ T, e si verifica che A L C ={ 8, 6, 4 }. (Nota: essendo il sistema non completamente osservabile, esistono infiniti guadagni L che impongono gli autovalori voluti, dato che gli elementi di L che moltiplicano gli stati non osservabili possono assumere qualunque valore; ciò che non cambia sono gli autovalori della matrice A L*C, che devono coincidere con quelli imposti) Esercizio 4. (tema d'esame del 3/7/007) ẋ=[ y =[6 3 6 x [4 u x [ u. È possibile progettare uno stimatore asintotico dello stato imponendo i seguenti autovalori: λ = 0+j, λ = 0 j, λ 3 = 0+j5, λ 4 = 0 j5? Se sì, calcolare i guadagni L. Date le matrici di stato A=[ 9 B=[ C=[6 3 6 D=[ 4 Stefano Malan, Dipartimento di Automatica e Informatica, Politecnico di Torino 8

9 inserite in Scilab o in Matlab, tramite i comandi spec (Scilab) o eig (Matlab) si calcolano gli autovalori della matrice A: A =},, 3, 4}. Si nota subito che tutti e quattro gli autovalori non coincidono con quelli che si vogliono imporre e che, quindi, sono sicuramente tutti da modificare. Quindi, tramite i comandi obsv_mat (Scilab) o obsv (Matlab) si calcola la matrice di osservabilità =[ M O e, tramite il comando rank (Scilab e Matlab), il suo rango: M O M O =4 Dato che il sistema è completamente osservabile M O =4=dim A =4, tramite i comandi ppol (Scilab) o place o acker (Matlab) si calcolano i guadagni L dello stimatore: L=[ T e si verifica che A L C ={ 0 j, 0 j, 0 j5, 0 j5}. Stefano Malan, Dipartimento di Automatica e Informatica, Politecnico di Torino 9

Fondamenti di Controlli Automatici. 1 Temi d'esame. Politecnico di Torino CeTeM. Politecnico di Torino Pagina 1 di 25 Data ultima revisione 19/09/00

Fondamenti di Controlli Automatici. 1 Temi d'esame. Politecnico di Torino CeTeM. Politecnico di Torino Pagina 1 di 25 Data ultima revisione 19/09/00 etem Fondamenti di ontrolli Automatici Temi d'esame ATTENZONE: i temi d esame e gli esercizi proposti riguardano (per ora) solo la parte di analisi di sistemi di controllo; per quanto riguarda il progetto,

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE V Sommario LEZIONE V Proprietà strutturali Controllabilità e raggiungibilità Raggiungibilità nei sistemi lineari Forma

Dettagli

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D =

Scrivere il numero della risposta sopra alla corrispondente domanda. (voti: 2,0,-1, min=14 sulle prime 10) , C = [3 2 2], D = n. 101 cognome nome corso di laurea Analisi e Simulazione di Sistemi Dinamici 18/11/2003 Risposte Domande 1 2 3 4 5 6 7 8 9 10 N. matricola Scrivere il numero della risposta sopra alla corrispondente domanda.

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Proprietà strutturali e leggi di controllo aggiungibilità e controllabilità etroazione statica dallo stato Osservabilità e rilevabilità Stima dello stato e regolatore dinamico

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 2008: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello dell 8 luglio 8: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

Raggiungibilità e Controllabilità Esercizi risolti

Raggiungibilità e Controllabilità Esercizi risolti Raggiungibilità e ontrollabilità Esercizi risolti 1 Esercizio Dato il seguente sistema dinamico LTI a tempo discreto descritto dalle matrici A e B: [ [ 1 k k A, B 0 1 + k 1 studiare le proprietà di raggiungibilità

Dettagli

Teoria dei Sistemi s + 1 (s + 1)(s s + 100)

Teoria dei Sistemi s + 1 (s + 1)(s s + 100) Teoria dei Sistemi 03-07-2015 A Dato il sistema dinamico rappresentato dalla funzione di trasferimento 10s + 1 (s + 1)(s 2 + 16s + 100) A.1 Si disegnino i diagrammi di Bode, Nyquist e i luoghi delle radici.

