ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A

Save this PDF as:
 WORD  PNG  TXT  JPG

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A"

Transcript

1 ANALISI MATEMATICA A CORSO DI LAUREA TRIENNALE IN MATEMATICA 15 CF A.A Programma Provvisorio del corso di Analisi Matematica A Il programma che segue è solo indicativo. Il programma definitivo potrebbe essere lievemente diverso e sarà definito alla fine del corso in funzione di quanto svolto durante le lezioni. Le indicazioni dei capitoli e dei paragrafi si riferiscono al libro: C.D. Pagani, S. Salsa. Analisi Matematica 1 Zanichelli Editore, 2015 Cap. 1 Elementi di teoria degli insiemi Par. 1, 2, 3, 4, 5, 6, 7 1: Nozioni di logica matematica. Connettivi logici. Tavole di verità. Tautologie e regole di deduzione. Quantificatori. 2: Simboli e operazioni insiemistiche fondamentali. Unione, intersezione, differenza e differenza simmetrica. Complementazione. Proprpietà. Predicati. 3: Relazioni. Prodotto cartesiano. Relazione di equivalenza. Ordinamenti: definizioni di maggiorante, minorante, massimo, minimo, estremo superiore ed estremo inferiore. 4: Funzioni. Nozione intuitiva di funzione. Dominio, codominio, immagine. Esempi. Successioni. Funzioni composte. Funzioni iniettive e suriettive. Funzioni inverse. 5: Il principio di induzione. 6: Elementi di calcolo combinatorio. Permutazioni, combinazioni semplici e con ripetizione, disposizioni semplici e con ripetizione. Il coefficiente binomiale. Formula del binomio di Newton. 7: Insiemi infiniti (cenni). Insiemi numerabili. Il prodotto di un insieme finito di insiemi numerabili è numerabile. Cap. 2 Insiemi numerici Par. 1, 2, 3, 4 1: N, Z, Q. I numeri naturali, i numeri interi relativi e i numeri razionali. Struttura di Q e rappresentazione dei numeri razionali. 2: I numeri reali. Definizione di numero reale come allineamento decimale con segno. Ordinamento e struttura algebrica. Proprietà di completezza. Potenza del continuo. 3: Radicali, potenze e logaritmi. Radici n-esime aritmetiche. Potenze con esponente reale e logaritmi. Alcune disuguaglianze: disuguaglianza triangolare, disuguaglianza di Bernoulli, disuguaglianza fra media aritmetica e media geometrica. 4: I numeri complessi. Operazioni e struttura di campo. Potenze e radici. Cap. 3 Spazi euclidei Par. 1, 2 1: Gli spazi euclidei R n e C n. Spazi vettoriali lineari. Base e dimensione di uno spazio. Prodotto scalare in R n, norma in R n. Disuguaglianza di Cauchy-Schwartz. Angolo fra due vettori. Distanza in R n. Intorni e intorni sferici di un punto in R n. 2: Elementi di topologia in R n. Punti interni, esterni e di frontiera. Punti di accumulazione e punti isolati. Insiemi aperti, chiusi e limitati. Unione e intersezione di famiglie di insiemi aperti e chiusi. Frontiera di un insieme. Chiusura di un insieme. Teorema di Bolzano-Weierstrass. La retta ampliata: gli insiemi R, Ṙ. L insieme Ṙn. Insiemi compatti. Teorema di Heine-Borel. Insiemi connessi e insiemi convessi. 1

2 Cap. 4 L operazione di limite Par. 1, 2, 3, 4 1: Funzioni reali di variabile reale. Positività e simmetrie. Funzioni pari e dispari. Funzioni limitate. Estremo superiore, estremo inferiore, massimo e minimo di una funzione. Funzioni monotone. Esempi: potenze, esponenziali e logaritmi. 2: Limiti di funzioni R R. Definizione di limite. Proprietà vere definitivamente. Limiti destro e sinistro, limite per eccesso e per difetto. Limiti e ordinamento. Teorema di permanenza del segno. Teorema del confronto. Algebra dei limiti. Esempi di non esistenza del limite. Teorema di esistenza del limite di una funzione composta. Teorema di esistenza del limite per funzioni monotone. Infinitesimi e infiniti. I simboli o, O,, e loro relazioni. Confronti fra infinitesimi e infiniti. Asintoti. 3: Successioni a valori in R. Limite di una successione. Esempi: successione geometrica. Relazione fra limite di successioni e limite di funzioni. Confronti. Il numero e. Alcuni limiti notevoli. Esistenza del limite. Massimo e minimo limite. Valore limite e classe limite di una successione. La classe limite è un insieme chiuso. Limite inferiore e limite superiore. Esistenza del limite finito: criterio di Cauchy. Definizione di successione fondamentale. Teorema: criterio di convergenza di Cauchy. 4: Limiti in C e limiti in R n. Funzioni da R n a R m e loro limiti. Esempi di non esistenza del limite. Successioni e topologia in R n. Le successioni convergenti sono limitate. Da ogni successione limitata si può estrarre una sottosuccessione convergente. Caratterizzazione degli insiemi chiusi e compatti utilizzando le successioni. Il criterio di Cauchy. Definizione di spazio metrico completo. Cap. 5 Funzioni continue Par. 1, 2, 3 1: Funzioni continue da R in R. Definizione di continuità. Teorema di continuità delle funzioni composte. Punti di discontinuità. Teorema sulle possibili discontinuità di una funzione monotona. Proprietà delle funzioni continue su un intervallo. Teoremi della permanenza del segno, degli zeri. Teorema (di Weierstrass) di esistenza del massimo e del minimo di una funzione continua su un intervallo [a, b]. La nozione di uniforme continuità. Esempi di funzioni continue non uniformememnte continue. Teorema (di Cantor-Heine) di uniforme continuità di una funzione continua in un intervallo [a,b]. 2: Funzioni continue da R n a R m. Caratterizzazione delle funzioni continue. Continuità delle funzioni lineari. Funzioni continue su un compatto. L immagine continua di un insieme compatto è un insieme compatto. Teorema di Weierstrass. Continuità della funzione inversa di una funzione continua e iniettiva su un compatto. Teorema di Cantor-Heine di uniforme continuità di una funzione continua su un compatto. Funzioni continue su un connesso. Continuità della funzione inversa di una funzione continua su un intervallo. 3: Funzioni elementari. Funzioni razionali intere e polinomi. Funzioni razionali fratte e funzioni algebriche. Esponenziali e logaritmi. Funzioni iperboliche. Funzioni circolari e loro inverse. Esponenziale complesso. Cap. 6 Calcolo differenziale per funzioni reali di variabile reale Par. 1, 2, 3 2

