Elettrostatica e fenomeni elettrici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Elettrostatica e fenomeni elettrici"

Transcript

1 Elettrostatica e fenomeni elettrici Introduzione all'elettricità La parola elettricità deriva dal greco élecktron che significa ambra. La ragione di questa etimologia è presto spiegata: la proprietà dell'ambra di attirare pezzi di carta se strofinata è nota da millenni. Tali proprietà sono riportate ad esempio nel De rerum natura di Lucrezio, il primo grande poema di divulgazione scientifica, del I secolo a.c. Molte altre sostanze, come il vetro o il plexiglas, hanno la proprietà di elettrizzarsi per strofinio o per contatto. Ad esempio, strofinando un pettine, il pettine acquista la proprietà di attrarre dei pezzetti di carta posti nelle vicinanze. Avvicinando oggetti costituiti dallo stesso materiale (ad esempio vetro vetro oppure plexiglas plexiglas) si ha una repulsione. Viceversa, se avviciniamo due oggetti costituiti da materiali diversi, come ad esempio il vetro e il plexiglas, possiamo avere un'attrazione elettrostatica. Il primo che propose una spiegazione di questi fenomeni abbastanza vicina a quella attuale fu Benjamin Franklin nel Settecento. Nello strofinio o nel contatto una certa quantità di elettricità passa da un corpo all'altro (oggi diciamo che quella che si trasferisce è una certa carica elettrica). Se strofiniamo il vetro con la lana il vetro si carica positivamente e la lana negativamente, se invece strofiniamo il plexiglas con la lana abbiamo che la lana si carica positivamente e il plexiglas negativamente. Un corpo non elettrizzato si dice che è elettricamente neutro. La storia più recente dell'elettricità va di pari passo con lo sviluppo dei vari modelli di atomo. Il primo modello di atomo venne proposto da Democrito nel 400 a.c. La parola atomo in greco significa indivisibile. In realtà l'atomo, come lo intendono i fisici al giorno d'oggi, non è più indivisibile. Nel 1897 Thompson rilevò sperimentalmente l'esistenza dell'elettrone, una particella di carica negativa presente all'interno dell'atomo. Nel 1909 Millikan dimostrò sperimentalmente che l'elettrone è la più piccola carica esistente in natura. In altre parole, la carica elettrica è una grandezza fisica quantizzata, ossia la carica elettrica non varia con continuità ma ogni carica elettrica esistente in natura deve essere un multiplo intero della carica di un elettrone. Sono proprio gli elettroni a trasferirsi da un corpo all'altro per strofinio o per contatto determinando così il trasferimento della carica elettrica. Nel 1911 Rutherford propose il suo modello di atomo costituito da un nucleo centrale, carico positivamente e dagli elettroni, carichi negativamente. Inizialmente il modello di atomo di Bohr proponeva per gli elettroni delle traiettorie simili a quelle dei pianeti attorno al Sole. Oggi invece la meccanica quantistica ci dice che non possiamo parlare di traiettorie per gli elettroni ma solo di probabilità di trovare l'elettrone in una certa regione dello spazio attorno al nucleo. Oggi sappiamo anche che i materiali, a seconda delle loro proprietà elettriche, si distinguono in tre grandi categorie: 1. i conduttori, come i metalli, in cui gli elettroni sono liberi di muoversi, 2. gli isolanti, come la plastica o il vetro, in cui le cariche elettriche non sono libere di muoversi ma rimangono fisse nel punto in cui vengono a trovarsi, ad esempio in seguito a uno strofinio, 1

2 3. i semiconduttori che hanno proprietà intermedie che variano al variare della temperatura. I conduttori possono essere facilmente elettrizzati per contatto. Infatti, in un conduttore le cariche elettriche sono libere di muoversi. Pertanto, se poniamo a contatto un conduttore carico con un conduttore neutro, parte delle cariche elettriche passeranno dal conduttore carico a quello neutro e alla fine entrambi i conduttori risulteranno carichi elettricamente. Concludiamo questa sezione menzionando una proprietà importantissima della carica elettrica: la carica elettrica si può trasferire da un corpo all'altro ma non si può né creare né distruggere (principio di conservazione della carica elettrica). Forza elettrostatica Se poniamo due masse puntiformi m ed M a una certa distanza r tra loro, sappiamo che tra queste due masse si crea una forza di gravitazione universale la cui intensità è F = G m 1 m 2 / r 2, dove G è la costante di gravitazione universale: G = N m 2 / kg 2. Le masse m ed M sono grandezze scalari positive e la forza di gravitazione universale tra le due masse è sempre una forza attrattiva. Cosa succede invece se poniamo due cariche elettriche puntiformi Q 1 e Q 2 a una certa distanza r? Anche in questo caso tra le due cariche Q 1 e Q 2 si crea una forza elettrostatica la cui intensità è regolata da una formula simile a quella della forza di gravitazione universale: F = k Q 1 Q 2 / r 2. La costante k è una costante di proporzionalità che nel vuoto assume il valore k 0 = N m 2 / C 2. Dunque la forza elettrostatica F raddoppia al raddoppiare della carica Q 1 o della carica Q 2, mentre diventa quattro volte più piccola al raddoppiare della distanza r. La differenza fondamentale tra la forza di gravitazione universale e la forza elettrostatica è che, a differenza delle masse, le cariche elettriche possono avere anche segno negativo. Come conseguenza abbiamo che la forza elettrostatica può essere sia attrattiva che repulsiva. Tutto dipende dai segni delle cariche: se le cariche hanno lo stesso segno la forza risulta repulsiva, se invece i segni sono opposti la forza elettrostatica risulta essere attrattiva. La legge che ci permette di ottenere l'intensità della forza elettrostatica F = k 0 Q 1 Q 2 / r 2, detta anche legge di Coulomb, consente anche di definire l'unità di misura della carica elettrica nel Sistema Internazionale, ossia il coulomb (simbolo: C). Due cariche valgono 1 C se, poste nel vuoto alla distanza di 1 m, interagiscono tra loro con una forza di intensità pari a N. Una volta che abbiamo chiarito qual è l'unità di misura nel Sistema Internazionale della carica elettrica la carica elettrica dell'elettrone viene ad essere Q e = C. La carica del protone presente nei nuclei degli atomi è uguale ed opposta a quella dell'elettrone, ossia Q p = C. Questo ci dice che c'è una forza di attrazione tra i nuclei, carichi positivamente, e gli elettroni, carichi negativamente. Dunque gli elettroni, in assenza di altre forze, tenderebbero a collassare sul nucleo. Fu per questo che Rutherford prima e Bohr poi proposero il loro modello di atomo, in cui è la forza centripeta dovuta alla rotazione degli elettroni attorno al nucleo che consente di bilanciare la forza elettrostatica e di avere un sistema stabile. 2

