Generatori di Z p. Accordo su una chiave. Diffie-Hellman [1976] Accordo su chiavi ?? K. Potenze in Z 19 26/05/2005. Vedremo due schemi: Esempio: * a

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Generatori di Z p. Accordo su una chiave. Diffie-Hellman [1976] Accordo su chiavi ?? K. Potenze in Z 19 26/05/2005. Vedremo due schemi: Esempio: * a"

Transcript

1 /0/00 Accordo su chiavi Accordo su una chiave Diartimento di Tecnologie dell Informazione Università di Milano htt:// K K Accordo su chiavi Vedremo due schemi: Diffie-Hellman [] rimo, generatore g di Z Diffie-Hellman Basato sull intrattabilità del roblema del logaritmo discreto Non basato su alcuna assunzione comutazionale Generatori di Z a a a a a Potenze in Z a a a a a 0 a a a a a a a a g è generatore di di Z se se {g {g i i i -} = Z 0 0 Esemio: g = è un generatore di diz 0 = 0 = mod = mod = = mod = mod = = mod = = mod = = mod = mod = = mod = = 0 mod Stelvio Cimato DTI Università di Milano, Polo di Crema 0

2 /0/00 Generatori di Z n Z n ha un generatore n =,, k, k, con rimo e k Se è rimo, allora Z ha un generatore Diffie-Hellman [] scelgo xz rimo, generatore g di Z scelgo yz Il numero di generatori di Z n è ((n)) Se è rimo, il numero di generatori di Z è (-) Diffie-Hellman [] Diffie-Hellman [] scelgo xz rimo, generatore g scelgo yz scelgo xz rimo, generatore g scelgo xz xz g x mod g x mod g y mod scelgo xz Diffie-Hellman [] rimo, generatore g g x mod g y mod scelgo xz scelgo x= Diffie-Hellman: iccolo esemio rimo, generatore = mod = mod scelgo y= K = g xy xy mod = (g (g y y )) x x mod K = g xy xy mod = (g (g x x )) y y mod 0 K==( )) mod K==( )) mod

3 /0/00 scelgo x= K== Diffie-Hellman: esemio rimo 0, generatore = mod 0 = mod 0 scelgo y= K== Logaritmo discreto La sicurezza di molte tecniche crittografiche si basa sulla intrattabilità del logaritmo discreto: Crittosistema ElGamal Accordo su chiavi Diffie-Hellman Firme digitali DSS Dati a,n,b calcolare x tale che a x = b mod n Esemio: x = mod soluzione x = Logaritmo discreto: Comlessità algoritmi Dati a,n,b calcolare x tale che a x = b mod n Se n è rimo, i migliori algoritmi hanno comlessità L n [a,c] = O(e (c+o())(ln n)a (lnln n) -a ) con c > 0 ed 0 < a < Miglior algoritmo: Number field sieve temo medio euristico L n [/,.] Problema di Diffie-Hellman Inut: rimo,, generatore g, g, g x mod,, g y mod Calcolare: g xy xy mod Il miglior algoritmo conosciuto calcola rima il logaritmo discreto x log g, (g x mod ) ma non si sa se sono equivalenti! Scelta dei arametri Come scegliere e g? Scegli_Generatore_Naive ().. Scegli a caso g in in Z.. If If {g {g i i i -} = Z then trovato else goto.. {g {g i i-} i = Z? L unico algoritmo efficiente necessita dei dei fattori rimi di di - -

4 /0/00 rimo, - = e e k g (-)/ mod g è un generatore di Z... g (-)/ k mod rimo, - = e e k g (-)/ mod g è un generatore di Z... g (-)/ k mod rimo, - = 0 = Esemio è un generatore di di Z erché (-)/ = = 0 mod (-)/ = = mod rimo, - = e e k g (-)/ mod g è un generatore di Z... g (-)/ k mod rimo, - = e e k g (-)/ mod g è un generatore di Z... g (-)/ k mod rimo, - = 0 = Esemio non è un generatore di di Z erché (-)/ = = = mod (-)/ = = mod 0 Scegli_generatore (,, ( (,e,e,,,e,e,, k k,e,e k ) k )).. g elemento scelto a caso in in Z.. if if (g (g (-)/ (-)/ mod mod and and g (-)/k (-)/ k mod mod) ) then esci trovato! else go go to to. Probabilità successo singola iterazione Probabilità successo singola iterazione Numero di generatori modulo un rimo è er (()) = (-) ogni intero n, (n) > n/(lnln n) n) > (-) / ( lnln(-)) Numero di generatori modulo un rimo è (()) = (-) er ogni intero n, > (-) / ( lnln(-)) (n) > n/(lnln n) n) Probabilità che un elemento a caso in Z sia generatore (()) - = > = () () lnln( -) lnln( -)

5 /0/00 Analisi di Scegli_generatore Generazione chiavi Diffie-Hellman Numero medio di iterazioni < lnln( -) Scegli a caso numeri rimi bit lnln( ), 0 bit lnln( 0 ), 0 bit lnln( 0 ), + Se non è rimo, go to to. g Scegli_generatore(,(,,,,,)) Schema di Merkle Non basato su assunzioni comutazionali genera n chiavi distinte e nasconde ogni chiave in un uzzle Il uzzle contiene informazioni er il calcolo della chiave La soluzione di un uzzle richiede un temo ragionevole La soluzione di tutti i uzzle richiede un temo troo elevato Puzzle la cui soluzione richiede t oerazioni Puzzle (x, ID, S) Scegli una una chiave k Comuta y CBC-DES k (x, k (x, ID, ID, S) S) return (y, (y, rimi 0 0 bit bit di di k) k) Esemio: Puzzle (x, ID, S) x è la soluzione del uzzle -Richiede oerazioni in media ID è l identificativo del uzzle -Unico er ciascun uzzle S è un valore noto -Serve er garantire l unicità della soluzione del uzzle -Esemio: bit nulli Scegli x,,, x n, n ID ID,,, ID ID n n Puzzle i i Puzzle(x i,id i,id i,s) i,s) x j x j Puzzle,, Puzzle n ID j Risolvi Puzzle j j Ottieni (x( (x j, j ID ID j ) j ) x j Costruzione di n uzzle Risoluzione di un uzzle Risoluzione di n/ uzzle in media temo (n) temo (t) temo (t n)