3 1: Derivata e differenziale. Rapporto incrementale e suo significato geometrico. Definizione di derivata. Derivata destra e sinistra. Continuità delle funzioni derivabili. Esempi di funzioni continue e non derivabili. Punti angolosi, flessi verticali e cuspidi. Derivate successive. Algebra delle derivate. Derivata di somma, prodotto e quoziente di funzioni derivabili. Linearità della derivata. Derivata di una funzione composta. Derivata di una funzione inversa. Il differenziale. 2: I teoremi fondamentali del calcolo differenziale. I punti critici di una funzione. Il teorema di Fermat e gli estremi locali di una funzione. I teoremi di Rolle, Cauchy e Lagrange. Conseguenze del teorema di Lagrange: test di monotonia, riconoscimento della natura dei punti stazionari. Definizione di primitiva. Il teorema di de L Hospital. La formula di Taylor con il resto secondo Peano e secondo Lagrange. Sviluppi di Mac Laurin di alcune funzioni elementari. 3: Applicazioni del calcolo differenziale. Funzioni convesse. Applicazioni della formula di Taylor: determinazione della natura dei punti stazionari; calcolo di ordini di infinito o infinitesimo; calcolo del valore approssimato di una funzione e stima dell errore. Determinazione del grafico di una funzione. Cap. 7 Calcolo differenziale per funzioni reali di più variabili Par. 1, 2, 3 1: Funzioni da R n a R. Derivate direzionali e derivate parziali. Gradiente. Differenziale e funzioni differenziabili. Relazione fra derivabilità e differenziabilità. Teorema di continuità e derivabilità delle funzioni differenziabili. Teorema: se f è di classe C 1 in un aperto A R n allora è differenziabile in ogni punto di A. Derivate di ordine superiore. Teorema (di Schwartz) di uguaglianza delle derivate seconde miste. Matrice Hessiana. Formula di Taylor. Funzioni omogenee. Teorema (di Eulero) sul gradiente di funzioni omogenee. Funzioni convesse e concave. 2: Funzioni a valori vettoriali. Derivate e differenziali. Matrice Jacobiana. Esempi di funzioni: R R 2, R R 3, R 2 R 3. Differenziale delle funzionicomposte. Il teorema di inversione locale. 3: Funzioni implicite. Esempi di funzioni definite implicitamente. Il teorema del Dini. Insiemi di livello e punti singolari. Ortogonalità di gradiente e linee di livello. Il teorema delle funzioni implicite in piú di due variabili. Funzioni definite da un sistema di equazioni. L analogo non lineare del teorema di Rouché Capelli. Cap. 8 Integrali di funzioni di una variabile. Serie numeriche Par. 1, 2, 3 1: Integrale di Riemann. Partizione di un intervallo, somme superiori, somme inferiori e definizione di integrale. Caratterizzazione dell integrale e significato geometrico. Classi di funzioni integrabili. Teorema di integrabilità delle funzioni continue. Teorema di integrabilità delle funzioni monotone. Proprietà dell integrale: linearità, monotonia, teorema della media, additività rispetto all intervallo di integrazione. Primo teorema fondamentale del calcolo integrale. Funzioni integrali e secondo teorema fondamentale del calcolo integrale. Primitive e integrale indefinito. Regole di integrazione: integrazione per scomposizione, per parti e per sostituzione. Cambiamenti di variabile come cambiamenti di scala. Integrali dipendenti da un parametro. Continuità e formula di derivazione sotto il segno di integrale. 3

4 2: Serie numeriche. Definizione di serie e di somma di una serie. Serie convergenti, divergenti e irregolari. Proprietà elementari. Esempi di serie convergenti e divergenti: le serie geometriche, la serie armonica. Criterio di Cauchy di convergenza. Condizione necessaria di convergenza di una serie. Serie a termini non negativi. Criterio del rapporto e della radice. Criterio del confronto e del confronto asintotico. Convergenza e convergenza assoluta. Criterio (di Leibniz) di convergenza di serie a segni alternati. 3: Estensioni dell integrale di Riemann. Integrali impropri: integrazione su insiemi illimitati e integrazione di funzioni illimitate. Criteri di convergenza. Criterio del confronto e del confronto asintotico. Serie numeriche e integrali impropri. Equazioni Differenziali Gli argomenti di questo capitolo si possono trovare in molti testi. Indico qui per esempio: M. Bramanti, C. Pagani, S. Salsa: Analisi Matematica 2, Capitolo1 Modelli differenziali. Equazioni differenziali del primo ordine. Definizione di soluzione. Problema di Cauchy. Integrale generale. Equazioni a variabili separabili. Equazioni lineari del primo ordine. Integrale generale. Equazioni lineari del secondo ordine. Forma generale dell equazione e problema di Cauchy. Struttura dell integrale generale nel caso di un equazione omogenea o non omogenea. Equazioni omogenee del secondo ordine a coefficienti costanti. Equazione caratteristica. 4

5 Teoremi di cui è richiesta la conoscenza della dimostrazione (1) [Cap 1, Teor 6.3] formula del binomio di Newton. (2) [Cap 3, Teor 1.1] disuguaglianza di Cauchy-Schwartz. (3) [Cap 3, Teor 2.4] (di Bolzano-Weierstrass) ogni sottoinsieme limitato e infinito di R n ha almeno un punto di accumulazione. (4) [Cap 3, Teor 2.5] (di Heine-Borel) un sottoinsieme di R n e compatto se e solo se è chiuso e limitato. (5) [Cap 4, Teor 2.3] della permanenza del segno. (6) [Cap 4, Teor 2.4] del confronto. (7) [Cap 4, Teor 2.10] di esistenza del limite per funzioni monotone. (8) [Cap 4, Teor 3.16] criterio di Cauchy di convergenza di una successione. (9) [Cap 5, Teor 1.2] sulle possibili discontinuità di una funzione monotona. (10) [Cap 5, Teor 1.4] degli zeri. (11) [Cap 5, Teor 2.4, Cor. 2.5] (di Weierstrass) di esistenza del massimo e minimo di una funzione continua su un compatto. (12) [Cap 5, Teor 2.7] (di Cantor Heine) di uniforme continuità di una funzione continua su un compatto. (13) [Cap 6, Prop 1.1] derivabilità implica continuità. (14) [Cap 6, Teor 1.3] formula di derivazione delle funzioni composte. (15) [Cap 6, Teor 1.4] derivata delle funzioni inverse. (16) [Cap 6, Teor 2.1] di Fermat. (17) [Cap 6, Teor 2.2] di Rolle. (18) [Cap 6, Teor 2.3] di Cauchy. (19) [Cap 6, Teor 2.4] di Lagrange. (20) [Cap 6, Teor 2.10 (a)] formula di Taylor con resto secondo Peano. (21) [Cap 7, Teor 1.1] le funzioni f : R n R differenziabili sono continue, derivabili e vale D v f(x) = f(x),v. (22) [Cap 7, Teor 2.3] di inversione locale. (23) [Cap 7, Teor 3.1] del Dini in R 2. (24) [Cap 8, Teor 1.5] di integrabilità delle funzioni continue. (25) [Cap 8, Teor 1.6] di integrabilità delle funzioni monotone. (26) [Cap 8, Teor 1.10] primo teorema fondamentale del calcolo integrale. (27) [Cap 8, Teor 1.11] secondo teorema fondamentale del calcolo integrale. (28) [Cap 8, Teor 2.4, Cor 2.5] del confronto e del confronto asintotico per serie a termini positivi. 5

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale.