Dettagli

SOLUZIONE della Prova TIPO B per:

SOLUZIONE della Prova TIPO B per: SOLUZIONE della Prova TIPO B per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) domande a risposta multipla

Dettagli

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande Esame scritto di Teoria dei Sistemi - Modena - Giugno 5 - Domande Per ciascuno dei seguenti test a risposta multipla segnare con una crocetta le affermazioni che si ritengono giuste. Alcuni test sono seguiti

Dettagli

Controlli Automatici

Controlli Automatici Controlli Automatici (Prof. Casella) I Prova in Itinere - 21 Novembre 2008 Soluzioni Domanda 1 Con riferimento al seguente sistema: ẋ 1 = x 1 ẋ 2 = 2 x 1 x 2 u ẋ 3 =x 1 5 x 2 x 3 y=3 x 1 2 x 2 1.1 Valutare

Dettagli

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione

1 a PROVA PARZIALE DI FONDAMENTI DI AUTOMATICA A.A. 2004/ novembre Soluzione a PROVA PARZIAE DI FONDAMENTI DI AUTOMATIA A.A. 24/25 9 novembre 24 Esercizio on riferimento alla funzione di trasferimento G(s) = 7s2 + 36s + 48 (s + 3)(s + 4) 2 Domanda.. Indicare i valori del guadagno,

Dettagli

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018 Fondamenti di Automatica Prof. Luca Bascetta Primo prova intermedia 27 Aprile 28 ESERCIZIO E assegnato il sistema dinamico, a tempo continuo, lineare e invariante con ingresso u(t) e uscita y(t): { ẋ(t)

Dettagli

SOLUZIONE della Prova TIPO E per:

SOLUZIONE della Prova TIPO E per: SOLUZIONE della Prova TIPO E per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 crediti) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 crediti) Prova scritta 16 luglio 2014 SOLUZIONE ESERCIZIO 1. Dato il sistema con: si determinino gli autovalori della forma minima. Per determinare la forma minima

Dettagli

Corso di Teoria dei Sistemi N. Raccolta di esercizi svolti tratti da temi d esame

Corso di Teoria dei Sistemi N. Raccolta di esercizi svolti tratti da temi d esame Politecnico di Torino - Consorzio Nettuno Michele Taragna Corso di Teoria dei Sistemi - 955N Raccolta di esercizi svolti tratti da temi d esame Diploma Universitario a Distanza in Ingegneria Informatica

Dettagli

ẋ 1 = x x 1 + u ẋ 2 = 2x 2 + 2u y = x 2

ẋ 1 = x x 1 + u ẋ 2 = 2x 2 + 2u y = x 2 Testo e soluzione dell appello del 2 settembre 2. Si consideri il sistema descritto dalle seguenti equazioni: ẋ = x 2 2 + 2x + u ẋ 2 = 2x 2 + 2u y = x 2. Determinare l espressione analitica del movimento

Dettagli

01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007

01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007 1 01AYS / 07AYS - FONDAMENTI DI AUTOMATICA Tipologia degli esercizi proposti nel compito del 16/XI/2007 Esercizio 1 - Date le matrici A = 2p 1 1 2p 2 C = 1 p di un modello LTI in variabili di stato a tempo

Dettagli

Controlli Automatici

Controlli Automatici Controlli Automatici (Prof. Casella) I Prova in Itinere - 21 Novembre 2005 Soluzioni Esercizio 1 Con riferimento al seguente sistema dinamico: ẋ 1 = x 1 x 2 2x 3 ẋ 2 = 2x 2 x 3 ẋ 3 =x 2 2x 3 u y=x 2 x

Dettagli

COMPITO A: soluzione

COMPITO A: soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA (PRIMA PARTE) A.A. 2005/2006 9 novembre 2005 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi.

Dettagli

SOLUZIONE della Prova TIPO F per:

SOLUZIONE della Prova TIPO F per: SOLUZIONE della Prova TIPO F per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta

Dettagli

Fondamenti di Automatica per Ing. Elettrica

Fondamenti di Automatica per Ing. Elettrica 1 Fondamenti di Automatica per Ing. Elettrica Prof. Patrizio Colaneri 2 Prima prova in itinere del 14 Novembre 217 Cognome Nome Matricola Firma Durante la prova non è consentita la consultazione di libri,

Dettagli

SOLUZIONE della Prova TIPO A per:

SOLUZIONE della Prova TIPO A per: SOLUZIONE della Prova TIPO A per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta

Dettagli

rapporto tra ingresso e uscita all equilibrio.

rapporto tra ingresso e uscita all equilibrio. Sistemi Dinamici: Induttore: Condensatore: Massa: Oscillatore meccanico: Pendolo: Serbatoio cilindrico: Serbatoio cilindrico con valvola d efflusso: Funzione di Trasferimento: Stabilità del sistema: (N.B.