6 /0/00 Costruzione di n uzzle Se n = (t) temo (n) Risoluzione di un uzzle temo (n) Risoluzione di n/ uzzle in media temo (n ) 0

Accordo su chiavi. Accordo su una chiave. Diffie-Hellman [1976] Accordo su chiavi. Diffie-Hellman [1976] Diffie-Hellman [1976] ??

Accordo su chiavi. Accordo su una chiave. Diffie-Hellman [1976] Accordo su chiavi. Diffie-Hellman [1976] Diffie-Hellman [1976] ?? Accordo su chiavi Accordo su una chiave Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci K K 1 Accordo su

Dettagli

Generatori. Accordo su una chiave. Diffie-Hellman [1976] Diffie-Hellman [1976] Diffie-Hellman [1976] Potenze in Z 19. iagio nnarella. nnarella.

Generatori. Accordo su una chiave. Diffie-Hellman [1976] Diffie-Hellman [1976] Diffie-Hellman [1976] Potenze in Z 19. iagio nnarella. nnarella. Accordo su una chiave Diffie-Hellman [] di Z p K K Diffie-Hellman 0 Diffie-Hellman Generatori a a a a a Potenze in Z a a a a a 0 a a a a a a a a g è generatore di di Z p se {g i p se {g i i p-} = Z p 0

Dettagli

Accordo su chiavi (key agreement)

Accordo su chiavi (key agreement) Accordo su chiavi (key agreement) Accordo su una chiave Alfredo De Santis Dipartimento di Informatica ed Applicazioni Università di Salerno ads@dia.unisa.it http://www.dia.unisa.it/professori/ads Marzo

Dettagli

Accordo su chiavi. (key agreement) Alfredo De Santis. Marzo 2015. Dipartimento di Informatica Università di Salerno

Accordo su chiavi. (key agreement) Alfredo De Santis. Marzo 2015. Dipartimento di Informatica Università di Salerno Accordo su chiavi (key agreement) Alfredo De Santis Dipartimento di Informatica Università di Salerno ads@dia.unisa.it http://www.dia.unisa.it/professori/ads Marzo 2015 Accordo su una chiave Alice Bob??

Dettagli

M firma. M firma. Firma Digitale. Firma Digitale. Firma digitale. Firma digitale. Firma Digitale. Equivalente alla firma convenzionale

M firma. M firma. Firma Digitale. Firma Digitale. Firma digitale. Firma digitale. Firma Digitale. Equivalente alla firma convenzionale firma irma Digitale Equivalente alla firma convenzionale firma irma Digitale Equivalente alla firma convenzionale Soluzione naive: incollare firma digitalizzata irma Digitale 0 irma Digitale 1 firma irma

Dettagli

Firme digitali. Firma Digitale. Firma Digitale. Firma Digitale. Equivalente alla firma convenzionale. Equivalente alla firma convenzionale

Firme digitali. Firma Digitale. Firma Digitale. Firma Digitale. Equivalente alla firma convenzionale. Equivalente alla firma convenzionale irme digitali irma Digitale Barbara asucci Dipartimento di Informatica ed Applicazioni Università di Salerno firma Equivalente alla firma convenzionale masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci

Dettagli

Cifrari asimmetrici. Cifratura. Cifratura. Crittosistema ElGamal. file pubblico utente chiave pubblica. Alice. file pubblico utente chiave pubblica

Cifrari asimmetrici. Cifratura. Cifratura. Crittosistema ElGamal. file pubblico utente chiave pubblica. Alice. file pubblico utente chiave pubblica Crittosistema ElGamal lfredo De Santis Dipartimento di Informatica ed pplicazioni Università di Salerno Marzo 2012 ads@dia.unisa.it http://www.dia.unisa.it/professori/ads Cifrari asimmetrici kpriv kpub

Dettagli

Firme digitali. Firma Digitale. Firma Digitale. Corso di Sicurezza su Reti Lezione del 17 novembre 2009. Equivalente alla firma convenzionale

Firme digitali. Firma Digitale. Firma Digitale. Corso di Sicurezza su Reti Lezione del 17 novembre 2009. Equivalente alla firma convenzionale Firme digitali Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci Firma Digitale Equivalente alla firma convenzionale

Dettagli

Corso di Crittografia Prof. Dario Catalano. Primitive Asimmetriche

Corso di Crittografia Prof. Dario Catalano. Primitive Asimmetriche Corso di Crittografia Prof. Dario Catalano Primitive Asimmetriche Introduzione n Oggi discuteremo le primitive sulla base delle quali costruire sistemi asimmetrici affidabili. n Nel caso della crittografia

Dettagli

Firma Digitale. Firma Digitale. Firma digitale. Firma digitale. Firma Digitale A?? Equivalente alla firma convenzionale

Firma Digitale. Firma Digitale. Firma digitale. Firma digitale. Firma Digitale A?? Equivalente alla firma convenzionale firma irma Digitale Equivalente alla firma convenzionale firma irma Digitale Equivalente alla firma convenzionale Soluzione naive: incollare firma digitalizzata irma Digitale 0 irma Digitale 1 Soluzione