PROGRAMMA. Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. PROGRAMMA Capitolo 1 : Concetti di base: numeri reali, funzioni, funzioni reali di variabile reale. Gli insiemi numerici oggetto del corso: numeri naturali, interi relativi, razionali. Operazioni sui numeri

Dettagli

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori.

Proposizioni. Negazione di una proposizione. Congiunzione e disgiunzione di due proposizioni. Predicati. Quantificatori. Corso di laurea in Ingegneria elettronica e informatica - A13 Programma di Analisi matematica 1 - A13106 Anno accademico 2015-2016 Prof. Giulio Starita 1 - Insiemi, logica, numeri I concetti primitivi.

Dettagli

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano.

PARTE 1: Elementi di base. Simboli e operazioni sugli insiemi. Simboli logici. Prodotto cartesiano. PROGRAMMA di Analisi Matematica 1 A.A. 2008-2009, canale 1, prof.: Francesca Albertini, Claudio Marchi Ingegneria gestionale, meccanica e meccatronica, Vicenza Testo Consigliato: Analisi Matematica, M.

Dettagli

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno

Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Programma del Corso di Matematica A Corso di Laurea in Ingegneria, Settore Informazione (gruppi 2-3), A.A. 2007/2008 Docente: Antonio Ponno Premessa (D) dopo un teorema o una proposizione citati sta ad

Dettagli

Analisi Matematica 1

Analisi Matematica 1 Analisi Matematica 1 Schema provvisorio delle lezioni A. A. 2015/16 1 Distribuzione degli argomenti delle lezioni Argomento ore tot Numeri reali 11 11 Numeri complessi 1 12 Spazio euclideo 2 14 Topologia

Dettagli

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton

Calcolo Combinatorio Il fattoriale, coefficienti binomiali e loro proprietà; formula del binomio di Newton Programma di Analisi 1 Note: - I programmi presentati sono estratti ed integrati da Programmi previsti in diverse Università, possono pertanto contenere parti simili, o in più, dei programmi ufficiali.

Dettagli

A.A. 2016/17 - Analisi Matematica 1

A.A. 2016/17 - Analisi Matematica 1 A.A. 2016/17 - Analisi Matematica 1 Argomenti svolti, libro di testo di riferimento: P. Marcellini, C. Sbordone: Elementi Calcolo. Liguori Editore. O. Bernardi: Temi d esame senza tema. Ed. Libreria Progetto.

Dettagli

Diario del Corso Analisi Matematica I

Diario del Corso Analisi Matematica I Diario del Corso Analisi Matematica I 1. Martedì 1 ottobre 2013 Presentazione del corso. Nozioni di Teoria degli Insiemi. Numeri Naturali, loro proprietà, rappresentazione geometrica, sommatoria, principio

Dettagli

Indice. Prefazione. 3 Spazi Metrici Introduzione Definizione ed esempi Intorni... 53

Indice. Prefazione. 3 Spazi Metrici Introduzione Definizione ed esempi Intorni... 53 Prefazione xi 1 Numeri reali 1 1.1 Introduzione.............................. 1 1.2 Rappresentazione decimale dei numeri razionali.......... 1 1.3 Numeri reali e ordinamento..................... 3 1.4

Dettagli

iv Indice c

iv Indice c Indice Prefazione ix 1 Numeri 1 1 Insiemi e logica 1 1.1 Concetti di base sugli insiemi 1 1.2 Un po di logica elementare 9 2 Sommatorie e coefficienti binomiali 13 2.1 Il simbolo di sommatoria 13 2.2 Fattoriale

Dettagli

Registro di Meccanica /13 - F. Demontis 2

Registro di Meccanica /13 - F. Demontis 2 Registro delle lezioni di ISTITUZIONI ED ESERCITAZIONI DI MATEMATICA 1 Corso di Laurea in Chimica 8 CFU - A.A. 2015/2016 docente: Francesco Demontis ultimo aggiornamento: 17 dicembre 2015 1. Lunedì 05/10/2015,

Dettagli

9.9.1 Applicazione al calcolo di aree Esercizi Soluzioni...361

9.9.1 Applicazione al calcolo di aree Esercizi Soluzioni...361 Indice 1 Nozioni di base... 1 1.1 Insiemi... 1 1.2 Elementi di logica matematica... 5 1.2.1 Connettivi logici... 5 1.2.2 Predicati... 7 1.2.3 Quantificatori... 7 1.3 Insiemi numerici... 9 1.3.1 L ordinamento

Dettagli

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A

Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A Analisi Matematica T1 (prof.g.cupini) (CdL Ingegneria Edile Polo Ravenna) REGISTRO DELLE LEZIONI A.A.2012-2013 (Grazie agli studenti del corso che comunicheranno eventuali omissioni o errori) 25 SETTEMBRE

Dettagli

Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate

Indice breve. Funzioni di una variabile. Funzioni di più variabili e funzioni vettoriali. Equazioni differenziali. Funzioni olomorfe e trasformate Indice breve I PARTE I Elementi di base Capitolo 1 Introduzione 1 Capitolo 2 Funzioni 34 PARTE II Funzioni di una variabile Capitolo 3 Introduzione alle proprietà locali e al concetto di limite 73 Capitolo

Dettagli

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini.

Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. Programma delle lezioni svolte nel corso CLEM di Matematica Generale, Lettere M-Z, Prof. F. Manzini. 1. Generalità sul corso e sulle modalità di esame. Insiemi ed operazioni sugli insiemi. Applicazioni

Dettagli

MATEMATICA GENERALE CLAMM AA 15-16

MATEMATICA GENERALE CLAMM AA 15-16 MATEMATICA GENERALE CLAMM AA 5-6 PROGRAMMA PARTE ALGEBRA LINEARE () Sistemi lineari e matrici: sistemi triangolari; a scala e loro risolubilità; matrice dei coefficienti e vettore dei termini noti; vettore

Dettagli

UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza)

UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) UNIVERSITÀ DEGLI STUDI DI PADOVA FACOLTÀ DI INGEGNERIA (sede di Vicenza) PROGRAMMA DI MATEMATICA A, A.A. 2007-08 CANALI 1 E 2 - Prof. F. Albertini e M. Motta Testi Consigliati: Elementi di Analisi Matematica

Dettagli

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona

Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Corso di laurea: Ingegneria Civile Programma di Fondamenti di Analisi Matematica I a.a. 2011/2012 Docenti: Fabio Paronetto e Fabio Ancona Gli argomenti denotati con un asterisco tra parentesi sono stati

Dettagli

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA

LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA LICEO SCIENTIFICO STATALE G. MARCONI FOGGIA PROGRAMMA DI MATEMATICA Classe VB Anno Scolastico 014-015 Insegnante: Prof.ssa La Salandra Incoronata 1 Nozioni di topologia su Intervalli; Estremo superiore

Dettagli

Capitolo 9 (9.2, Serie: 1,..., 18).

Capitolo 9 (9.2, Serie: 1,..., 18). Universitá degli Studi di Bari Corso di Laurea in Biotecnologie per l innovazione di Processi e Prodotti Programma dettagliato di MATEMATICA ED ELEMENTI DI STATISTICA- A.A. 2014/2015 Prof. Mario Coclite

Dettagli

Materiale coperto nel corso di Analisi Matematica 1 Ingegneria, docente S. Cuccagna A.A. 2011-12

Materiale coperto nel corso di Analisi Matematica 1 Ingegneria, docente S. Cuccagna A.A. 2011-12 Materiale coperto nel corso di Analisi Matematica 1 Ingegneria, docente S. Cuccagna A.A. 2011-12 Martedì 4 Ottobre Settembre 2011 16-19 3 ore Numeri naturali. Definizione di minimo di un sottoinsieme di

Dettagli

UNIVERSITA DEGLI STUDI DI SALERNO. Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica

UNIVERSITA DEGLI STUDI DI SALERNO. Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica UNIVERSITA DEGLI STUDI DI SALERNO Dipartimento di Ingegneria Industriale - Corso di studi in Ingegneria Chimica Anno Accademico 2016/17 Disciplina: Matematica I Docente: Roberto Capone Modulo di Analisi

Dettagli

Matematica. dott. francesco giannino. a. a chiusura del corso. 1

Matematica. dott. francesco giannino. a. a chiusura del corso. 1 Matematica a. a. 2014-2015 dott. francesco giannino 99. chiusura del corso. 1 99. chiusura del corso 99. chiusura del corso. 2 Obiettivo del corso fornire strumenti matematici di base necessari nel prosieguo

Dettagli

sito web: n. CFU: 12 n. ore: 120 Sede: POTENZA SCUOLA di INGEGNERIA CdS: INGEGNERIA CIVILE E AMBIENTALE; INGEGNERIA MECCANICA

sito web: n. CFU: 12 n. ore: 120 Sede: POTENZA SCUOLA di INGEGNERIA CdS: INGEGNERIA CIVILE E AMBIENTALE; INGEGNERIA MECCANICA ANNO ACCADEMICO: 2016/2017 INSEGNAMENTO: ANALISI MATEMATICA I TIPOLOGIA DI ATTIVITÀ FORMATIVA: BASE DOCENTE: ELISABETTA BARLETTA e-mail: elisabetta.barletta@unibas.it telefono: 0971 205844 sito web: cell.

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE

ISTITUTO ISTRUZIONE SUPERIORE ISTITUTO ISTRUZIONE SUPERIORE Federico II di Svevia Indirizzi: Liceo Scientifico Classico Linguistico Artistico e Scienze Applicate Via G. Verdi, 1 85025 MELFI (PZ) Tel. 097224434/35 Cod. Min.: PZIS02700B

Dettagli

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta

Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta Diario delle lezioni di Calcolo e Biostatistica (O-Z) - a.a. 2013/14 A. Teta 1. (1/10 Lu.) Generalità sugli insiemi, operazioni di unione, intersezione e prodotto cartesiano. Insiemi numerici: naturali,

Dettagli

ARGOMENTI SETTIMANA 1.

ARGOMENTI SETTIMANA 1. Programma di Analisi Matematica 1 (Canale ICM) svolto per lezioni - A. Languasco - A. Benvegnù 1 Date d esame: 24/1/217, aule P3-Lu3-Lu4; ore 9.-12.; 24/2/217, aule P3-Lu3-Lu4; ore 9.- 12.; 28/6/217, aule

Dettagli

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane

DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane DIARIO DELLE LEZIONI DI ANALISI MATEMATICA II Corso di laurea in Ingegneria Gestionale Canale PZ Secondo codocente: Dott. Salvatore Fragapane Lezione 1-04/10/2016 - Serie Numeriche (1): definizione e successione

Dettagli

Programmazione per competenze del corso Matematica, Quinto anno 2015-16

Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Programmazione per competenze del corso Matematica, Quinto anno 2015-16 Competenze di aree Traguardi per lo sviluppo dellle competenze Abilità Conoscenze Individuare le principali proprietà di una - Individuare

Dettagli

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA

ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA ISTITUTO SUPERIORE XXV APRILE LICEO CLASSICO ANDREA DA PONTEDERA classi 5A-5B PROGRAMMA DI MATEMATICA PRIMA PARTE Intervallo limitato di numeri reali Dati due numeri reali a e b, con a

Dettagli

Diario del Corso di Analisi Matematica - a.a. 2014/15

Diario del Corso di Analisi Matematica - a.a. 2014/15 Diario del Corso di Analisi Matematica - a.a. 2014/15 1a SETTIMANA 23/09/14 (2 ore): Introduzione al corso: orario, esercitazioni, ricevimento studenti, sito web, tempi e modalità delle prove di valutazione

Dettagli

Programma Dettagliato

Programma Dettagliato Università degli Studi di Udine Anno Accademico 2009/2010 Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Informatica e in TWM Analisi Matematica Prof. Gianluca Gorni Testo

Dettagli

Corso Online MATEMATICA PER LE SUPERIORI. Corso Matematica per le Superiori

Corso Online MATEMATICA PER LE SUPERIORI. Corso Matematica per le Superiori Corso Matematica per le Superiori Corso Online MATEMATICA PER LE SUPERIORI Accademia Domani Via Pietro Blaserna, 101-00146 ROMA (RM) info@accademiadomani.it Programma Generale del Corso Matematica per

Dettagli

APPUNTI ANALISI MATEMATICA

APPUNTI ANALISI MATEMATICA MAURIZIO TROMBETTA APPUNTI DEL CORSO DI ANALISI MATEMATICA PER IL DIPLOMA UNIVERSITARIO PARTE PRIMA INDICE Capitolo Primo: INSIEMI, APPLICAZIONI, RELAZIONI 1 Gli insiemi... Pag 1 2 Operazioni fra insiemi...

Dettagli

APPUNTI ED ESERCIZI DI MATEMATICA

APPUNTI ED ESERCIZI DI MATEMATICA APPUNTI ED ESERCIZI DI MATEMATICA Per Scienze Naturali e Biologiche S.Console - M.Roggero - D.Romagnoli A.A. 2005/2006 Indice Capitolo 1 - Nozioni introduttive e notazioni 6 Gli insiemi...................................

Dettagli

CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO

CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO CLASSE terza SEZIONE E A.S. 2015-16 PROGRAMMA SVOLTO RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo

Dettagli

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA

Istituto Tecnico Nautico San Giorgio - Genova - Anno scolastico PROGRAMMA SVOLTO DI MATEMATICA Classe: 1 a C Libro di testo: Bergamini Trifone Barozzi Matematica verde vol. 1 ed. Zanichelli Insiemi Definizione di insieme, rappresentazione grafica, tabulare, caratteristica di un insieme Gli insiemi

Dettagli

Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna

Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna Ministero dell Istruzione, dell Università e della Ricerca Ufficio Scolastico Regionale per la Sardegna ISTITUTO DI ISTRUZIONE SUPERIORE BUCCARI MARCONI Indirizzi: Trasporti Marittimi / Apparati ed Impianti

Dettagli

Istituto d Istruzione Superiore Francesco Algarotti

Istituto d Istruzione Superiore Francesco Algarotti Classe: 1 M Docente: Antonio M. Povelato CAPITOLO 1 - Insiemi e numeri naturali Concetti primitivi di insieme e di elemento. Relazioni di appartenenza, inclusione e eguaglianza tra insiemi. Rappresentazione

Dettagli

ARGOMENTI NECESSARI DI ANALISI MATEMATICA I

ARGOMENTI NECESSARI DI ANALISI MATEMATICA I 0.SIMBOLOGIA ARGOMENTI NECESSARI DI ANALISI MATEMATICA I t (tau) (x; y.z) = teorema a pagina x; numero y punto z. d (delta) (x; y.z) = dimostrazione del teorema a pagina x; numero y punto z. l (lambda)

Dettagli

LICEO SCIENTIFICO B. TOUSCHEK - GROTTAFERRATA (RM) GRUPPO DISCIPLINARE DI MATEMATICA E FISICA ANNO SCOLASTICO 2016/2017

LICEO SCIENTIFICO B. TOUSCHEK - GROTTAFERRATA (RM) GRUPPO DISCIPLINARE DI MATEMATICA E FISICA ANNO SCOLASTICO 2016/2017 LICEO SCIENTIFICO B. TOUSCHEK - GROTTAFERRATA (RM) GRUPPO DISCIPLINARE DI MATEMATICA E FISICA ANNO SCOLASTICO 2016/2017 PROGRAMMAZIONE MATEMATICA ALLEGATO 1 SCHEMA PROGRAMMAZIONE ANNUALE CLASSE PRIMA A

Dettagli

ITCG Sallustio Bandini

ITCG Sallustio Bandini ANNO SCOLASTICO 2015/2016 PROGRAMMA DI MATEMATICA CLASSE I sez. A corso GRAFICA INSEGNANTE: prof. MARIO SCACCIA Libro di Testo: Matematica.verde Vol. 1 multimediale- Algebra, Geometria, Statistica M.Bergamini

Dettagli

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto.

Conoscenze. L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la regola di Ruffini, il teorema. del resto. Classe: TERZA (Liceo Artistico) Pagina 1 / 2 della Matematica La scomposizione dei polinomi in fattori primi L operazione di divisione (la divisione di due polinomi) - La divisibilità fra polinomi (la

Dettagli

Contenuti del programma di Matematica. Classe Terza

Contenuti del programma di Matematica. Classe Terza Contenuti del programma di Matematica Classe Terza A.S. 2014/2015 Tema Contenuti GEOMETRIA Misura della lunghezza della circonferenza e NEL PIANO area del cerchio. COMLEMENT Equazioni e disequazioni con

Dettagli

Analisi Matematica Programma Dettagliato

Analisi Matematica Programma Dettagliato Università degli Studi di Udine Anno Accademico 2004/2005 Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Informatica Analisi Matematica Programma Dettagliato Prof. Gianluca

Dettagli

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia

CORSO DI ANALISI MATEMATICA 1 ESERCIZI. Carlo Ravaglia CORSO DI ANALISI MATEMATICA ESERCIZI Carlo Ravaglia 6 settembre 5 iv Indice Numeri reali Ordine fra numeri reali Funzioni reali 4 Radici aritmetiche 7 4 Valore assoluto 9 5 Polinomi 6 Equazioni 7 Disequazioni

Dettagli

ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA

ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA ISTITUTO TECNICO DEI TRASPORTI E LOGISTICA NAUTICO SAN GIORGIO NAUTICO C.COLOMBO PROGRAMMA SVOLTO NELLA CLASSE IAA MATERIA : MATEMATICA INSEGNANTE : PROF. Simona TRESCA Programma di Algebra: U.D. 1 : I

Dettagli

Programma di matematica classe Prima

Programma di matematica classe Prima Programma di matematica classe Prima RELAZIONI E FUNZIONI Insiemi Definizione e rappresentazione con diagrammi di Venn, per elencazione, per caratteristica. Operazioni tra insiemi: intersezione, unione,

Dettagli

Matematica con esercitazioni, Modulo 2. Analisi matematica. Diario delle lezioni.

Matematica con esercitazioni, Modulo 2. Analisi matematica. Diario delle lezioni. Matematica con esercitazioni, Modulo. Analisi matematica. Diario delle lezioni. Laurea triennale Chimica e tecnologie per l ambiente e per i materiali. Rimini Avvertenza per gli studenti: il libro di testo

Dettagli

Problemi al contorno per equazioni e sistemi di equazioni ellittiche, paraboliche ed iperboliche in domini a frontiera non regolare.

Problemi al contorno per equazioni e sistemi di equazioni ellittiche, paraboliche ed iperboliche in domini a frontiera non regolare. Prof.ssa Diomeda Lorenza Maria Professore Ordinario Dipartimento di Scienze Economiche Area Matematica Facoltà di Economia, Via C.Rosalba 53- Bari Tel. 080-5049169 Fax 080-5049207 E-mail diomeda@matfin.uniba.it

Dettagli

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007

1 a Prova parziale di Analisi Matematica I (A) 16/11/2007 Nome a Prova parziale di Analisi Matematica I (A) 6//7 ) Data la funzione ( ) = f e Calcolare il campo di esistenza e il suo comportamento agli estremi ) Definizione di derivata prima di una funzione f()

Dettagli

Programma di Matematica A.S. 2013/14. Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI

Programma di Matematica A.S. 2013/14. Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI Programma di Matematica A.S. 2013/14 Classe 1 B odont Insegnante : M.Teresa Di Prizio INSIEMI Insiemi e sottoinsiemi - Le operazioni fondamentali con gli insiemi - Prodotto cartesiano I NUMERI NATURALI

Dettagli

Indice. P Preliminari 3. 1 Limiti e continuità 59

Indice. P Preliminari 3. 1 Limiti e continuità 59 Indice Prefazione ix Per lo studente xii Ringraziamenti xiv Che cos èilcalcolodifferenziale? 1 P Preliminari 3 P.1 Numeri reali e retta reale 3 Intervalli 5 Il valore assoluto 8 Equazioni e disequazioni

Dettagli

ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta.

ISTITUTO TECNICO NAUTICO SAN GIORGIO. Anno scolastico 2011/12. Classe I Sezione E. Programma di Matematica. Docente: Pasquale Roberta. Anno scolastico 2011/12 Classe I Sezione E Insiemistica. - Concetto di insieme e rappresentazione di un insieme. - Sottoinsiemi - Principali operazioni fra insiemi: unione, intersezione, complementare

Dettagli

Piano di lavoro di Matematica

Piano di lavoro di Matematica ISTITUTO DI ISTRUZIONE SUPERIORE Liceo Scientifico ALDO MORO Istituto to Tecnico Via Gallo Pecca n. 4/6-10086 Rivarolo Canavese Tel 0124 454511 - Fax 0124 454545 - Cod. Fiscale 85502120018 E-mail: segreteria@istitutomoro.it

Dettagli

Liceo Statale Margherita di Savoia Napoli

Liceo Statale Margherita di Savoia Napoli Liceo Statale Margherita di Savoia Napoli Classe: 1AS a.s. : 2015-2016 Professoressa: Sabrina Cavalli Libro di testo :Massimo Bergamini- Graziella Barozzi "Matematica multimediale.blu"vol.1 ed. Zanichelli

Dettagli

ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO MATEMATICA

ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO MATEMATICA ISTITUTO ISTRUZIONE SUPERIORE A. MARTINI - SCHIO LICEO ARTISTICO - Dipartimento di Matematica e Fisica MATEMATICA Finalità della Matematica nel triennio è di proseguire e ampliare il processo di preparazione

Dettagli

Analisi Matematica Programma Dettagliato

Analisi Matematica Programma Dettagliato Università degli Studi di Udine Anno Accademico 2005/2006 Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Informatica Analisi Matematica Programma Dettagliato Prof. Gianluca

Dettagli

PIANO DI LAVORO DEL PROFESSORE

PIANO DI LAVORO DEL PROFESSORE ISTITUTO DI ISTRUZIONE SUPERIORE STATALE IRIS VERSARI - Cesano Maderno (MB) PIANO DI LAVORO DEL PROFESSORE Indirizzo: LICEO SCIENTIFICO MATERIA: MATEMATICA ANNO SCOLASTICO: 2014-2015 PROF: MASSIMO BANFI

Dettagli

METODI MATEMATICI PER L ECONOMIA E LA FINANZA

METODI MATEMATICI PER L ECONOMIA E LA FINANZA METODI MATEMATICI PER L ECONOMIA E LA FINANZA Docenti responsabili di ciascun corso: Prof. G. Gambarelli (matricole dispari) Prof.ssa E. Allevi (matricole pari) Prof.ssa A. D Amico Finardi (serale) Crediti:

Dettagli

produrre schemi e mappe concettuali per sintetizzare informazioni prendere appunti e redigere sintesi

produrre schemi e mappe concettuali per sintetizzare informazioni prendere appunti e redigere sintesi COMPETENZE MINIME DI ASSE Secondo biennio e quinto anno Materia: MATEMATICA LICEO SCIENTIFICO/ SCIENZE APPLICATE ASSE DEI LINGUAGGI Leggere, comprendere ed interpretare testi scritti di vario tipo Ricavare

Dettagli

Metodi Matematici per l Economia Prof. Giovanni Mastroleo

Metodi Matematici per l Economia Prof. Giovanni Mastroleo Programma dell insegnamento di Metodi Matematici per l Economia Prof. Giovanni Mastroleo Corso di Laurea in Economia A.A. 2007-08 Disciplina Settore Scientifico- Disciplinare METODI MATEMATICI PER L ECONOMIA

Dettagli

% &% %% '%% +*% % %% %% % "+ %,-./ # %2,-%373,0 ") 0%

% &% %% '%% +*% % %% %% % + %,-./ # %2,-%373,0 ) 0% S1375 #$%%$&#% # $ % &% %% '%% ()*' % )% +*% % %% %% % + %,-./ %)%%)%0 +% )%%% %+% %)% + %)%% (0%% '#() #1 2334 56 %2,-%373,0 ) 0% +%/% 8 0 ++)0 9 ++ & -; 9 % 9< Limite di una funzione reale di variabile

Dettagli

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico

PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le

Dettagli

1 a Prova parziale di Analisi Matematica I (1) 22/11/2006 (civili + ambientali)

1 a Prova parziale di Analisi Matematica I (1) 22/11/2006 (civili + ambientali) a Prova parziale di Analisi Matematica I () ) Data la funzione f ( ) = tg + ln( cos ) a) determinare il campo di esistenza, b) calcolare il limite lim f ( ) π ) Definizione di limite finito: lim f ( )

Dettagli

ANALISI 1 - Teoremi e dimostrazioni vari

ANALISI 1 - Teoremi e dimostrazioni vari ANALISI 1 - Teoremi e dimostrazioni vari Sommario Proprietà dell estremo superiore per R... 2 Definitivamente... 2 Successioni convergenti... 2 Successioni monotone... 2 Teorema di esistenza del limite

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA PROGRAMMA DI MATEMATICA 1. TEORIA DEGLI INSIEMI 1.1 CONCETTO DI INSIEME 1.2 SIMBOLI 1.3 RAPPRESENTAZIONI DEGLI INSIEMI 1.4 INSIEME VUOTO ED INSIEME UNIVERSO 1.5 SOTTOINSIEMI ED INSIEME DELLE PARTI 1.6

Dettagli

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.

Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni. Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:

Dettagli

INSEGNANTE: Marco Cerciello FUNZIONI REALI DI VARIABILE REALE

INSEGNANTE: Marco Cerciello FUNZIONI REALI DI VARIABILE REALE Classe V H INSEGNANTE: Marco Cerciello Testo: Matematica a colori vol. 5 ed. Petrini Concetto di unzione di variabile reale FUNZIONI REALI DI VARIABILE REALE Rappresentazione analitica di una unzione,

Dettagli

ANALISI MATEMATICA 1 Corso di Ingegneria Gestionale A.A. 2010/11 Docente: Alessandro Morando Esercitazioni: Anna Mambretti

ANALISI MATEMATICA 1 Corso di Ingegneria Gestionale A.A. 2010/11 Docente: Alessandro Morando Esercitazioni: Anna Mambretti ANALISI MATEMATICA 1 Corso di Ingegneria Gestionale A.A. 2010/11 Docente: Alessandro Morando Esercitazioni: Anna Mambretti Scopo del corso: fornire alcuni strumenti di base del calcolo differenziale e

Dettagli

PROGRAMMA DI MATEMATICA APPLICATA

PROGRAMMA DI MATEMATICA APPLICATA PROGRAMMA DI MATEMATICA APPLICATA Classe II A Turismo A.S. 2014/2015 Prof.ssa RUGGIERO ANGELA ISABELLA I NUMERI REALI Radicali: - Riduzione allo stesso indice e semplificazione - Alcune operazioni fra

Dettagli

Indice. P Preliminari 3. 1 Limiti e continuità 61. P.7 Funzioni trigonometriche 47. Per lo studente Ringraziamenti

Indice. P Preliminari 3. 1 Limiti e continuità 61. P.7 Funzioni trigonometriche 47. Per lo studente Ringraziamenti vii Indice Prefazione Per lo studente Ringraziamenti xiii xvii xix Che cosa è il calcolo differenziale? 1 P Preliminari 3 P.1 Numeri reali e retta reale 3 Intervalli 5 Il valore assoluto 8 Equazioni e

Dettagli

PROGRAMMAZIONE PREVENTIVA a.s

PROGRAMMAZIONE PREVENTIVA a.s PROGRAMMAZIONE PREVENTIVA a.s. 2009-2010 Insegnante Classe Materia preventivo Battistella Fulvia 5ST matematica 132 titolo set ott nov dic gen feb mar apr mag giu prev 5.1 TRIGONOMETRIA x x x 20 5.2 CALCOLO

Dettagli

LICEO SCIENTIFICO G. GALILEI - SIENA MATEMATICA - PIANO DI LAVORO

LICEO SCIENTIFICO G. GALILEI - SIENA MATEMATICA - PIANO DI LAVORO LICEO SCIENTIFICO G. GALILEI - SIENA classe IV sez. B - E Anno scolastico 2015/2016 Prof.ssa Pacini Paola MATEMATICA - PIANO DI LAVORO Settembre La modellizzazione matematica. Esempi di problemi contestualizzati.

Dettagli

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni

Soluzioni dello scritto di Analisi Matematica II - 10/07/09. C.L. in Matematica e Matematica per le Applicazioni Soluzioni dello scritto di Analisi Matematica II - /7/9 C.L. in Matematica e Matematica per le Applicazioni Proff. K. Payne, C. Tarsi, M. Calanchi Esercizio. a La funzione f è limitata e essendo lim fx

Dettagli

Gli insiemi e le relazioni. Elementi di logica

Gli insiemi e le relazioni. Elementi di logica capitolo 1 Gli insiemi e le relazioni. Elementi di logica INSIEMI 1. Introduzione 1 2. Sottoinsiemi 3 3. Operazioni tra insiemi 5 Unione:, 5 Intersezione:, 5 Differenza: \, 5 Insieme complementare: A B,

Dettagli

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà.

PROGRAMMA di MATEMATICA A. S. 2015/16 PRIVATISTI CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. CLASSE PRIMA Aritmetica: Gli insiemi numerici N, Z, Q con le operazioni e le proprietà. Utilizzare le procedure del calcolo aritmetico(a mente, per iscritto, a macchina) per calcolare espressioni aritmetiche

Dettagli

Sallustio Bandini. Programma di Matematica Classe 1^ A Tur a.s Prof.ssa Bruna Lopraino

Sallustio Bandini. Programma di Matematica Classe 1^ A Tur a.s Prof.ssa Bruna Lopraino Classe 1^ A Tur a.s. 2015-2016 Prof.ssa Bruna Lopraino Modulo 1: Gli insiemi numerici I Numeri naturali: L insieme dei numeri naturali e le operazioni su esso definite, proprietà delle operazioni, Le potenze

Dettagli

Programma di Matematica - 5A

Programma di Matematica - 5A Programma di Matematica - 5A U.D.1 U.D.2 U.D.3 U.D.4 Premesse all'analisi infinitesimale: Intervalli numerici limitati e illimitati, massimo e minimo, estremo superiore e inferiore. Punto di accumulazione

Dettagli

Programma di Istituzioni di matematica per il corso di Laurea in Biologia.

Programma di Istituzioni di matematica per il corso di Laurea in Biologia. Programma di Istituzioni di matematica per il corso di Laurea in Biologia. N.B. La suddivisione del programma si riferisce ai capitoli del testo di riferimento: "Matematica per le scienze della vita" (II

Dettagli

A.A. 2016/17. ISTITUZIONI DI ANALISI SUPERIORE 12 crediti, I semestre. Docenti: Prof. Luigi Muglia per i primi 6 crediti, io per gli ultimi 6 crediti.

A.A. 2016/17. ISTITUZIONI DI ANALISI SUPERIORE 12 crediti, I semestre. Docenti: Prof. Luigi Muglia per i primi 6 crediti, io per gli ultimi 6 crediti. A.A. 2016/17 ISTITUZIONI DI ANALISI SUPERIORE 12 crediti, I semestre Docenti: Prof. Luigi Muglia per i primi 6 crediti, io per gli ultimi 6 crediti. COMMISSIONE D ESAME: Presidente: Giuseppe Marino, Membri:

Dettagli

Analisi Matematica I Programma Dettagliato

Analisi Matematica I Programma Dettagliato Università degli Studi di Udine Anno Accademico 1996/97 Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea in Informatica Analisi Matematica I Programma Dettagliato Prof. Gianluca Gorni,

Dettagli

Docente referente prof.ssa Ester Turco

Docente referente prof.ssa Ester Turco Docente referente prof.ssa Ester Turco GENERALI acquisire capacità di operare sia in modo induttivo che deduttivo consolidare le capacità di analisi e sintesi saper affrontare situazioni in modo problematico

Dettagli

Sallustio Bandini. Programma di Matematica Classe 1^ B Tur a.s Prof.ssa Bruna Lopraino

Sallustio Bandini. Programma di Matematica Classe 1^ B Tur a.s Prof.ssa Bruna Lopraino Sallustio Bandini Classe 1^ B Tur a.s. 2014-2015 Prof.ssa Bruna Lopraino Modulo 1: Gli insiemi numerici I Numeri naturali: L insieme dei numeri naturali e le operazioni su esso definite, proprietà delle

Dettagli

Programma di Matematica per l'economia (a.a. 2013/2014) (Prof. Diomede Sabrina)

Programma di Matematica per l'economia (a.a. 2013/2014) (Prof. Diomede Sabrina) di Matematica per l'economia (a.a. 2013/2014) (Prof. Diomede Sabrina) Corso di Laurea Marketing e comunicazione d'azienda Gli insiemi numerici N, Z, Q ed R; potenze e radicali, operazioni e fattorizzazione

Dettagli

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III

SYLLABUS DI MATEMATICA Liceo Linguistico Classe III SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni

Dettagli

ISTITUTO LICEALE S. PIZZI PROGRAMMAZIONE DI MATEMATICA LICEO SCIENTIFICO

ISTITUTO LICEALE S. PIZZI PROGRAMMAZIONE DI MATEMATICA LICEO SCIENTIFICO ISTITUTO LICEALE S. PIZZI PROGRAMMAZIONE DI MATEMATICA V LICEO SCIENTIFICO LINEE GENERALI E COMPETENZE Al termine del percorso del liceo scientifico lo studente conoscerà i concetti e i metodi elementari

Dettagli

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile

Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Corso di Analisi Matematica Calcolo differenziale per funzioni di una variabile Laurea in Informatica e Comunicazione Digitale A.A. 2013/2014 Università di Bari ICD (Bari) Analisi Matematica 1 / 41 1 Derivata

Dettagli

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI

Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Facoltà di Dipartimento di Ingegneria Elettrica e dell'informazione anno accademico 2014/15 Registro lezioni del docente SPORTELLI LUIGI Attività didattica ANALISI MATEMATICA [2000] Periodo di svolgimento:

Dettagli

LICEO SCIENTIFICO STATALE A. EINSTEIN Via Parini 10 35028 PIOVE DI SACCO - PD

LICEO SCIENTIFICO STATALE A. EINSTEIN Via Parini 10 35028 PIOVE DI SACCO - PD LICEO SCIENTIFICO STATALE A. EINSTEIN Via Parini 10 35028 PIOVE DI SACCO - PD Programma di Matematica della classe 5BS. -Anno scolastico 2010/2011 Prof. Fernando D Angelo Libro di testo: N. Dodero - P.

Dettagli

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI)

Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) 1 Programma definitivo Analisi Matematica 2 - a.a. 2005-06 Corso di Laurea Triennale in Ingegneria Civile (ICI) Approssimazioni di Taylor BPS, Capitolo 5, pagine 256 268 Approssimazione lineare, il simbolo

Dettagli

ISTITUTO D ISTRUZIONE SUPERIORE BERNALDA-FERRANDINA Presidenza: BERNALDA (MT)- Via Schwartz, Tel./Fax:

ISTITUTO D ISTRUZIONE SUPERIORE BERNALDA-FERRANDINA Presidenza: BERNALDA (MT)- Via Schwartz, Tel./Fax: I.T.E.T. Bernalda Programma di Matematica Classe II B Anno scolastico 2015/2016 Prof.ssa Benedetto Lucia Anna POLINOMI Addizione e moltiplicazione Prodotti notevoli Triangolo di Tartaglia DIVISIONE TRA

Dettagli

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012

Analisi 2. Roberto Monti. Appunti del Corso - Versione 5 Ottobre 2012 Analisi 2 Roberto Monti Appunti del Corso - Versione 5 Ottobre 212 Indice Capitolo 1. Programma 5 Capitolo 2. Convergenza uniforme 7 1. Convergenza uniforme e continuità 7 2. Criterio di Abel Dirichlet

Dettagli

Istituto Kandinsky Anno Scolastico Programma di MATEMATICA - Classi Prime

Istituto Kandinsky Anno Scolastico Programma di MATEMATICA - Classi Prime Istituto Kandinsky Anno Scolastico 2011-2012 Programma di MATEMATICA - Classi Prime Insieme dei numeri naturali. Le operazioni in N: addizione, sottrazione, moltiplicazione e divisione. Legge di composizione

Dettagli

PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA. CLASSE V Scienze Applicate SEZ. A A.S.2016 /2017 OBIETTIVI E COMPETENZE

PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA. CLASSE V Scienze Applicate SEZ. A A.S.2016 /2017 OBIETTIVI E COMPETENZE PIANO DI LAVORO E PROGRAMMAZIONE DIDATTICA DISCIPLINA: Matematica DOCENTE: Dora Pastore CLASSE V Scienze Applicate SEZ. A A.S.2016 /2017 OBIETTIVI E COMPETENZE OBIETTIVI COMPORTAMENTALI Acquisizione della

Dettagli

PROGRAMMA SVOLTO DI MATEMATICA

PROGRAMMA SVOLTO DI MATEMATICA CLASSE: 2 Sezione: G A.S.: 2015/2016 Libro di testo: Matematica.bianco, volume 1, di Bergamini, Trifone Barozzi, edizioni Zanichelli. Libro di testo: Matematica.rosso, volume 2, di Bergamini, Trifone Barozzi,

Dettagli

PROGRAMMA DI MATEMATICA

PROGRAMMA DI MATEMATICA A.S. 2015/2016 ALGEBRA - Equazioni letterali fratte PROGRAMMA DI MATEMATICA - Disequazioni di 1 grado ad una incognita intere e frazionarie - Sistemi di disequazioni di 1 o grado in una incognita - Sistemi

Dettagli

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA

Esercitazione di Analisi Matematica I Esercizi e soluzioni 19/04/2013 TOPOLOGIA Esercitazione di Analisi Matematica I Esercizi e soluzioni 9/04/203 TOPOLOGIA Mostrare che uno spazio infinito con la metrica discreta non può essere compatto Soluzione: Per la metrica discreta d : X X

Dettagli

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti

Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Laurea in Informatica e Tecnologie per la Produzione del Software Corso di Analisi Matematica Successioni e loro limiti Docente: Anna Valeria Germinario Università di Bari A.V.Germinario (Università di

Dettagli

Programmazione Matematica classe V A. Finalità

Programmazione Matematica classe V A. Finalità Finalità Acquisire una formazione culturale equilibrata in ambito scientifico; comprendere i nodi fondamentali dello sviluppo del pensiero scientifico, anche in una dimensione storica, e i nessi tra i

Dettagli