Dettagli

Proprietà strutturali e leggi di controllo

Proprietà strutturali e leggi di controllo Proprietà strutturali e leggi di controllo sservabilità e rilevabilità Definizioni ed esempi introduttivi Analisi dell osservabilità di sistemi dinamici LTI Esempi di studio dell osservabilità sservabilità

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ luglio Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 2 luglio 24 Esercizio In riferimento allo schema a blocchi in figura. s r y 2 s y K s2 Domanda.. Determinare una realizzazione in equazioni di stato

Dettagli

Corso di Teoria dei Sistemi N. Raccolta di esercizi svolti tratti da temi d esame

Corso di Teoria dei Sistemi N. Raccolta di esercizi svolti tratti da temi d esame Politecnico di Torino - Consorzio Nettuno Michele Taragna Corso di Teoria dei Sistemi - 955N Raccolta di esercizi svolti tratti da temi d esame Diploma Universitario a Distanza in Ingegneria Informatica

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 10 settembre 2008: testo e soluzione. y = x 2. x 1 = 1 x 2 = 1

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 10 settembre 2008: testo e soluzione. y = x 2. x 1 = 1 x 2 = 1 AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 1 settembre 28: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema non lineare descritto dalle seguenti equazioni: ẋ 1

Dettagli

F v F o. Esercizio 2 Dato il sistema dinamico avente la seguente rappresentazione in variabili di stato:

F v F o. Esercizio 2 Dato il sistema dinamico avente la seguente rappresentazione in variabili di stato: CONTROLLI AUTOMATICI I - D. U. - Sede di Alessandria Compito del 5/VII/999 Negli esercizi che seguono, rispondere alle domande motivando adeguatamente le scelte operate e riportando inoltre tutte le istruzioni

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo. TEORIA DEI SISTEMI 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le uniche variabili

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ giugno Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ giugno Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 giugno 24 Esercizio In riferimento allo schema a blocchi in figura. y r s s s2 y 2 K s dove Domanda.. Determinare una realizzazione in equazioni di

Dettagli

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica.

FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica. FONDAMENTI DI CONTROLLI AUTOMATICI Ingegneria Meccanica http://web.ing.unimo.it/~lbiagiotti/fondamenticontrolli45.html Analisi Armonica Ing. e-mail: luigi.biagiotti@unimore.it http://www.dii.unimore.it/~lbiagiotti

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 20 giugno 2017 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema di sorveglianza costituito da una flotta di droni di tipologia quadricottero.

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 2 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli

Proprietà strutturali e leggi di controllo. Stima dello stato e regolatore dinamico

Proprietà strutturali e leggi di controllo. Stima dello stato e regolatore dinamico Proprietà strutturali e leggi di controllo Stima dello stato e regolatore dinamico Stima dello stato e regolatore dinamico Stimatore asintotico dello stato Esempi di progetto di stimatori asintotici dello

Dettagli

4 Analisi nel dominio del tempo delle rappresentazioni in

4 Analisi nel dominio del tempo delle rappresentazioni in Indice del libro Alessandro Giua, Carla Seatzu Analisi dei sistemi dinamici, Springer-Verlag Italia, II edizione, 2009 Pagina web: http://www.diee.unica.it/giua/asd/ Prefazione.....................................................