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci Cifrari simmetrici canale

Dettagli

Cifratura. Decifratura. Cifratura. Decifratura. Crittografia a chiave pubblica ed a chiave privata. Corso di Sicurezza su Reti 1

Cifratura. Decifratura. Cifratura. Decifratura. Crittografia a chiave pubblica ed a chiave privata. Corso di Sicurezza su Reti 1 Crittosistema a chiave pubblica Cifratura chiave privata kpriv kpub kpub Devo cifrare il messaggio M ed inviarlo ad Crittografia a Chiave Pubblica 0 iagio Crittografia a Chiave Pubblica 1 Cifratura Decifratura

Dettagli

logaritmo discreto come funzione unidirezionale

logaritmo discreto come funzione unidirezionale logaritmo discreto come funzione unidirezionale in generale, lavoreremo con il gruppo U(Z p ) = Z p dati g generatore di Z p e x tale che 1 x p 1, calcolare y = g x è computazionalmente facile (y g x (mod

Dettagli

(G, ) un gruppo moltiplicativo di ordine n l ordine di un elemento g G, o(g), è il minimo intero positivo m tale che g m = 1

(G, ) un gruppo moltiplicativo di ordine n l ordine di un elemento g G, o(g), è il minimo intero positivo m tale che g m = 1 ordine di un gruppo G un gruppo finito: ordine di G = o(g) = numero di elementi di G l insieme degli invertibili di Z n è un gruppo rispetto al prodotto si denota con U(Z n ) e ha ordine φ(n) esempio:

Dettagli

RSA. Chiavi RSA. Firma Digitale. Firma Digitale. Firma Digitale. Desiderata per la Firma Digitale. Corso di Sicurezza su Reti 1

RSA. Chiavi RSA. Firma Digitale. Firma Digitale. Firma Digitale. Desiderata per la Firma Digitale. Corso di Sicurezza su Reti 1 firma Firma Digitale Equivalente alla firma convenzionale firma Firma Digitale Equivalente alla firma convenzionale Soluzione naive: incollare firma digitalizzata Firma Digitale 0 Firma Digitale 1 firma

Dettagli

Numeri casuali. Randomness by obscurity. Generazione Deterministica? Caratteristiche del sistema. Caratteristiche del sistema

Numeri casuali. Randomness by obscurity. Generazione Deterministica? Caratteristiche del sistema. Caratteristiche del sistema Numeri casuali Importanti per molte primitive crittografiche un avversario non deve determinarli o indovinarli se non con una bassa probabilità Generazione Deterministica? Anyone who considers arithmetical

Dettagli

CRITTOGRAFIA 2014/15 Appello del 13 gennaio Nome: Cognome: Matricola:

CRITTOGRAFIA 2014/15 Appello del 13 gennaio Nome: Cognome: Matricola: CRITTOGRAFIA 2014/15 Appello del 13 gennaio 2015 Esercizio 1 Crittografia ellittica [9 punti] 1. Descrivere l algoritmo di Koblitz per trasformare un messaggio m, codificato come numero intero, in un punto

Dettagli

Numeri casuali. Randomness by obscurity. Generazione Deterministica? Caratteristiche del sistema. Caratteristiche del sistema

Numeri casuali. Randomness by obscurity. Generazione Deterministica? Caratteristiche del sistema. Caratteristiche del sistema Numeri casuali Importanti per molte primitive crittografiche un avversario non deve determinarli o indovinarli se non con una bassa probabilità Generazione Deterministica? Anyone who considers arithmetical

Dettagli

Firme digitali. Firma Digitale. Firma Digitale. Firma Digitale. Equivalente alla firma convenzionale. Equivalente alla firma convenzionale

Firme digitali. Firma Digitale. Firma Digitale. Firma Digitale. Equivalente alla firma convenzionale. Equivalente alla firma convenzionale irme digitali lfredo De Santis Dipartimento di Informatica ed pplicazioni Università di Salerno arzo 2012 ads@dia.unisa.it http://www.dia.unisa.it/professori/ads firma irma Digitale Equivalente alla firma

Dettagli

Esercizi proposti - Gruppo 7

Esercizi proposti - Gruppo 7 Argomenti di Matematica er l Ingegneria - Volume I - Esercizi roosti Esercizi roosti - Gruo 7 1) Verificare che ognuina delle seguenti coie di numeri razionali ( ) r + 1, r + 1, r Q {0} r ha la rorietà

Dettagli

QUICKSORT. Basato sul paradigma divide-et-impera (come MERGE-SORT)

QUICKSORT. Basato sul paradigma divide-et-impera (come MERGE-SORT) QUICKSORT Basato sul paradigma divide-et-impera (come MERGE-SORT) Divide: stabilisce un valore di q tale da dividere l array A[p.. r] in due sottoarray non vuoti A[p.. q] e A[q+1.. r], dove ogni elemento

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Cifrari simmetrici Barbara Masucci Dipartimento di Informatica ed Applicazioni Università di Salerno masucci@dia.unisa.it http://www.dia.unisa.it/professori/masucci canale

Dettagli

La crittografia a curve iperellittiche

La crittografia a curve iperellittiche Dott. Stefania Vanzetti Torino 2011. Crittografia a chiave pubblica: oltre RSA Università degli Studi di Torino 13 maggio 2011 1.LE CURVE IPERELLITTICHE Motivazioni al loro utilizzo Motivazioni al loro