3 Prima di concludere questa sezione vogliamo vedere cosa succede se invece di avere due cariche elettriche nel vuoto abbiamo due cariche elettriche in un mezzo materiale. In generale, la forza elettrica in un mezzo è minore rispetto alla forza elettrica presente tra le stesse cariche nel vuoto. Esiste una costante, detta costante dielettrica relativa che si indica con ε r e che ci permette di quantificare di quanto la forza nel mezzo è minore rispetto al vuoto. Infatti in un mezzo la costante di proporzionalità che compare nella legge di Coulomb è data da k = k 0 / ε r. (ε è la lettera greca epsilon). La costante ε r dipende dalla particolare sostanza con cui abbiamo a che fare ed è un numero sempre maggiore di 1. Ad esempio nell'acqua ε r = 80, nel vetro la costante dielettrica relativa è compresa tra 5 e 15. Il fenomeno fisico per cui la forza elettrostatica nel mezzo è minore rispetto al vuoto va sotto il nome di induzione elettrostatica: se abbiamo una carica elettrica positiva posta in un mezzo, le cariche elettriche negative presenti nel mezzo (gli elettroni) si orienteranno in modo da circondare la carica positiva e da schermarne l'effetto. Di conseguenza la forza elettrostatica che tale carica positiva riesce a generare risulta essere inferiore rispetto al vuoto. Notiamo come la presenza della carica positiva abbia provocato una redistribuzione delle cariche elettriche nel mezzo che, pur rimanendo neutro nel suo complesso, presenta al suo interno una distribuzione di cariche elettriche non uniforme. Questo può essere visto come un terzo modo, oltre allo strofinio e al contatto, per elettrizzare un corpo. Introduzione al concetto di campo In questa sezione introdurremo un concetto fisico importantissimo per la fisica moderna, quello di campo. Partiamo da un esempio che è sotto gli occhi di tutti: quando guardiamo le previsioni del tempo ci vengono spesso mostrate le mappe di temperatura, dove a ogni città o, più in generale, ad ogni punto della cartina, viene associato un valore della temperatura. La mappa che ne risulta è il campo delle temperature in quella particolare regione. Siccome la temperatura è una grandezza scalare, parleremo in questo caso di campo scalare. Se la grandezza fisica che viene rappresentata nella mappa è invece una grandezza vettoriale (ad esempio, una forza) parleremo di campo vettoriale. L'importanza dei campi sta nel fatto che nella fisica moderna ogni forza è descritta da un campo. Ad esempio, la forza di gravitazione universale è descritta in termini di un campo gravitazionale. La Terra, per il fatto di possedere una sua massa M, modifica lo spazio circostante creando un campo di forza gravitazionale. 3

4 Il campo gravitazionale in un certo punto è un vettore che ha la stessa direzione (la congiungente il punto al centro della Terra) e lo stesso verso (dal punto al centro della Terra) della forza di gravitazione universale. La sua intensità è data dall'intensità della forza divisa per la massa m di prova che abbiamo posto nel punto in esame. Pertanto l'intensità del campo gravitazionale terrestre è g = G M / r 2. Come abbiamo già visto, sulla superficie terrestre r coincide con il raggio della Terra e il valore del campo gravitazionale diventa l'usuale accelerazione di gravità g = 9.8 m / s 2. Vogliamo sottolineare come il campo gravitazionale esista indipendentemente dalla massa di prova m. Anche se non ci fosse alcuna massa di prova nello spazio, il campo gravitazionale terrestre risulterebbe essere ugualmente presente. Il campo elettrico E Allo stesso modo in cui nella precedente sezione abbiamo introdotto il campo gravitazionale, andremo ora ad introdurre il campo elettrico. Il campo elettrico in un punto P si definisce come il rapporto tra la forza che agisce una carica positiva q, detta carica di prova, e la carica stessa:. Evidentemente il campo elettrico ha la stessa direzione e lo stesso verso della forza elettrostatica. L'intensità del campo elettrico E viene invece a dipendere solo dal punto dello spazio in cui ci troviamo e dalla distribuzione di cariche elettriche che generano il campo, non dal valore della carica di prova. Ad esempio, il campo elettrico generato da una carica puntiforme Q nel vuoto è dato da: E = k 0 Q / r 2. Dunque una carica Q è in grado di modificare lo spazio circostante creando un campo di forze elettriche. Vogliamo sottolineare come il campo elettrico esista indipendentemente dalla presenza della carica di prova q, il campo elettrico ha una sua realtà fisica. La carica di prova può essere usata per misurare in ogni punto dello spazio il valore della forza elettrica, in modo da poter poi risalire al valore del campo elettrico E = k 0 Q / r 2. Da questa formula ricaviamo subito che l'unità di misura del campo elettrico nel Sistema Internazionale è il newton su coulomb (N / C). Se non introducessimo il concetto di campo dovremmo ammettere che le due cariche elettriche (oppure le due masse) subiscono un'azione a distanza istantanea. La moderna interpretazione delle interazioni è invece quella riportata nella figura seguente: Una delle due cariche produce un campo elettrico ed è questo campo che va poi ad agire sull'altra carica. La presenza del campo elettrico è fondamentale perché, se la carica 1 viene modificata, questa modifica si farà sentire sulla carica 2 solo dopo il tempo Δt necessario al campo per passare da un punto all'altro dello spazio. Prima di concludere, vogliamo fare alcune precisazioni: finora abbiamo introdotto il concetto di campo elettrico generato da una sola carica elettrica puntiforme. Se abbiamo più cariche come sorgenti, esse generano un campo elettrico che è dato dalla sovrapposizione dei singoli campi elettrici. Il campo elettrico è un vettore e pertanto punto per punto il campo elettrico è dato dalla 4

5 somma dei vettori campo elettrico generati dalle singole cariche puntiformi. Questo principio va sotto il nome di principio di sovrapposizione. Un'altra precisazione che vogliamo fare è relativa al segno della carica elettrica di prova: per convenzione tale segno è sempre positivo. Di conseguenza il campo elettrico generato da una carica positiva risulta essere uscente, mentre il campo elettrico generato da una carica negativa risulta essere entrante, come nella seguente figura: Infine vogliamo solo menzionare il concetto di linee del campo elettrico: sono linee tangenti in ogni punto al campo elettrico. Sono importanti perché danno un'indicazione visiva dell'intensità del campo elettrico in un certo punto. Dove le linee di campo sono più dense là il campo elettrico risulta essere più intenso. Differenza di potenziale ΔV Supponiamo di avere due piastre metalliche parallele, poste a una piccola distanza e aventi cariche uguali ed opposte. Il campo elettrico che si crea tra le due piastre è uniforme e le linee di campo elettrico sono parallele tra loro, equidistanti e orientate dalla piastra carica positivamente a quella carica negativamente. In tal caso la forza elettrica F = q E è la stessa in tutti i punti del campo. Di conseguenza, se vogliamo calcolare il lavoro necessario per spostare una carica elettrica da un punto all'altro del campo dobbiamo applicare la formula del lavoro di una forza costante: L = F s = q E s, dove E è l'intensità del campo elettrico uniforme, q la carica che vogliamo spostare ed s il suo spostamento. Ora, ricordiamoci che il lavoro che bisognava fare su una massa m per vincere il campo gravitazionale e portarla ad una certa altezza h rimaneva immagazzinato nella carica sotto forma di energia potenziale gravitazionale U = m g h. Qualcosa di analogo avviene nel caso del campo 5