Dettagli

Introduzione a MATLAB

Introduzione a MATLAB Introduzione a MATLAB Principali comandi MATLAB utili per il corso di Fondamenti di Automatica 01AYS Politecnico di Torino Sistemi dinamici LTI 1. Simulazione a tempo continuo Definizione del sistema Per

Dettagli

Analisi Armonica. Prof. Laura Giarré

Analisi Armonica. Prof. Laura Giarré Analisi Armonica Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Analisi armonica di sistemi dinamici Analisi nel dominio del tempo. Studio del comportamento dinamico di un

Dettagli

Proprietà strutturali e leggi di controllo

Proprietà strutturali e leggi di controllo Proprietà strutturali e leggi di controllo Retroazione statica dallo stato La legge di controllo Esempi di calcolo di leggi di controllo Il problema della regolazione 2 Retroazione statica dallo stato

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Stabilità esterna e analisi della risposta Stabilità esterna e risposta a regime Risposte di sistemi del I e II ordine 2 Stabilità esterna e analisi della risposta Stabilità esterna

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI 26 luglio 213 Anno Accademico 212/213 ESERCIZIO 1 Si consideri il sistema descritto dalla equazione

Dettagli

Prova TIPO B per: ESERCIZIO 1.

Prova TIPO B per: ESERCIZIO 1. Prova TIPO B per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) domande a risposta multipla (v. ultime

Dettagli

Scomposizione canonica di Kalman

Scomposizione canonica di Kalman Capitolo. TEORIA DEI SISTEMI 5. Scomposizione canonica di Kalman Si consideri il sistema S = (A, B, C). Sia X + il sottospazio raggiungibile ed E il sottospazio non osservabile. Sia una matrice di base

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ settembre 2005 TESTO E SOLUZIONE

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2004/ settembre 2005 TESTO E SOLUZIONE PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 4/5 settembre 5 TESTO E Esercizio In riferimento allo schema a blocchi in figura. y y u - s5 sk y k s y 4 Domanda.. Determinare una realizzazione in equazioni

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 8 settembre 2017 SOLUZIONE ESERCIZIO 1. Si consideri il seguente circuito elettrico passivo: Applicando le leggi di Kirchhoff

Dettagli

SOLUZIONE della Prova TIPO E per:

SOLUZIONE della Prova TIPO E per: SOLUZIONE della Prova TIPO E per: Esame di FONDAMENTI DI AUTOMATICA (9 CFU): 6 degli 8 esercizi numerici + 4 delle 5 domande a risposta multipla (v. ultime due pagine) NOTA: nell effettiva prova d esame

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Controllo con retroazione dello stato Dott. Ing. Marcello Bonfè Dipartimento di Ingegneria - Università di Ferrara Tel. 39 0532 974839 E-mail: marcello.bonfe@unife.it pag. 1 Controllo

Dettagli

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio A.A

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio A.A TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 30 Gennaio 2013 - A.A. 2012-2013 Esercizio 1. Si consideri il sistema a tempo continuo descritto dalle seguenti

Dettagli

Compito di Analisi e simulazione dei sistemi dinamici - 06/02/2003. p 2 3 x p 2 y = [1 1 0] x

Compito di Analisi e simulazione dei sistemi dinamici - 06/02/2003. p 2 3 x p 2 y = [1 1 0] x Compito di Analisi e simulazione dei sistemi dinamici - 06/02/2003 Esercizio 1. Dato il seguente sistema lineare tempo invariante, SISO: p 2 3 ẋ = 0 p 2 1 x + 0 1 p 2 y = [1 1 0] x 1 p 3 0 u Si calcoli

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME Prima prova in itinere 07 maggio 014 Anno Accademico 013/014 ESERCIZIO 1 Si consideri il sistema S descritto

Dettagli

Raggiungibilità e controllabilità

Raggiungibilità e controllabilità Capitolo. TEORIA DEI SISTEMI 4. Raggiungibilità e controllabilità Raggiungibilità. Il problema della raggiungibilità consiste nel determinare l insieme di stati raggiungibili a partire da un dato stato

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo 5. OSSERVABILITÀ E RICOSTRUIBILITÀ 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le

Dettagli

Prova TIPO C per: ESERCIZIO 1.

Prova TIPO C per: ESERCIZIO 1. Prova TIPO C per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta multipla (v. ultime

Dettagli

iii) Si studi la raggiungibilità e l osservabilità dei seguenti sistemi:

iii) Si studi la raggiungibilità e l osservabilità dei seguenti sistemi: Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del /9/7 Esercizio Sia (F, g, H) un sistema discreto, raggiungibile e osservabile, con un ingresso e un uscita, e sia n(z) R(z)

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 29/06/2017 Prof. Marcello Farina SOLUZIONI ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A. Scrivere le equazioni del sistema linearizzato

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU)