Dettagli

La crittografia moderna e la sua applicazione

La crittografia moderna e la sua applicazione La crittografia moderna e la sua applicazione Corso FSE per la GdF Crittosistemi basati sulle Curve Ellittiche Alberto Leporati Dipartimento di Informatica, Sistemistica e Comunicazione Università degli

Dettagli

crittografia a chiave pubblica

crittografia a chiave pubblica crittografia a chiave pubblica Whitfield Diffie Martin Hellman New Directions in Cryptography We stand today on the brink of a revolution in cryptography. The development of cheap digital hardware... has

Dettagli

Altre alternative a RSA interessanti e praticabili

Altre alternative a RSA interessanti e praticabili Altre alternative a RSA interessanti e praticabili Prof. Massimiliano Sala MINICORSI 2011. Crittografia a chiave pubblica: oltre RSA Università degli Studi di Trento, Lab di Matematica Industriale e Crittografia

Dettagli

Calcolo Parallelo. Valutazione dell efficienza di algoritmi e software in ambiente parallelo. Prof. Alessandra d Alessio.

Calcolo Parallelo. Valutazione dell efficienza di algoritmi e software in ambiente parallelo. Prof. Alessandra d Alessio. Calcolo Parallelo Valutazione dell efficienza di algoritmi e software in ambiente arallelo Prof. Alessandra d Alessio T(1) S() = T() = Seed u Lo seed u misura la riduzione del temo di esecuzione risetto

Dettagli

Strutture dati per insiemi disgiunti

Strutture dati per insiemi disgiunti Strutture dati per insiemi disgiunti Servono a mantenere una collezione S = {S 1, S 2,..., S k } di insiemi disgiunti. Ogni insieme S i è individuato da un rappresentante che è un particolare elemento

Dettagli

Nell informatica esistono alcuni problemi particolarmente rilevanti, poiché essi:

Nell informatica esistono alcuni problemi particolarmente rilevanti, poiché essi: Pag 24 3) Il problema della ricerca Nell informatica esistono alcuni problemi particolarmente rilevanti, poiché essi: si incontrano in una grande varietà di situazioni reali; appaiono come sottoproblemi

Dettagli

Esercizi su massimi e minimi

Esercizi su massimi e minimi Esercizi su massimi e minimi 1. Studiare massimi e minimi relativi della funzione f : R! R de nita onendo (x; y) R : f (x; y) = x + y + xy + x. Risoluzione La funzione f è derivabile in tutto R e er ogni

Dettagli

Elettronica I Il transistore bipolare a giunzione

Elettronica I Il transistore bipolare a giunzione Elettronica I Il transistore biolare a giunzione Valentino Liberali Diartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it htt://www.dti.unimi.it/ liberali

Dettagli

Efficienza: esempi. Fondamenti di Informatica. Ferdinando Cicalese. Nella lezione precedente. Pseudocodice per descrivere algoritmi

Efficienza: esempi. Fondamenti di Informatica. Ferdinando Cicalese. Nella lezione precedente. Pseudocodice per descrivere algoritmi Efficienza: esempi Fondamenti di Informatica Ferdinando Cicalese Nella lezione precedente Qualche problema computazionale Trova min Selection sort Pseudocodice per descrivere algoritmi Variabili Assegnamento

Dettagli

Lezione 4. Stati e ricerca. Algoritmi di ricerca. Problemi di Ricerca. Ricerca e non determinismo. Esempio

Lezione 4. Stati e ricerca. Algoritmi di ricerca. Problemi di Ricerca. Ricerca e non determinismo. Esempio Stati e ricerca Lezione RICERCA Un agente si uo trovare in uno stato Eseguendo determinate azioni, cambia il rorio stato Lo scoo e raggiungere un obbiettivo (goal), caratterizzabile come insieme di stati

Dettagli

Digital Signature Standard

Digital Signature Standard Corso di Sicurezza 2008/2009 Golinucci Thomas Zoffoli Stefano Gruppo 11 Firme digitali 1. Introduzione. 2. Caso d uso e digitalizzazione. 3. Firme digitali e possibili attacchi. 4. Manuali vs Digitali.

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi Ricorsivi e Maria Rita Di Berardini, Emanuela Merelli 1 1 Dipartimento di Matematica e Informatica Università di Camerino A.A. 2006/07 I conigli di Fibonacci Ricerca Binaria L isola dei conigli

Dettagli

Crittografia. Primalità e Fattorizzazione. Corso di Laurea Specialistica. in Informatica

Crittografia. Primalità e Fattorizzazione. Corso di Laurea Specialistica. in Informatica Crittografia Corso di Laurea Specialistica in Informatica Primalità e Fattorizzazione Alberto Leporati Dipartimento di Informatica, Sistemistica e Comunicazione Università degli Studi di Milano Bicocca

Dettagli

Esercizi Capitolo 7 - Hash

Esercizi Capitolo 7 - Hash Esercizi Capitolo 7 - Hash Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle rispettive

Dettagli

Corso di Crittografia Prof. Dario Catalano. Cifrari Asimmetrici (Terza Parte): RSA-OAEP e Cifrari basati sull identita

Corso di Crittografia Prof. Dario Catalano. Cifrari Asimmetrici (Terza Parte): RSA-OAEP e Cifrari basati sull identita Corso di Crittografia Prof. Dario Catalano Cifrari Asimmetrici (Terza Parte): RSA-OAEP e Cifrari basati sull identita Cifrari sicuri contro attacchi attivi Fino ad oggi abbiamo visto cifrari sicuri contro

Dettagli

Introduzione al Corso di Algoritmi

Introduzione al Corso di Algoritmi Introduzione al Corso di Algoritmi Di cosa parliamo oggi: Una discussione generale su cosa studieremo, perchè lo studeriemo, come lo studieremo,... Un esempio illustrativo di cosa studeriemo Informazione