6 elettrico. Supponiamo di considerare sempre due piastre, una carica positivamente e l'altra carica negativamente, e il campo elettrico uniforme che si viene a creare. Per portare una carica positiva a una certa distanza dalla piastra negativa è necessario compiere un lavoro per vincere la forza elettrica L = F s = q E s. Questo lavoro rimane immagazzinato sotto forma di energia potenziale elettrica. Se lasciamo la carica libera di muoversi, essa comincia a muoversi verso la piastra negativa convertendo progressivamente la sua energia potenziale elettrica in energia cinetica. Se il campo elettrico è creato da una carica puntiforme il campo elettrico non è uniforme, ciò nonostante possiamo definire il concetto di lavoro L necessario per spostare una carica tra due punti del campo. Si può poi definire un'altra grandezza fisica che gioca un ruolo importantissimo in elettromagnetismo e che va sotto il nome di differenza di potenziale o tensione. La differenza di potenziale (d.d.p.) V = V A V B fra due punti A e B si definisce come il rapporto tra il lavoro L AB necessario per spostare la carica tra i due punti A e B e la carica stessa q. Dunque V A V B = L AB / q. L'unità di misura della d.d.p. nel Sistema Internazionale prende il nome di volt (simbolo V). Poiché nel Sistema Internazionale il lavoro si misura in joule (J) e la carica elettrica in coulomb (C) avremo: 1 V = 1 J / 1 C. Nel caso particolare di un campo elettrico uniforme la differenza di potenziale tra il punto in cui si trova la carica q e la piastra carica negativamente è data da: V A V B = L AB / q = q E s / q = E s. La differenza di potenziale tra due punti dipende dall'intensità del campo elettrico E e dalla distanza s tra i due punti, ma non dipende dal valore q della carica di prova. La differenza di potenziale consente di introdurre anche un'altra unità di misura per l'energia che viene spesso utilizzata dai fisici: l'elettronvolt (simbolo ev). Siccome dalla definizione di potenziale abbiamo che L AB = q (V A V B ) definiremo 1 ev come l'energia necessaria per spostare la carica di un elettrone tra due punti fra i quali vi è una d.d.p. di 1 V. Siccome la carica di un elettrone vale q = C avremo che 1 ev = J. Definizione di corrente elettrica Nei metalli sono presenti uno o due elettroni per atomo nei livelli più esterni. Questi elettroni sono poco legati ai rispettivi atomi e pertanto sono dotati di una grande mobilità. Quando inseriamo un filo di materiale conduttore in un circuito elettrico, ossia quando colleghiamo il filo ai due capi di un generatore, ad esempio una pila, gli elettroni più esterni, carichi negativamente, 6

7 si dirigono verso il polo positivo generando in questo modo una grande quantità di cariche in movimento ordinato: ha così origine una corrente elettrica. In particolare, si definisce intensità di corrente elettrica i il rapporto tra la quantità di carica elettrica Q che passa attraverso una sezione unitaria del circuito, e l'intervallo di tempo Δt in cui questo passaggio avviene: i = Q / Δt. L'unità di misura della corrente nel Sistema Internazionale è l'ampere. Dal momento che la carica Q si misura in coulomb e il tempo in secondi avremo che 1 A = 1 C / 1 s. Per convenzione il verso della corrente coincide con quello in cui si muovono le cariche positive, quindi dal polo positivo al polo negativo del generatore. Quindi il verso della corrente non coincide con il verso del moto degli elettroni. Se la corrente i in un circuito è costante nel tempo parleremo di corrente continua (in tal caso la corrente Q che attraversa una sezione del conduttore e l'intervallo di tempo Δt sono direttamente proporzionali), se invece la corrente elettrica varia nel tempo parleremo di corrente alternata. i i Per misurare la corrente si usa uno strumento detto amperometro che va inserito in serie con l'utilizzatore X come nella figura sotto. Per misurare la differenza di potenziale presente tra due punti, ad esempio ai capi dell'utilizzatore X, dobbiamo usare uno strumento detto voltmetro e inserirlo in parallelo all'utilizzatore X come nella figura di destra: In generale, il ruolo del generatore è quello di fornire la differenza di potenziale ΔV in grado di mantenere in moto le cariche elettriche all'interno del circuito elettrico fornendo loro l'energia necessaria. Ai capi di ogni utilizzatore ci ritroviamo poi parte di questa differenza di potenziale. Se ai capi di un utilizzatore c'è una differenza di potenziale ΔV, per far passare una carica elettrica q da un capo all'altro devo compiere un lavoro dato da L = q ΔV = i Δt ΔV. Pertanto la potenza assorbita da ogni utilizzatore è uguale a P = L / Δt = i ΔV, ossia la potenza assorbita da un utilizzatore è il prodotto dell'intensità di corrente i che circola nell'utilizzatore per la differenza di potenziale ΔV ai capi dell'utilizzatore. Poiché l'unità di misura della potenza nel Sistema Internazionale è il watt (W), possiamo definire un'unità di misura per l'energia elettrica alternativa al joule, vale a dire il kilowattora (kwh), molto 7

8 utilizzato soprattutto per indicare i consumi di energia elettrica. 1 kwh è l'energia che viene assorbita da un utilizzatore di potenza 1 kw, tenuto acceso per un'ora. Dalla definizione stessa si ottiene facilmente che 1 kwh = 1000 W 3600 s = J. Ad esempio, un fon di potenza P = 1.6 kw che funziona per Δt = 10 min = 1/6 h, assorbe dalla rete E = P Δt = 1.6 1/6 kwh = 0.27 kwh di energia elettrica. È chiaro che, per ridurre i consumi di energia elettrica, non possiamo che ridurre o la potenza P degli utilizzatori oppure il tempo Δt in cui essi vengono mantenuti in funzione. Definizione di resistenza elettrica R Abbiamo visto nella precedente sezione che la differenza di potenziale ΔV fornita dal generatore mette in movimento le cariche elettriche in un circuito dando origine a una corrente elettrica i. A parità di differenza di potenziale applicata, la corrente i che passa in un circuito dipende dalle caratteristiche del materiale conduttore che si è utilizzato. Ogni conduttore manifesta infatti una certa resistenza al passaggio della corrente, dovuta agli urti tra gli elettroni in movimento all'interno del conduttore e gli atomi delle impurità presenti nel circuito. In termini matematici si definisce resistenza R di un conduttore il rapporto tra la differenza di potenziale ΔV applicata e l'intensità di corrente i, ossia R = ΔV / i. Dal momento che la corrente i compare al denominatore abbiamo che in un conduttore con grande resistenza R circola una piccola corrente i, viceversa un conduttore con piccola resistenza R è caratterizzato da elevate correnti i. Possiamo dire che la resistenza R misura il grado di opposizione che incontrano gli elettroni per risalire la differenza di potenziale ΔV. L'unità di misura della resistenza è l'ohm (simbolo Ω, omega maiuscola): 1 Ω = 1 V / 1 A. In generale, all'aumentare della differenza di potenziale ΔV aumenta anche la corrente i ma ci sono varie possibili relazioni tra i e ΔV a seconda del conduttore che prendiamo in considerazione. C'è però una categoria importante, costituita dai conduttori metallici, per i quali possiamo dire qualcosa di più. Infatti per i conduttori metallici vale la prima legge di Ohm, ossia la differenza di potenziale ΔV ai capi di un conduttore e la corrente i che vi circola sono direttamente proporzionali: ΔV = R i e la resistenza R è la costante di proporzionalità. La curva caratteristica risulta pertanto una semiretta passante per l'origine: Dunque se misuriamo con un voltmetro la differenza di potenziale ΔV e con un amperometro la corrente i scopriamo che in un metallo il rapporto R = ΔV / i è costante. Nei conduttori metallici la resistenza non dipende dalla differenza di potenziale ΔV che applichiamo al conduttore. Da cosa dipende allora la resistenza in un conduttore metallico? La risposta è data dalla seconda legge di Ohm. La resistenza R in un conduttore metallico dipende dal materiale di cui è fatto il filo, dalla 8

9 sua lunghezza L e dalla sua sezione A. Più precisamente, R = ρ L / A, ossia la resistenza è direttamente proporzionale alla lunghezza L del filo e inversamente proporzionale all'area A della sezione. La costante di proporzionalità ρ (simbolo che corrisponde alla lettera greca ro) dipende dal tipo di metallo che prendiamo in considerazione e va sotto il nome di resistività. Nella seguente tabella riportiamo la resistività di alcuni metalli comuni a temperatura ambiente T=20 C: Resistività piccola vuol dire piccola resistenza, ossia buona capacità di condurre elettricità. Dal momento che ρ = R A / L, l'unità di misura della resistività nel Sistema Internazionale è l'ohm per metro [Ω m] oppure [Ω mm 2 /m]. 9

10 Esercizi 1. Quesito: Un asciugacapelli ha una potenza di 1.6 kw. Quanti joule di energia elettrica vengono trasformati se l'asciugacapelli viene tenuto acceso per 10 minuti? Se l'asciugacapelli è collegato a una d.d.p. costante di 220 V, quale corrente circola al suo interno? Risposta: L'asciugacapelli assorbe E = P Δt = 1600 W 10 min = 1600 W 600 s = J di energia elettrica nei 10 minuti in cui rimane acceso. La seconda domanda non corrisponde al caso reale che esamineremo in seguito. Infatti la d.d.p. fornita dalle prese di corrente del circuito domestica non sono costanti ma variano sinusoidalmente nel tempo. Ad ogni modo se la d.d.p. ΔV = 220 V è costante nel tempo possiamo usare la formula P = i Δ V per ricavarci la corrente elettrica i = P / ΔV = 1600 / 220 A = 7.27 A. 2. Quesito: Se misuriamo la differenza di potenziale ΔV in volt e l'intensità di corrente i in ampere la curva caratteristica di un conduttore soddisfa la relazione ΔV = 4 i. Stabilire se si tratta di un conduttore che soddisfa la I legge di Ohm e, in caso affermativo, determinare la resistenza del conduttore. Risposta: Dal momento che la differenza di potenziale ΔV e l'intensità di corrente i sono direttamente proporzionali il conduttore soddisfa la prima legge di Ohm. Il valore della resistenza si calcola dal rapporto R = ΔV / i = 4 &Omega. In altre parole, la resistenza è la costante di proporzionalità. 3. Quesito: Un conduttore che soddisfa la prima legge di Ohm assorbe una potenza di 8 W quando è collegato a una d.d.p. di 220 V. Calcola la corrente che circola e la resistenza del conduttore. Risposta: La potenza è data da P = i ΔV, da cui i = P / ΔV = 8 W / 220 V = A. La resistenza è data dal rapporto: R = ΔV / i = 220 V / A = Ω. 4. Quesito: Si calcoli la resistenza di un filo di rame lungo 1 m e avente una sezione di 1 mm 2. Risposta: Il rame ha resistività ρ = Ω m. La resistenza del filo è data dalla seconda legge di Ohm: R = ρ l / A = / (10 3 m) 2 Ω = Ω. 10

LA CORRENTE ELETTRICA CONTINUA

LA CORRENTE ELETTRICA CONTINUA LA CORRENTE ELETTRICA CONTINUA (Fenomeno, indipendente dal tempo, che si osserva nei corpi conduttori quando le cariche elettriche fluiscono in essi.) Un conduttore metallico è in equilibrio elettrostatico

Dettagli

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ

Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Visione d insieme DOMANDE E RISPOSTE SULL UNITÀ Che cos è la corrente elettrica? Nei conduttori metallici la corrente è un flusso di elettroni. L intensità della corrente è il rapporto tra la quantità

Dettagli

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it

LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it LA CORRENTE ELETTRICA Prof. Erasmo Modica erasmo@galois.it L INTENSITÀ DELLA CORRENTE ELETTRICA Consideriamo una lampadina inserita in un circuito elettrico costituito da fili metallici ed un interruttore.

Dettagli

Tesina di scienze. L Elettricità. Le forze elettriche

Tesina di scienze. L Elettricità. Le forze elettriche Tesina di scienze L Elettricità Le forze elettriche In natura esistono due forme di elettricità: quella negativa e quella positiva. Queste due energie si attraggono fra loro, mentre gli stessi tipi di

Dettagli

1 di 3 07/06/2010 14.04

1 di 3 07/06/2010 14.04 Principi 1 http://digilander.libero.it/emmepi347/la%20pagina%20di%20elettronic... 1 di 3 07/06/2010 14.04 Community emmepi347 Profilo Blog Video Sito Foto Amici Esplora L'atomo Ogni materiale conosciuto

Dettagli

Carica positiva e carica negativa

Carica positiva e carica negativa Elettrostatica Fin dal 600 a.c. si erano studiati alcuni effetti prodotti dallo sfregamento di una resina fossile, l ambra (dal cui nome in greco electron deriva il termine elettricità) con alcuni tipi

Dettagli

Elettricità e magnetismo

Elettricità e magnetismo E1 Cos'è l'elettricità La carica elettrica è una proprietà delle particelle elementari (protoni e elettroni) che formano l'atomo. I protoni hanno carica elettrica positiva. Gli elettroni hanno carica elettrica

Dettagli

Moto circolare uniforme

Moto circolare uniforme Moto circolare uniforme 01 - Moto circolare uniforme. Il moto di un corpo che avviene su una traiettoria circolare (una circonferenza) con velocità (in modulo, intensità) costante si dice moto circolare

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Energia potenziale elettrica Simone Alghisi Liceo Scientifico Luzzago Novembre 2013 Simone Alghisi (Liceo Scientifico Luzzago) Energia potenziale elettrica Novembre 2013 1 / 14 Ripasso Quando spingiamo

Dettagli

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA

APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA APPUNTI DEL CORSO DI SISTEMI IMPIANTISTICI E SICUREZZA INTRODUZIONE AGLI IMPIANTI ELETTRICI: FONDAMENTI DI ELETTROTECNICA Concetti e grandezze fondamentali CAMPO ELETTRICO: è un campo vettoriale di forze,

Dettagli

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza

Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Esercizi e considerazioni pratiche sulla legge di ohm e la potenza Come detto precedentemente la legge di ohm lega la tensione e la corrente con un altro parametro detto "resistenza". Di seguito sono presenti

Dettagli

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita

Q 1 = +3 10-5 C carica numero 1 Q 2 = +4 10-5 C carica numero 2 forza esercitata tra le cariche distanza tra le cariche, incognita Problema n 1 A quale distanza, una dall'altra bisogna porre nel vuoto due cariche (Q 1 =3 10-5 C e Q 2 =4 10-5 C) perché esse esercitino una sull'altra la forza di 200 N? Q 1 = +3 10-5 C carica numero

Dettagli

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI.

1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. 1-LA FISICA DEI CAMPI ELETTRICI E MAGNETICI. Tutti i fenomeni elettrici e magnetici hanno origine da cariche elettriche. Per comprendere a fondo la definizione di carica elettrica occorre risalire alla

Dettagli

Lezione 18. Magnetismo WWW.SLIDETUBE.IT

Lezione 18. Magnetismo WWW.SLIDETUBE.IT Lezione 18 Magnetismo Cenni di magnetismo Già a Talete (600 a.c.) era noto che la magnetitite ed alcune altre pietre naturali (minerali di ferro, trovati a Magnesia in Asia Minore) avevano la proprietà

Dettagli

LA CORRENTE ELETTRICA

LA CORRENTE ELETTRICA L CORRENTE ELETTRIC H P h Prima che si raggiunga l equilibrio c è un intervallo di tempo dove il livello del fluido non è uguale. Il verso del movimento del fluido va dal vaso a livello maggiore () verso

Dettagli

Corrente elettrica. La disputa Galvani - Volta

Corrente elettrica. La disputa Galvani - Volta Corrente elettrica La disputa Galvani - Volta Galvani scopre che due bastoncini di metalli diversi, in una rana, ne fanno contrarre i muscoli Lo interpreta come energia vitale Volta attribuisce il fenomeno

Dettagli

Elettrostatica. 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici

Elettrostatica. 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici Elettrostatica 1. La carica elettrica 2. La legge di Coulomb 3. Il campo elettrostatico 4. Il potenziale elettrico 5. Condensatori e dielettrici Prof. Giovanni Ianne 1 L ELETTRIZZAZIONE PER STROFINIO Un

Dettagli

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2

CORRENTE ELETTRICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V 2 isolati tra loro V 2 > V 1 V 2 COENTE ELETTICA Intensità e densità di corrente sistema formato da due conduttori carichi a potenziali V 1 e V isolati tra loro V > V 1 V V 1 Li colleghiamo mediante un conduttore Fase transitoria: sotto

Dettagli

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica

ENERGIA. Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 1 ENERGIA Energia e Lavoro Potenza Energia cinetica Energia potenziale Principio di conservazione dell energia meccanica 2 Energia L energia è ciò che ci permette all uomo di compiere uno sforzo o meglio

Dettagli

GRANDEZZE ELETTRICHE E COMPONENTI

GRANDEZZE ELETTRICHE E COMPONENTI Capitolo3:Layout 1 17-10-2012 15:33 Pagina 73 CAPITOLO 3 GRANDEZZE ELETTRICHE E COMPONENTI OBIETTIVI Conoscere le grandezze fisiche necessarie alla trattazione dei circuiti elettrici Comprendere la necessità

Dettagli

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA

TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA TERZA LEZIONE (4 ore): INTERAZIONE MAGNETICA Evidenza dell interazione magnetica; sorgenti delle azioni magnetiche; forze tra poli magnetici, il campo magnetico Forza magnetica su una carica in moto; particella

Dettagli

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/

funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ mappa 1 mappa 2 mappa 3 mappa 4 http://cmap.ihmc.us/ funziona meglio con FIREFOX! FENOMENI ELETTROSTATICI Struttura dell'atomo (nucleo, protoni, neutroni, elettroni); cariche elettriche elementari (elettrone,

Dettagli

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G.

IL CAMPO MAGNETICO. V Scientifico Prof.ssa Delfino M. G. IL CAMPO MAGNETICO V Scientifico Prof.ssa Delfino M. G. UNITÀ - IL CAMPO MAGNETICO 1. Fenomeni magnetici 2. Calcolo del campo magnetico 3. Forze su conduttori percorsi da corrente 4. La forza di Lorentz

Dettagli

Generatore di Forza Elettromotrice

Generatore di Forza Elettromotrice CIRCUITI ELETTRICI Corrente Elettrica 1. La corrente elettrica è un flusso ordinato di carica elettrica. 2. L intensità di corrente elettrica (i) è definita come la quantità di carica che attraversa una

Dettagli

13. Campi vettoriali

13. Campi vettoriali 13. Campi vettoriali 1 Il campo di velocità di un fluido Il concetto di campo in fisica non è limitato ai fenomeni elettrici. In generale il valore di una grandezza fisica assegnato per ogni punto dello

Dettagli

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica

Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014. Prof.ssa Piacentini Veronica Classe 3 D Bucci Arianna Evangelista Andrea Palombo Leonardo Ricci Alessia Progetto di Scienze a.s. 2013/2014 Prof.ssa Piacentini Veronica La corrente elettrica La corrente elettrica è un flusso di elettroni

Dettagli

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo

Energia e Lavoro. In pratica, si determina la dipendenza dallo spazio invece che dal tempo Energia e Lavoro Finora abbiamo descritto il moto dei corpi (puntiformi) usando le leggi di Newton, tramite le forze; abbiamo scritto l equazione del moto, determinato spostamento e velocità in funzione

Dettagli

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente

La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente Unità G16 - La corrente elettrica continua La corrente elettrica La resistenza elettrica La seconda legge di Ohm Resistività e temperatura L effetto termico della corrente 1 Lezione 1 - La corrente elettrica

Dettagli

Michele D'Amico (premiere) 6 May 2012

Michele D'Amico (premiere) 6 May 2012 Michele D'Amico (premiere) CORRENTE ELETTRICA 6 May 2012 Introduzione La corrente elettrica può essere definita come il movimento ordinato di cariche elettriche, dove per convenzione si stabilisce la direzione

Dettagli

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino

Lunedì 20 dicembre 2010. Docente del corso: prof. V. Maiorino Lunedì 20 dicembre 2010 Docente del corso: prof. V. Maiorino Se la Terra si spostasse all improvviso su un orbita dieci volte più lontana dal Sole rispetto all attuale, di quanto dovrebbe variare la massa

Dettagli

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica

Corrente elettrica. Esempio LA CORRENTE ELETTRICA CONTINUA. Cos è la corrente elettrica? Definizione di intensità di corrente elettrica Corrente elettrica LA CORRENTE ELETTRICA CONTINUA Cos è la corrente elettrica? La corrente elettrica è un flusso di elettroni che si spostano dentro un conduttore dal polo negativo verso il polo positivo

Dettagli

RIASSUNTO DI FISICA 3 a LICEO

RIASSUNTO DI FISICA 3 a LICEO RIASSUNTO DI FISICA 3 a LICEO ELETTROLOGIA 1) CONCETTI FONDAMENTALI Cariche elettriche: cariche elettriche dello stesso segno si respingono e cariche elettriche di segno opposto si attraggono. Conduttore:

Dettagli

Correnti e circuiti a corrente continua. La corrente elettrica

Correnti e circuiti a corrente continua. La corrente elettrica Correnti e circuiti a corrente continua La corrente elettrica Corrente elettrica: carica che fluisce attraverso la sezione di un conduttore in una unità di tempo Q t Q lim t 0 t ntensità di corrente media

Dettagli

La corrente elettrica

La corrente elettrica La corrente elettrica La corrente elettrica è un movimento di cariche elettriche che hanno tutte lo stesso segno e si muovono nello stesso verso. Si ha corrente quando: 1. Ci sono cariche elettriche; 2.

Dettagli

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico.

Energia potenziale elettrica e potenziale. In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. Energia potenziale elettrica e potenziale 0. Premessa In queste pagine R indicherà una regione in cui è presente un campo elettrostatico. 1. La forza elettrostatica è conservativa Una o più cariche ferme

Dettagli

In un collegamento in parallelo ogni lampadina ha. sorgente di energia (pile) del circuito. i elettrici casalinghi, dove tutti gli utilizzatori sono

In un collegamento in parallelo ogni lampadina ha. sorgente di energia (pile) del circuito. i elettrici casalinghi, dove tutti gli utilizzatori sono I CIRCUITI ELETTRICI di CHIARA FORCELLINI Materiale Usato: 5 lampadine Mammut 4 pile da 1,5 volt (6Volt)+Portabatteria Tester (amperometro e voltmetro) I circuiti in Parallelo In un collegamento in parallelo

Dettagli

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro.

V= R*I. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. LEGGE DI OHM Dopo aver illustrato le principali grandezze elettriche è necessario analizzare i legami che vi sono tra di loro. PREMESSA: Anche intuitivamente dovrebbe a questo punto essere ormai chiaro

Dettagli

Inizia presentazione

Inizia presentazione Inizia presentazione Che si misura in ampère può essere generata In simboli A da pile dal movimento di spire conduttrici all interno di campi magnetici come per esempio nelle dinamo e negli alternatori

Dettagli

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente.

CORRENTE ELETTRICA. La grandezza fisica che descrive la corrente elettrica è l intensità di corrente. CORRENTE ELETTRICA Si definisce CORRENTE ELETTRICA un moto ordinato di cariche elettriche. Il moto ordinato è distinto dal moto termico, che è invece disordinato, ed è sovrapposto a questo. Il moto ordinato

Dettagli

Corrente ele)rica. Cariche in movimento e legge di Ohm

Corrente ele)rica. Cariche in movimento e legge di Ohm Corrente ele)rica Cariche in movimento e legge di Ohm Corrente ele)rica Nei metalli si possono avere elettroni che si muovono anche velocemente fra un estremo e l altro del metallo, ma la risultante istante

Dettagli

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA

CORRENTE E TENSIONE ELETTRICA LA CORRENTE ELETTRICA CORRENTE E TENSIONE ELETTRICA La conoscenza delle grandezze elettriche fondamentali (corrente e tensione) è indispensabile per definire lo stato di un circuito elettrico. LA CORRENTE ELETTRICA DEFINIZIONE:

Dettagli

Condensatore elettrico

Condensatore elettrico Condensatore elettrico Sistema di conduttori che possiedono cariche uguali ma di segno opposto armature condensatore La presenza di cariche crea d.d.p. V (tensione) fra i due conduttori Condensatore piano

Dettagli

a b c Figura 1 Generatori ideali di tensione

a b c Figura 1 Generatori ideali di tensione Generatori di tensione e di corrente 1. La tensione ideale e generatori di corrente Un generatore ideale è quel dispositivo (bipolo) che fornisce una quantità di energia praticamente infinita (generatore

Dettagli

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA

Forza. Forza. Esempi di forze. Caratteristiche della forza. Forze fondamentali CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Forza CONCETTO DI FORZA E EQUILIBRIO, PRINCIPI DELLA DINAMICA Cos è una forza? la forza è una grandezza che agisce su un corpo cambiando la sua velocità e provocando una deformazione sul corpo 2 Esempi

Dettagli

Q t CORRENTI ELETTRICHE

Q t CORRENTI ELETTRICHE CORRENTI ELETTRICHE La corrente elettrica è un flusso di particelle cariche. L intensità di una corrente è definita come la quantità di carica netta che attraversa nell unità di tempo una superficie: I

Dettagli

Fenomeni magnetici. VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro:

Fenomeni magnetici. VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro: Fenomeni magnetici VII secolo: magnetite (FeO.Fe 2 O 3 ) attira limatura di ferro: proprietà non uniforme nel materiale; si manifesta in determinate parti. campioni cilindrici (magneti) nei quali tale

Dettagli

Seconda Legge DINAMICA: F = ma

Seconda Legge DINAMICA: F = ma Seconda Legge DINAMICA: F = ma (Le grandezze vettoriali sono indicate in grassetto e anche in arancione) Fisica con Elementi di Matematica 1 Unità di misura: Massa m si misura in kg, Accelerazione a si

Dettagli

LA FORZA. Il movimento: dal come al perché

LA FORZA. Il movimento: dal come al perché LA FORZA Concetto di forza Principi della Dinamica: 1) Principio d inerzia 2) F=ma 3) Principio di azione e reazione Forza gravitazionale e forza peso Accelerazione di gravità Massa, peso, densità pag.1

Dettagli

Energia potenziale elettrica

Energia potenziale elettrica Energia potenziale elettrica La dipendenza dalle coordinate spaziali della forza elettrica è analoga a quella gravitazionale Il lavoro per andare da un punto all'altro è indipendente dal percorso fatto

Dettagli

CONDUTTORI, CAPACITA' E DIELETTRICI

CONDUTTORI, CAPACITA' E DIELETTRICI CONDUTTORI, CAPACITA' E DIELETTRICI Capacità di un conduttore isolato Se trasferiamo una carica elettrica su di un conduttore isolato questa si distribuisce sulla superficie in modo che il conduttore sia

Dettagli

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione

Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione Esercizi su elettrostatica, magnetismo, circuiti elettrici, interferenza e diffrazione 1. L elettrone ha una massa di 9.1 10-31 kg ed una carica elettrica di -1.6 10-19 C. Ricordando che la forza gravitazionale

Dettagli

1. LE GRANDEZZE FISICHE

1. LE GRANDEZZE FISICHE 1. LE GRANDEZZE FISICHE La fisica (dal greco physis, natura ) è una scienza che ha come scopo guardare, descrivere e tentare di comprendere il mondo che ci circonda. La fisica si propone di descrivere

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 1 Carica elettrica, legge

Dettagli

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J.

Anche nel caso che ci si muova e si regga una valigia il lavoro compiuto è nullo: la forza è verticale e lo spostamento orizzontale quindi F s =0 J. Lavoro Un concetto molto importante è quello di lavoro (di una forza) La definizione di tale quantità scalare è L= F dl (unità di misura joule J) Il concetto di lavoro richiede che ci sia uno spostamento,

Dettagli

La corrente e le leggi di Ohm

La corrente e le leggi di Ohm La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.

Dettagli

Campo elettrico per una carica puntiforme

Campo elettrico per una carica puntiforme Campo elettrico per una carica puntiforme 1 Linee di Campo elettrico A. Pastore Fisica con Elementi di Matematica (O-Z) 2 Esercizio Siano date tre cariche puntiformi positive uguali, fisse nei vertici

Dettagli

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi

DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA. Dinamica: studio delle forze che causano il moto dei corpi DINAMICA DEL PUNTO MATERIALE E CONCETTO DI FORZA Dinamica: studio delle forze che causano il moto dei corpi 1 Forza Si definisce forza una qualunque causa esterna che produce una variazione dello stato

Dettagli

PROGRAMMA PREVENTIVO PREMESSA DISCIPLINARE

PROGRAMMA PREVENTIVO PREMESSA DISCIPLINARE COD. Progr.Prev. PAGINA: 1 PROGRAMMA PREVENTIVO A.S. 2014/15 SCUOLA LICEO LINGUISTICO A. MANZONI DOCENTE: CRISTINA FRESCURA MATERIA: FISICA Classe 5 Sezione B FINALITÀ DELLA DISCIPLINA PREMESSA DISCIPLINARE

Dettagli

Energia potenziale elettrica Potenziale elettrico Superfici equipotenziali

Energia potenziale elettrica Potenziale elettrico Superfici equipotenziali Energia potenziale elettrica Potenziale elettrico Superfici euipotenziali Energia potenziale elettrica Può dimostrarsi che le forze elettriche, come uelle gravitazionali, sono conservative. In altre parole

Dettagli

La corrente elettrica

La corrente elettrica PROGRAMMA OPERATIVO NAZIONALE Fondo Sociale Europeo "Competenze per lo Sviluppo" Obiettivo C-Azione C1: Dall esperienza alla legge: la Fisica in Laboratorio La corrente elettrica Sommario 1) Corrente elettrica

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 2708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica

ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTROSTATICA + Carica Elettrica + Campi Elettrici + Legge di Gauss + Potenziale Elettrico + Capacita Elettrica ELETTRODINAMICA + Correnti + Campi Magnetici + Induzione e Induttanza + Equazioni di Maxwell

Dettagli

Grandezze scalari e vettoriali

Grandezze scalari e vettoriali Grandezze scalari e vettoriali Esempio vettore spostamento: Esistono due tipi di grandezze fisiche. a) Grandezze scalari specificate da un valore numerico (positivo negativo o nullo) e (nel caso di grandezze

Dettagli

19 Il campo elettrico - 3. Le linee del campo elettrico

19 Il campo elettrico - 3. Le linee del campo elettrico Moto di una carica in un campo elettrico uniforme Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice se il campo elettrico è uniforme,

Dettagli

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra:

Il potenziale a distanza r da una carica puntiforme è dato da V = kq/r, quindi è sufficiente calcolare V sx dovuto alla carica a sinistra: 1. Esercizio Calcolare il potenziale elettrico nel punto A sull asse di simmetria della distribuzione di cariche in figura. Quanto lavoro bisogna spendere per portare una carica da 2 µc dall infinito al

Dettagli

IL FOTOVOLTAICO E L ARCHITETTURA

IL FOTOVOLTAICO E L ARCHITETTURA IL FOTOVOLTAICO E L ARCHITETTURA Prof. Paolo ZAZZINI Ing. Nicola SIMIONATO COME FUNZIONA UNA CELLA FOTOVOLTAICA EFFETTO FOTOVOLTAICO: Un flusso luminoso che incide su un materiale semiconduttore opportunamente

Dettagli

Corrente elettrica. Daniel Gessuti

Corrente elettrica. Daniel Gessuti Corrente elettrica Daniel Gessuti indice 1 Definizioni 1 Definizione di corrente 1 Definizione di resistenza 2 2 Effetto Joule 3 Circuiti in parallelo 4 3 Circuiti in serie 5 4 Il campo magnetico 5 Fenomeni

Dettagli

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze:

Elettronica Analogica. Luxx Luca Carabetta. Nello studio dell elettronica analogica ci serviamo di alcune grandezze: Grandezze elettriche Serie e Parallelo Legge di Ohm, Principi di Kirchhoff Elettronica Analogica Luxx Luca Carabetta Premessa L elettronica Analogica, si appoggia su segnali che possono avere infiniti

Dettagli

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro

CALORE. Compie lavoro. Il calore è energia. Temperatura e calore. L energia è la capacità di un corpo di compiere un lavoro Cos è il calore? Per rispondere si osservino le seguenti immagini Temperatura e calore Il calore del termosifone fa girare una girandola Il calore del termosifone fa scoppiare un palloncino Il calore del

Dettagli

Cap 3.1- Prima legge della DINAMICA o di Newton

Cap 3.1- Prima legge della DINAMICA o di Newton Parte I Cap 3.1- Prima legge della DINAMICA o di Newton Cap 3.1- Prima legge della DINAMICA o di Newton 3.1-3.2-3.3 forze e principio d inerzia Abbiamo finora studiato come un corpo cambia traiettoria

Dettagli

9. Urti e conservazione della quantità di moto.

9. Urti e conservazione della quantità di moto. 9. Urti e conservazione della quantità di moto. 1 Conservazione dell impulso m1 v1 v2 m2 Prima Consideriamo due punti materiali di massa m 1 e m 2 che si muovono in una dimensione. Supponiamo che i due

Dettagli

Elettronica I Grandezze elettriche e unità di misura

Elettronica I Grandezze elettriche e unità di misura Elettronica I Grandezze elettriche e unità di misura Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Danilo Saccoccioni - LAVORO - - ENERGIA MECCANICA - - POTENZA -

Danilo Saccoccioni - LAVORO - - ENERGIA MECCANICA - - POTENZA - Danilo Saccoccioni - LVORO - - ENERGI MECCNIC - - POTENZ - LVORO COMPIUTO D UN ORZ RELTIVMENTE UNO SPOSTMENTO Diamo la definizione di lavoro compiuto da una forza relativamente a uno spostamento, distinguendo

Dettagli

La corrente e le leggi di Ohm

La corrente e le leggi di Ohm La corrente e le leggi di Ohm Elettroni di conduzione La conduzione elettrica, che definiremo successivamente, consiste nel passaggio di cariche elettriche da un punto ad un altro di un corpo conduttore.

Dettagli

Concetti fondamentali

Concetti fondamentali Università degli Studi di Pavia Facoltà di Ingegneria Corso di Elettrotecnica Teoria dei Circuiti Concetti fondamentali UNITÀ DI MISURA Standard per la misurazione di grandezze fisiche MKSA (Giorgi) Sistema

Dettagli

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A.

FISICA. Le forze. Le forze. il testo: 2011/2012 La Semplificazione dei Testi Scolastici per gli Alunni Stranieri IPSIA A. 01 In questa lezione parliamo delle forze. Parliamo di forza quando: spostiamo una cosa; solleviamo un oggetto; fermiamo una palla mentre giochiamo a calcio; stringiamo una molla. Quando usiamo (applichiamo)

Dettagli

Programmazione Modulare

Programmazione Modulare Indirizzo: BIENNIO Programmazione Modulare Disciplina: FISICA Classe: 2 a D Ore settimanali previste: (2 ore Teoria 1 ora Laboratorio) Prerequisiti per l'accesso alla PARTE D: Effetti delle forze. Scomposizione

Dettagli

Lezione 14: L energia

Lezione 14: L energia Lezione 4 - pag. Lezione 4: L energia 4.. L apologo di Feynman In questa lezione cominceremo a descrivere la grandezza energia. Per iniziare questo lungo percorso vogliamo citare, quasi parola per parola,

Dettagli

Grandezze elettriche. Prof. Mario Angelo GIORDANO. PDF created with pdffactory trial version www.pdffactory.com

Grandezze elettriche. Prof. Mario Angelo GIORDANO. PDF created with pdffactory trial version www.pdffactory.com Grandezze elettriche Prof. Mario Angelo GIORDANO Intensità della corrente elettrica La corrente elettrica che fluisce lungo un mezzo conduttore è costituita da cariche elettriche; a seconda del tipo di

Dettagli

Corso di fisica generale con elementi di fisica tecnica

Corso di fisica generale con elementi di fisica tecnica Corso di fisica generale con elementi di fisica tecnica Aniello (Daniele) Mennella Dipartimento di Fisica Secondo modulo Parte prima (fondamenti di elettromagnetismo) Lezione 3 Campi magnetici e forza

Dettagli

2. L ENERGIA MECCANICA

2. L ENERGIA MECCANICA . L ENERGIA MECCANICA.1 Il concetto di forza La forza può essere definita come «azione reciproca tra corpi che ne altera lo stato di moto o li deforma: essa é caratterizzata da intensità direzione e verso».

Dettagli

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME

MOTO DI UNA CARICA IN UN CAMPO ELETTRICO UNIFORME 6. IL CONDNSATOR FNOMNI DI LTTROSTATICA MOTO DI UNA CARICA IN UN CAMPO LTTRICO UNIFORM Il moto di una particella carica in un campo elettrico è in generale molto complesso; il problema risulta più semplice

Dettagli

PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche e Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZANINELLO LORIS

PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche e Applicazioni. Docente: VARAGNOLO GIAMPAOLO. Insegnante Tecnico Pratico: ZANINELLO LORIS ISTITUTO VERONESE MARCONI Sede di Cavarzere (VE) PROGRAMMA DEFINITIVO di Tecnologie Elettrico-Elettroniche e Applicazioni Docente: VARAGNOLO GIAMPAOLO Insegnante Tecnico Pratico: ZANINELLO LORIS Classe

Dettagli

Analogia tra il circuito elettrico e il circuito idraulico

Analogia tra il circuito elettrico e il circuito idraulico UNIVERSITÁ DEGLI STUDI DELL AQUILA Scuola di Specializzazione per la Formazione degli Insegnanti nella Scuola Secondaria Analogia tra il circuito elettrico e il circuito idraulico Prof. Umberto Buontempo

Dettagli

LA LEGGE DI GRAVITAZIONE UNIVERSALE

LA LEGGE DI GRAVITAZIONE UNIVERSALE GRAVIMETRIA LA LEGGE DI GRAVITAZIONE UNIVERSALE r La legge di gravitazione universale, formulata da Isaac Newton nel 1666 e pubblicata nel 1684, afferma che l'attrazione gravitazionale tra due corpi è

Dettagli

MODELLI ATOMICI. Modello Atomico di Dalton

MODELLI ATOMICI. Modello Atomico di Dalton MODELLI ATOMICI Gli atomi sono i piccoli mattoni che compongono la materia. Circa 2500 anni fa, il filosofo DEMOCRITO credeva che tutta la materia fosse costituita da piccole particelle che chiamò atomi.

Dettagli

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un

quale agisce una forza e viceversa. situazioni. applicate a due corpi che interagiscono. Determinare la forza centripeta di un CLASSE Seconda DISCIPLINA Fisica ORE SETTIMANALI 3 TIPO DI PROVA PER GIUDIZIO SOSPESO Test a risposta multipla MODULO U.D Conoscenze Abilità Competenze Enunciato del primo principio della Calcolare l accelerazione

Dettagli

Proprietà elettrostatiche dei dielettrici

Proprietà elettrostatiche dei dielettrici Proprietà elettrostatiche dei dielettrici Prendiamo in considerazione ciò che accade quando si riempie lo spazio con un isolante. Consideriamo un condensatore piano con il vuoto tra le armature. Carichiamo

Dettagli

- LAVORO - - ENERGIA MECCANICA - - POTENZA -

- LAVORO - - ENERGIA MECCANICA - - POTENZA - Danilo Saccoccioni - LAVORO - - ENERGIA MECCANICA - - POTENZA - Indice Lavoro compiuto da una forza relativo ad uno spostamento pag. 1 Lavoro ed energia cinetica 3 Energia potenziale 4 Teorema di conservazione

Dettagli

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica

Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Esempio Esame di Fisica Generale I C.d.L. ed.u. Informatica Nome: N.M.: 1. 1d (giorno) contiene all incirca (a) 8640 s; (b) 9 10 4 s; (c) 86 10 2 s; (d) 1.44 10 3 s; (e) nessuno di questi valori. 2. Sono

Dettagli

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme

Da Newton a Planck. La struttura dell atomo. Da Newton a Planck. Da Newton a Planck. Meccanica classica (Newton): insieme Da Newton a Planck Meccanica classica (Newton): insieme La struttura dell atomo di leggi che spiegano il mondo fisico fino alla fine del XIX secolo Prof.ssa Silvia Recchia Quantomeccanica (Planck): insieme

Dettagli

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013

Complementi di Analisi per Informatica *** Capitolo 2. Numeri Complessi. e Circuiti Elettrici. a Corrente Alternata. Sergio Benenti 7 settembre 2013 Complementi di Analisi per nformatica *** Capitolo 2 Numeri Complessi e Circuiti Elettrici a Corrente Alternata Sergio Benenti 7 settembre 2013? ndice 2 Circuiti elettrici a corrente alternata 1 21 Circuito

Dettagli

I poli magnetici isolati non esistono

I poli magnetici isolati non esistono Il campo magnetico Le prime osservazioni dei fenomeni magnetici risalgono all antichità Agli antichi greci era nota la proprietà della magnetite di attirare la limatura di ferro Un ago magnetico libero

Dettagli

Transitori del primo ordine

Transitori del primo ordine Università di Ferrara Corso di Elettrotecnica Transitori del primo ordine Si consideri il circuito in figura, composto da un generatore ideale di tensione, una resistenza ed una capacità. I tre bipoli

Dettagli

CORRENTE ELETTRICA. φ 1

CORRENTE ELETTRICA. φ 1 COENTE ELETTCA lim t Q/ tdq/dt ntensità di corrente φ φ > φ φ La definizione implica la scelta di un verso positivo della corrente. Per convenzione, il verso positivo della corrente è parallelo al moto

Dettagli

GRANDEZZE ALTERNATE SINUSOIDALI

GRANDEZZE ALTERNATE SINUSOIDALI GRANDEZZE ALTERNATE SINUSOIDALI 1 Nel campo elettrotecnico-elettronico, per indicare una qualsiasi grandezza elettrica si usa molto spesso il termine di segnale. L insieme dei valori istantanei assunti

Dettagli

Modulo di Meccanica e Termodinamica

Modulo di Meccanica e Termodinamica Modulo di Meccanica e Termodinamica 1) Misure e unita di misura 2) Cinematica: + Moto Rettilineo + Moto Uniformemente Accelerato [+ Vettori e Calcolo Vettoriale] + Moti Relativi 3) Dinamica: + Forza e

Dettagli

Note a cura di M. Martellini e M. Zeni

Note a cura di M. Martellini e M. Zeni Università dell Insubria Corso di laurea Scienze Ambientali FISICA GENERALE Lezione 6 Energia e Lavoro Note a cura di M. Martellini e M. Zeni Queste note sono state in parte preparate con immagini tratte

Dettagli

IL TRASFORMATORE Prof. S. Giannitto Il trasformatore è una macchina in grado di operare solo in corrente alternata, perché sfrutta i principi dell'elettromagnetismo legati ai flussi variabili. Il trasformatore

Dettagli