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 28 giugno 2018 COGNOME e NOME: MATRICOLA: ESERCIZIO 1. Si vuole realizzare un sistema robotico per la lucidatura automatica della superficie di lamiere,

Dettagli

FONDAMENTI DI AUTOMATICA 11 novembre 2018 Prima prova in itinere Cognome Nome Matricola

FONDAMENTI DI AUTOMATICA 11 novembre 2018 Prima prova in itinere Cognome Nome Matricola FONDAMENTI DI AUTOMATICA novembre 28 Prima prova in itinere Cognome Nome Matricola............ Verificare che il fascicolo sia costituito da 7 pagine compresi il foglio di carta semilogaritmica. Scrivere

Dettagli

FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 2010: testo e soluzione. y = x 1

FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 2010: testo e soluzione. y = x 1 FONDAMENTI DI AUTOMATICA (Ingegneria Biomedica) Appello del 16 febbraio 21: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema descritto dalle seguenti equazioni: ẋ 1 = x 2 2 + x 1 ẋ 2 =

Dettagli

Spazio degli stati. G(s) = Y (s) X(s) = b m s m + b m 1 s m b 1 s + b 0

Spazio degli stati. G(s) = Y (s) X(s) = b m s m + b m 1 s m b 1 s + b 0 .. MODELLISTICA - Modellistica dinamica 2. Spazio degli stati I sistemi dinamici lineari vengono tipicamente descritti utilizzando la trasformata di Laplace e il concetto di funzione di trasferimento.

Dettagli

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica

ANALISI ARMONICA. G(s) Analisi armonica. Funzione di risposta armonica CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Analisi

Dettagli

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa

CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Luigi

Dettagli

Esercitazione Si consideri il processo descritto dalla funzione di trasferimento: Soluzione

Esercitazione Si consideri il processo descritto dalla funzione di trasferimento: Soluzione Esercitazione. Si consideri il processo descritto dalla funzione di trasferimento: Soluzione s F ( s) k s s s Analizzare la funzione F(s) mediante il luogo delle radici: tracciare il luogo positivo e il

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 20 giugno 2017 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema di sorveglianza costituito da una flotta di droni di

Dettagli

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento Esercitazione 05: Trasformata di Laplace e funzione di trasferimento 28 marzo 208 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 8 settembre 2017 SOLUZIONE ESERCIZIO 1. Si consideri il seguente circuito elettrico passivo: Applicando le leggi di Kirchhoff e le formule di base

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

08. Analisi armonica. Controlli Automatici

08. Analisi armonica. Controlli Automatici 8. Analisi armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Alessio Levratti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

CONTROLLI AUTOMATICI Ingegneria Gestionale ANALISI ARMONICA

CONTROLLI AUTOMATICI Ingegneria Gestionale  ANALISI ARMONICA CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm ANALISI ARMONICA Ing. Federica Grossi Tel. 059 2056333 e-mail: federica.grossi@unimore.it

Dettagli

Controlli Automatici - Parte A

Controlli Automatici - Parte A Cognome: Nome: N. Matr.: Ho seguito il corso con Prof Giarré Prof. Biagiotti Controlli Automatici - Parte A Ingegneria Meccanica e Ingegneria del Veicolo Compito del 12 gennaio 218 - Quiz Per ciascuno

Dettagli

Classe Ingegneria dell Informazione Laurea in Ingegneria Informatica Insegnamento: Controlli dei Processi I ING-INF/04

Classe Ingegneria dell Informazione Laurea in Ingegneria Informatica Insegnamento: Controlli dei Processi I ING-INF/04 Classe Ingegneria dell Informazione Laurea in Ingegneria Informatica Insegnamento: Controlli dei Processi I ING-INF/4 Docente Numero di crediti: 6 Prof: Maria Pia Fanti Conoscenze preliminari Trasformata

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 29 gennaio 2018 SOLUZIONE ESERCIZIO 1. Si vuole realizzare un sistema robotico, costituito da un attuatore lineare che integra il circuito elettronico

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 21/09/2016 - Soluzioni Prof Marcello Farina Anno Accademico 2015/2016 ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A Spiegare