Dettagli

schema di firma definizione formale

schema di firma definizione formale schema di firma Alice firma un messaggio da mandare a Bob ci sono due componenti: un algoritmo sig per firmare e un algoritmo ver per verificare quello per firmare dev essere privato (solo Alice può firmare)

Dettagli

Known Ciphertext Attack Known Plaintext Attack Chosen Plaintext Attack Chosen Ciphertext Attack Chosen Text Attack

Known Ciphertext Attack Known Plaintext Attack Chosen Plaintext Attack Chosen Ciphertext Attack Chosen Text Attack Tii di attacchi Attacco a testo noto su cifrario di Hill Attacco a cifrari a sostituzione Crittoanalisi del cifrario di Vigenere 1 La sicurezza di un crittosistema deve diendere solo dalla segretezza della

Dettagli

TEORIA DELLA PROBABILITÁ

TEORIA DELLA PROBABILITÁ TEORIA DELLA PROBABILITÁ Cenni storici i rimi arocci alla teoria della robabilità sono della metà del XVII secolo (Pascal, Fermat, Bernoulli) gli ambiti di alicazione sono i giochi d azzardo e roblemi

Dettagli

Crittografia con Python

Crittografia con Python Crittografia con Python Corso introduttivo Marzo 2015 Con materiale adattato dal libro Hacking Secret Cypher With Python di Al Sweigart (http://inventwithpython.com/hacking/index.html) Ci eravamo lasciati

Dettagli

Introduzione alla crittografia. Diffie-Hellman e RSA

Introduzione alla crittografia. Diffie-Hellman e RSA Introduzione alla crittografia. Diffie-Hellman e RSA Daniele Giovannini Torino 2011, Crittografia a chiave pubblica: oltre RSA Università degli Studi di Trento, Lab di Matematica Industriale e Crittografia

Dettagli

Tempo e spazio di calcolo (continua)

Tempo e spazio di calcolo (continua) Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza

Dettagli

E necessaria la chiave segreta? RSA. Funzioni One-way con Trapdoor. Un secondo protocollo

E necessaria la chiave segreta? RSA. Funzioni One-way con Trapdoor. Un secondo protocollo E necessaria la chiave segreta? RSA Rivest, Shamir, Adelman A manda a B lo scrigno chiuso con il suo lucchetto. B chiude lo scrigno con un secondo lucchetto e lo rimanda ad A A toglie il suo lucchetto

Dettagli

Programma di Matematica Anno Scolastico 2014/2015 Classe 2M

Programma di Matematica Anno Scolastico 2014/2015 Classe 2M Programma di Matematica Anno Scolastico 04/05 Classe M Modulo : Richiami calcolo letterale Il rodotto notevole di una somma er una di erenza (a+b)(a (a + b) : Cubo di un binomio (a + b) : b): Quadrato

Dettagli

Ottimizzazione dei Sistemi Complessi

Ottimizzazione dei Sistemi Complessi 1 Giovedì 2 Marzo 2017 1 Istituto di Analisi dei Sistemi ed Informatica IASI - CNR Pseudo-code del metodo Fermi-Metropolis Input: x 0, 0, min, maxit k 0, x x 0, 0 while k maxit and min do k k + 1, x x

Dettagli

Algoritmi di ricerca locale

Algoritmi di ricerca locale Algoritmi di ricerca locale Utilizzati in problemi di ottimizzazione Tengono traccia solo dello stato corrente e si spostano su stati adiacenti Necessario il concetto di vicinato di uno stato Non si tiene

Dettagli

Tempo e spazio di calcolo (continua)

Tempo e spazio di calcolo (continua) Tempo e spazio di calcolo (continua) I numeri di Fibonacci come case study (applichiamo ad un esempio completo le tecniche illustrate nei lucidi precedenti) Abbiamo introdotto tecniche per la correttezza

Dettagli

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE

Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Algebra Booleana 1 ALGEBRA BOOLEANA: VARIABILI E FUNZIONI LOGICHE Andrea Bobbio Anno Accademico 2000-2001 Algebra Booleana 2 Calcolatore come rete logica Il calcolatore può essere visto come una rete logica

Dettagli

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort

Due algoritmi di ordinamento. basati sulla tecnica Divide et Impera: Mergesort e Quicksort Due algoritmi di ordinamento basati sulla tecnica Divide et Impera: Mergesort e Quicksort (13 ottobre 2009, 2 novembre 2010) Ordinamento INPUT: un insieme di n oggetti a 1, a 2,, a n presi da un dominio

Dettagli

Corso di Perfezionamento

Corso di Perfezionamento Programmazione Dinamica 1 1 Dipartimento di Matematica e Informatica Università di Camerino 15 febbraio 2009 Tecniche di Programmazione Tecniche di progettazione di algoritmi: 1 Divide et Impera 2 Programmazione

Dettagli

Corso di Crittografia Prof. Dario Catalano. Advanced Encryption Standard

Corso di Crittografia Prof. Dario Catalano. Advanced Encryption Standard Corso di Crittografia Prof. Dario Catalano Advanced Encryption Standard Perche un nuovo standard? n Quando si è deciso di sostituire DES, questo era ancora sicuro. n Sorge naturale la questione del perche

Dettagli

PROGRAMMAZIONE STRUTTURATA

PROGRAMMAZIONE STRUTTURATA PROGRAMMAZIONE STRUTTURATA Programmazione strutturata 2 La programmazione strutturata nasce come proposta per regolamentare e standardizzare le metodologie di programmazione (Dijkstra, 1965) Obiettivo:

Dettagli

Prof. Emanuele ANDRISANI

Prof. Emanuele ANDRISANI Potenze con esponente razionale Sia a > 0 e a 1. Abbiamo definito a x quando x N. Poniamo a 0 = 1 a x = a m n = n a m se x = m n Q, x > 0, m, n N a x = 1 a x se x Q, x > 0. È così definita la potenza a

Dettagli

Esponenziali e logaritmi

Esponenziali e logaritmi Esponenziali e logaritmi Corso di accompagnamento in matematica Lezione 4 Sommario 1 La funzione esponenziale Proprietà Grafico 2 La funzione logaritmo Grafico Proprietà 3 Equazioni / disequazioni esponenziali

Dettagli

Università del Piemonte Orientale

Università del Piemonte Orientale Compito di Algebra del 13 Gennaio 2009 1) Trovare l ordine di [11] 112 in Z 112. Si dica poi per quali valori di k si ha [11] k 112 [34] 112 = [31] 112. Soluzione. L ordine di [11] 112 è 12. k 12 8. 2)

Dettagli

Metodi Computazionali. Generazione di numeri pseudocasuali

Metodi Computazionali. Generazione di numeri pseudocasuali Metodi Computazionali Generazione di numeri pseudocasuali A.A. 2009/2010 Pseudo random numbers I più comuni generatori di numeri random determinano il prossimo numero random di una serie come una funzione

Dettagli

Corso di Crittografia Prof. Dario Catalano. Cifrari Asimmetrici: Il cifrario Paillier

Corso di Crittografia Prof. Dario Catalano. Cifrari Asimmetrici: Il cifrario Paillier Corso di Crittografia Prof. Dario Catalano Cifrari Asimmetrici: Il cifrario Paillier Cifrari asimmetrici n Nella scorsa lezione abbiamo parlato del cifrario El Gamal n Cifrario probabilistico, sicuro (contro

Dettagli

I circuiti digitali: dalle funzioni logiche ai circuiti

I circuiti digitali: dalle funzioni logiche ai circuiti Architettura dei calcolatori e delle Reti Lezione 4 I circuiti digitali: dalle funzioni logiche ai circuiti Proff. A. Borghese, F. Pedersini Dipartimento di Scienze dell Informazione Università degli Studi

Dettagli

Esempio: somma di due numeri

Esempio: somma di due numeri Esempio: somma di due numeri Scrivere l algoritmo che esegue la somma di due numeri ESEMPIO: somma di due numeri

Dettagli

Parte prima Cifrature asimmetriche 21

Parte prima Cifrature asimmetriche 21 Indice Prefazione XIII Capitolo 1 Introduzione 1 1.1 Servizi, meccanismi e attacchi 3 Servizi 3 Meccanismi 4 Attacchi 5 1.2 L architettura di sicurezza OSI 5 Servizi di sicurezza 7 Autenticazione 7 Meccanismi

Dettagli

Introduzione alla programmazione

Introduzione alla programmazione Introduzione alla programmazione Risolvere un problema Per risolvere un problema si procede innanzitutto all individuazione Delle informazioni, dei dati noti Dei risultati desiderati Il secondo passo consiste

Dettagli

SHA %&'(& lunghezza arbitraria. 160 bit

SHA %&'(& lunghezza arbitraria. 160 bit %&'(&!"### "$ % SHS per Secure Hash Standard SHA per Secure Hash Algorithm Standard del Governo americano dal 1993 Modificato nel luglio 1994, denotato SHA-1 (unica differenza: aggiunta di uno shift nell

Dettagli

10 STRUTTURE DI CONTROLLO REPEAT E WHILE. Strutture di controllo e variabili strutturate

10 STRUTTURE DI CONTROLLO REPEAT E WHILE. Strutture di controllo e variabili strutturate LABORATORIO DI PROGRAMMAZIONE Corso di laurea in matematica 10 STRUTTURE DI CONTROLLO REPEAT E WHILE Marco Lapegna Dipartimento di Matematica e Applicazioni Universita degli Studi di Napoli Federico II

Dettagli

a 11 s 1 + a 12 s a 1n s n = b 1 a 21 s 1 + a 22 s a 2n s n = b 2..

a 11 s 1 + a 12 s a 1n s n = b 1 a 21 s 1 + a 22 s a 2n s n = b 2.. Matematica II 020304 Ogni sistema di m equazioni lineari in n incognite x 1 x 2 x n si uo raresentare nella forma a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1

Dettagli

NUMERI RAZIONALI E REALI

NUMERI RAZIONALI E REALI NUMERI RAZIONALI E REALI CARLANGELO LIVERANI. Numeri Razionali Tutti sanno che i numeri razionali sono numeri del tio q con N e q N. Purtuttavia molte frazioni ossono corrisondere allo stesso numero, er

Dettagli

Agostino Dovier. Dip di Matematica e Informatica, Univ. di Udine

Agostino Dovier. Dip di Matematica e Informatica, Univ. di Udine DE Agostino Dovier Dip di Matematica e Informatica, Univ. di Udine Ringrazio l amico e maestro Andrea Sgarro per il materiale tratto dal suo meraviglioso quanto introvabile testo DE DIFFIE E HELLMAN DE

Dettagli

Corso di Sicurezza nelle reti a.a. 2009/2010. Raccolta di alcuni quesiti del corso da 5CFU e prima parte del corso da 9CFU

Corso di Sicurezza nelle reti a.a. 2009/2010. Raccolta di alcuni quesiti del corso da 5CFU e prima parte del corso da 9CFU Università degli Studi di Parma - Facoltà di Ingegneria Corso di Sicurezza nelle reti a.a. 2009/2010 Raccolta di alcuni quesiti del corso da 5CFU e prima parte del corso da 9CFU 1) Si consideri un semplice

Dettagli

Efficienza: esempi. Nella lezione precedente. Fondamenti di Informatica. Ferdinando Cicalese. ! Qualche problema computazionale

Efficienza: esempi. Nella lezione precedente. Fondamenti di Informatica. Ferdinando Cicalese. ! Qualche problema computazionale Efficienza: esempi Fondamenti di Informatica Ferdinando Cicalese Nella lezione precedente! Qualche problema computazionale " Trova min " Selection sort! Pseudocodice per descrivere algoritmi " Variabili

Dettagli

POLITECNICO DI BARI CORSO DI LAUREA MAGISTRALE IN INGEGNERIA ELETTRONICA

POLITECNICO DI BARI CORSO DI LAUREA MAGISTRALE IN INGEGNERIA ELETTRONICA POLITECNICO DI BARI CORSO DI LAUREA MAGISTRALE IN INGEGNERIA ELETTRONICA DISPENSE DEL CORSO DI INFORMATICA MEDICA Docente: Prof. Giuseppe Mastronardi ANNO ACCADEMICO 2015-2016 08/05/2016 Informatica medica

Dettagli

Andrea Scozzari a.a Analisi di sensibilità

Andrea Scozzari a.a Analisi di sensibilità Andrea Sozzari a.a. 2012-2013 Analisi di sensibilità 1 Problema di Massimo in forma generale ma 130 100 1,5 0,3 0,5, 27 21 15 16 0 regione ammissibile 2 Problema di Massimo in forma generale ma 130 100

Dettagli

Esercitazione 3. Espressioni booleane I comandi if-else e while

Esercitazione 3. Espressioni booleane I comandi if-else e while Esercitazione 3 Espressioni booleane I comandi if-else e while Esercizio Si consideri la seguente istruzione: if (C1) if (C2) S1; else S2; A quali delle seguenti interpretazioni corrisponde? if (C1) if

Dettagli

Equazioni, funzioni e algoritmi: il metodo delle secanti

Equazioni, funzioni e algoritmi: il metodo delle secanti Equazioni, funzioni e algoritmi: il metodo delle secanti Christian Ferrari 1 Introduzione La risoluzione di equazioni in R ci ha mostrato che solo per le equazioni polinomiali di primo e secondo grado,

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Capitolo 1 Un introduzione informale agli algoritmi Camil Demetrescu, Irene Finocchi, Giuseppe F. Italiano Definizione informale di algoritmo Insieme di istruzioni, definite

Dettagli

Markov Chains and Markov Chain Monte Carlo (MCMC)

Markov Chains and Markov Chain Monte Carlo (MCMC) Markov Chains and Markov Chain Monte Carlo (MCMC) Alberto Garfagnini Università degli studi di Padova December 11, 2013 Catene di Markov Discrete dato un valore x t del sistema ad un istante di tempo fissato,

Dettagli

Capitolo 3 - Parte IV Complementi sui circuiti combinatori

Capitolo 3 - Parte IV Complementi sui circuiti combinatori Aunti di Elettronica Digitale Caitolo 3 - arte IV Comlementi sui circuiti combinatori Introduzione... Sommatori...2 Introduzione...2 Half-adder...3 Full-adder...4 Sommatore binario arallelo...7 roagazione

Dettagli

ELEMENTI DI INFORMATICA L-B. Ing. Claudia Chiusoli

ELEMENTI DI INFORMATICA L-B. Ing. Claudia Chiusoli ELEMENTI DI INFORMATICA L-B Ing. Claudia Chiusoli Materiale Lucidi delle lezioni Date degli appelli Testi di esami precedenti Informazioni e contatti http://www.lia.deis.unibo.it/courses/ Programma del

Dettagli

Corso di Fondamenti di Programmazione canale E-O. Un esempio. Funzioni ricorsive. La ricorsione

Corso di Fondamenti di Programmazione canale E-O. Un esempio. Funzioni ricorsive. La ricorsione Corso di Fondamenti di Programmazione canale E-O Tiziana Calamoneri Ricorsione DD Cap. 5, pp. 160-184 KP Cap. 5, pp. 199-208 Un esempio Problema: prendere in input un intero e calcolarne il fattoriale

Dettagli

Diagramma a blocchi per la selezione, in un mazzo di chiavi, di quella che apre un lucchetto

Diagramma a blocchi per la selezione, in un mazzo di chiavi, di quella che apre un lucchetto Diagramma a blocchi per la selezione, in un mazzo di chiavi, di quella che apre un lucchetto 14 1. Dato un numero dire se è positivo o negativo 2. e se il numero fosse nullo? 3. Eseguire il prodotto tra

Dettagli

CALCOLO DELLE PROBABILITÀ. 1. La probabilità che una candela accesa si spenga è p = 1, perché è assolutamente certo che si esaurirà.

CALCOLO DELLE PROBABILITÀ. 1. La probabilità che una candela accesa si spenga è p = 1, perché è assolutamente certo che si esaurirà. CALCOLO DELLE PROBABILITÀ -Definizione di robabilità -Legge additiva (eventi disgiunti) -Probabilità totale -Eventi comosti -Eventi indiendenti -Legge moltilicativa -Probabilità comoste - -Definizione

Dettagli

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi

Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Esercizi Capitolo 11 - Strutture di dati e progettazione di algoritmi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore

Dettagli

Elettronica II Modello del transistore bipolare a giunzione p. 2

Elettronica II Modello del transistore bipolare a giunzione p. 2 lettronica II Modello del transistore biolare a giunzione Valentino Liberali Diartimento di Tecnologie dell Informazione Università di Milano, 26013 rema e-mail: liberali@dti.unimi.it htt://www.dti.unimi.it/

Dettagli

Progetto e analisi di algoritmi

Progetto e analisi di algoritmi Progetto e analisi di algoritmi Roberto Cordone DTI - Università degli Studi di Milano Polo Didattico e di Ricerca di Crema Tel. 0373 / 898089 E-mail: cordone@dti.unimi.it Ricevimento: su appuntamento

Dettagli

Algoritmi e Strutture Dati

Algoritmi e Strutture Dati Algoritmi e Strutture Dati Informazioni sul corso + Un introduzione informale agli algoritmi Domenico Fabio Savo 1 Domenico Fabio Savo Email: savo@dis.uniroma1.it Web: http://www.dis.uniroma1.it/~savo

Dettagli

Corso di Crittografia Prof. Dario Catalano. Firme Digitali

Corso di Crittografia Prof. Dario Catalano. Firme Digitali Corso di Crittografia Prof. Dario Catalano Firme Digitali Introduzione n Una firma digitale e l equivalente informatico di una firma convenzionale. n Molto simile a MA, solo che qui abbiamo una struttura

Dettagli

Valutazione Lazy. Prefazione alla lezione

Valutazione Lazy. Prefazione alla lezione Valutazione Lazy Aniello Murano Università degli Studi di Napoli Federico II 1 Prefazione alla lezione Nella lezione precedente abbiamo introdotto i linguaggi (funzionali) con tipi di ordine superiore.

Dettagli

3. Equazioni biquadratiche. Il polinomio al primo membro contiene un termine con l incognita elevata al quadrato, un termine con

3. Equazioni biquadratiche. Il polinomio al primo membro contiene un termine con l incognita elevata al quadrato, un termine con UNITÀ EQUAZIONI E SISTEMI DI GRADO SUPERIORE AL SECONDO.. Generalità sulle equazioni di grado superiore al secondo.. Equazioni inomie.. Equazioni iquadratiche.. Equazioni trinomie.. Equazioni che si risolvono

Dettagli

Dizionario. Marina Zanella Algoritmi e strutture dati Tabelle hash 1

Dizionario. Marina Zanella Algoritmi e strutture dati Tabelle hash 1 Dizionario Insieme dinamico che offre solo le seguenti operazioni: inserimento di un elemento dato cancellazione di un elemento dato ricerca di un elemento dato (verifica dell appartenenza di un elemento

Dettagli

RENDITE. Ricerca del tasso di una rendita

RENDITE. Ricerca del tasso di una rendita RENDITE Ricerca del tasso di una rendita Un problema che si presenta spesso nelle applicazioni è quello di calcolare il tasso di interesse associato a una rendita quando siano note le altre grandezze 1

Dettagli

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 =

x 1 x 2 x 3 x 5 La base iniziale è B 0 = I e risulta x B 0 = , x N 0 = Iterazione 0. Calcolo dei costi ridotti. γ 0 = c N 0 (N 0 ) T c B 0 = 56 IL METODO DEL SIMPLESSO 7.4 IL METODO DEL SIMPLESSO In questo paragrafo sono riportati alcuni esercizi risolti sul metodo del simplesso. Alcuni sono risolti utilizzando la procedura di pivot per determinare,

Dettagli

Crittografia a chiave pubblica

Crittografia a chiave pubblica Crittografia a chiave pubblica Cifrari Generatori di bit pseudocasuali Schemi di firma Protocolli d identificazione attiva Ogni utente ha una chiave segreta SU..e rende pubblica una chiave PU Chiave di

Dettagli

Programma. Algoritmi e Strutture Dati 2. Docenti. Programma (cont.) Materiale didattico. Modalità d esame

Programma. Algoritmi e Strutture Dati 2. Docenti. Programma (cont.) Materiale didattico. Modalità d esame Algoritmi e Strutture Dati 2 Naturale continuazione del corso di Algoritmi 1 Obiettivi: studiare algoritmi e strutture dati fondamentali; studiare le tecniche per risolvere algoritmicamente alcune classi

Dettagli

2.2 Alberi di supporto di costo ottimo

2.2 Alberi di supporto di costo ottimo . Alberi di supporto di costo ottimo Problemi relativi ad alberi hanno numerose applicazioni: progettazione di reti (comunicazione, teleriscaldamento,...) protocolli reti IP memorizzazione compatta di

Dettagli

MATEMATICA DI BASE 1

MATEMATICA DI BASE 1 MATEMATICA DI BASE 1 Francesco Oliveri Dipartimento di Matematica, Università di Messina 30 Agosto 2010 MATEMATICA DI BASE MODULO 1 Insiemi Logica Numeri Insiemi Intuitivamente, con il termine insieme

Dettagli

Elementi di geometria delle immagini digitali binarie

Elementi di geometria delle immagini digitali binarie Elementi di geometria delle immagini digitali binarie Adiacenza e connettività Componenti connessi Distanze Contorni Interpretazione delle Immagini A.A. 00/003 Immagini digitali binarie In un immagine

Dettagli

idea della crittografia a chiave pubblica

idea della crittografia a chiave pubblica idea della crittografia a chiave pubblica sviluppare un crittosistema in cui data la funzione di cifratura e k sia computazionalmente difficile determinare d k Bob rende pubblica la sua funzione di cifratura

Dettagli

Corso di Informatica

Corso di Informatica Corso di Informatica CdL in Matematica e CdL in Matematica per le Applicazioni Prof. G. Nicosia Dipartimento di Matematica e Informatica Facoltà di Scienze MM.FF.NN. Università degli Studi di Catania A.

Dettagli