Dettagli

Soluzione degli esercizi del Capitolo 13

Soluzione degli esercizi del Capitolo 13 Soluzione degli esercizi del Capitolo 3 Soluzione dell Esercizio 3. Il polinomio caratteristico desiderato è ϕ (s) = (s + 4) (s + ) = s 2 + 4s + 4 Uguagliando i coefficienti quelli del polinomio caratteristico

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) (A.A. fino al 2017/2018) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) (A.A. fino al 2017/2018) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) (A.A. fino al 2017/2018) Prova scritta 7 giugno 2019 SOLUZIONE ESERCIZIO 1. Si consideri il problema della regolazione di quota dell aerostato ad aria calda mostrato

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA ESERCIZIO Si consideri il seguente sistema S. INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 7/06/09 Prof. Marcello Farina TESTO DEGLI ESERCIZI E SOLUZIONI x = u (sin(πx)) A. Si scrivano le equazioni

Dettagli

Esame di Controlli Automatici 4 Febbraio 2016

Esame di Controlli Automatici 4 Febbraio 2016 Esame di Controlli Automatici 4 Febbraio 26. (7) Si consideri il seguente sistema non lineare ẋ αx 3 2( + x 2 + x 2 2) ẋ 2 βx 3 ( + x 2 + x 2 2) () e si studi la stabilità dell equilibrio nell origine

Dettagli

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - CFU) COMPITO DI TEORIA DEI SISTEMI Giugno - A.A. - Esercizio. Si consideri il sistema a tempo continuo descritto dalle seguenti equazioni: x(t +

Dettagli

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità

Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Raggiungibilità, Controllabilità, Osservabilità e Determinabilità Si determini se i sistemi lineari tempo invarianti ẋ(t) = Ax(t) + Bu(t), Σ c : y(t) = Cx(t) + Du(t). x(k + ) = Ax(k) + Bu(k), Σ d : y(k)

Dettagli

Controllo con retroazione dello stato

Controllo con retroazione dello stato CONTROLLI AUTOMATICI LS Ingegneria Informatica Controllo con retroazione dello stato Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 51 29334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/people/cmelchiorri

Dettagli

s +6 s 3 s 2 +(K 3)s +6K. 6(s +6) s 2 +3s +36. (1) i) Prima di tutto fattorizziamo opportunamente la funzione di trasferimento (1)

s +6 s 3 s 2 +(K 3)s +6K. 6(s +6) s 2 +3s +36. (1) i) Prima di tutto fattorizziamo opportunamente la funzione di trasferimento (1) Esercizio. Con riferimento al sistema di figura, calcolare: u(t) + K s s +6 s 3 y(t) a) la funzione di trasferimento a ciclo chiuso tra u(t) e y(t); b) i valori di K per i quali il sistema a ciclo chiuso

Dettagli

FONDAMENTI DI AUTOMATICA. Prof. Maria Prandini

FONDAMENTI DI AUTOMATICA. Prof. Maria Prandini POLITECNICO DI MILANO FONDAMENTI DI AUTOMATICA Ingegneria Informatica e Ingegneria delle Telecomunicazioni Allievi da CM (incluso) a IM (escluso) Prof. Maria Prandini Anno Accademico 2017/18 Appello del

Dettagli

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Controlli Automatici (AUT) - 09AKSBL Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Sistemi dinamici - Introduzione Concetto di sistema. Si parla

Dettagli

1. Si individuino tutti i valori del parametro α per i quali il sistema assegnato è asintoticamente stabile.

1. Si individuino tutti i valori del parametro α per i quali il sistema assegnato è asintoticamente stabile. Appello di Fondamenti di Automatica (Gestionale) a.a. 2017-18 7 Settembre 2018 Prof. SILVIA STRADA Tempo a disposizione: 2 h. ESERCIZIO 1 Si consideri il sistema dinamico lineare invariante a tempo continuo

Dettagli

Applicando le leggi di Kirchhoff e le formule di base dei componenti RLC, si ottiene il seguente modello matematico:

Applicando le leggi di Kirchhoff e le formule di base dei componenti RLC, si ottiene il seguente modello matematico: Prova TIPO F per: Esame di FONDAMENTI DI AUTOMATICA (9 crediti): 6 dei 10 esercizi numerici (nell effettiva prova d esame verranno selezionati a priori dal docente) + domande a risposta multipla (v. ultime

Dettagli

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 3 Luglio 2014

Fondamenti di Automatica (CL Ing. Gestionale) a.a Prof. Silvia Strada 3 Luglio 2014 Politecnico di Milano Fondamenti di Automatica (CL Ing. Gestionale) a.a.2013-14 Prof. Silvia Strada 3 Luglio 2014 Nome e Cognome:........................... Matricola........................... Firma............................................................................

Dettagli

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE IV

Ingegneria Elettrica Politecnico di Torino. Luca Carlone. ControlliAutomaticiI LEZIONE IV Ingegneria Elettrica Politecnico di Torino Luca Carlone ControlliAutomaticiI LEZIONE IV Sommario LEZIONE IV Importanza dello studio di segnali sinusoidali nell ingegneria Sistemi lineari con ingressi sinusoidali

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (9 CFU) SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (9 CFU) Prova scritta 9 giugno 2017 SOLUZIONE ESERCIZIO 1. Si consideri un altoparlante ad attrazione magnetica per la riproduzione sonora, rappresentato dalla seguente

Dettagli

INGEGNERIA INFORMATICA

INGEGNERIA INFORMATICA INGEGNERIA INFORMATICA FONDAMENTI DI AUTOMATICA 21/06/2018 Prof Marcello Farina TRACCIA DELLE SOLUZIONI ESERCIZIO 1 Si consideri il sistema descritto dalle seguenti equazioni: A Derivare e scrivere le

Dettagli

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti

06. Analisi Armonica. Controlli Automatici. Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti Controlli Automatici 6. Analisi Armonica Prof. Cesare Fantuzzi Ing. Cristian Secchi Ing. Federica Ferraguti ARSControl - DISMI - Università di Modena e Reggio Emilia E-mail: {nome.cognome}@unimore.it http://www.arscontrol.org/teaching

Dettagli

iii) uno stimatore il cui errore di stima converga a zero più rapidamente della successione ;

iii) uno stimatore il cui errore di stima converga a zero più rapidamente della successione ; Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 4//7 Esercizio Si consideri il sistema lineare discreto Σ = (F, G, H) con F = 3 4 5, G =, H = 4 6 6 Si stabilisca se esiste,

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale SISTEMI ELEMENTARI DEL o E 2 o ORDINE Ing. Luigi Biagiotti Tel. 5 29334 / 5 29368 e-mail: lbiagiotti@deis.unibo.it http://www-lar.deis.unibo.it/~lbiagiotti

Dettagli

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s

Diagrammi asintotici di Bode: esercizi. Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): s 2. s(s 30)(1+ s .. 3.2 1 Nyquist: Diagrammi asintotici di Bode: esercizi Tracciare i diagrammi asintotici di Bode della seguente funzione G(s): 6(s2 +.8s+4) s(s 3)(1+ s 2 )2. Pendenza iniziale: -2 db/dec. Pulsazioni critiche:

Dettagli

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 19 Luglio 2012

COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 19 Luglio 2012 COMPITO DI FONDAMENTI E APPLICAZIONI DI CONTROLLI AUTOMATICI 9 Luglio 22 Esercizio. Si consideri il modello ingresso/uscita a tempo continuo avente la seguente funzione di trasferimento: G(s) = (s + )

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria della Gestione Industriale e della Integrazione di Impresa http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o

Dettagli

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1.

B = Si studi, giustificando sinteticamente le proprie affermazioni, la stabilità del sistema. si A = G(s) = Y f (s) U(s) = 1. ESERCIZIO 1 Un sistema dinamico lineare invariante e a tempo continuo è descritto dall equazione differenziale che lega l ingresso all uscita:... y (t) + ÿ(t) + 4ẏ(t) + 4y(t) = u(t) 1. Si determinino le

Dettagli

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE

SISTEMI ELEMENTARI DEL 1 o E 2 o ORDINE CONTROLLI AUTOMATICI Ingegneria Gestionale http://www.automazione.ingre.unimore.it/pages/corsi/controlliautomaticigestionale.htm SISTEMI ELEMENTARI DEL o E 2 o ORDINE Ing. Federica Grossi Tel. 59 256333

Dettagli

FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015

FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015 FONDAMENTI DI AUTOMATICA I - Ingegneria Elettronica Appello del 15 luglio 2015 Prof.ssa Mara Tanelli 1. Si consideri il sistema dinamico non lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli