Algoritmi di Ottimizzazione: Parte B gli Algoritmi Genetici

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Algoritmi di Ottimizzazione: Parte B gli Algoritmi Genetici"

Transcript

1 Identificazione e Controllo Intelligente Algoritmi di Ottimizzazione: Parte B gli Algoritmi Genetici David Naso A.A Identificazione e Controllo Intelligente 1 Algoritmi Evolutivi Nell ultimo trentennio, le teorie sull evoluzione naturale delle specie e l ereditarietà dei geni, hanno richiamato l attenzione di alcuni matematici ed ingegneri come fonte di ispirazione per nuove tecniche di ottimizzazione stocastica. Queste nuove tecniche condividono anche il meccanismo di funzionamento, riassumibile in una breve sequenza di operazioni: 1. la generazione di un insieme iniziale di soluzioni (la popolazione); 2. La selezione delle soluzioni con più alto valore di fitness ; 3. l alterazione delle soluzioni prescelte con meccanismi che emulano le leggi della genetica naturale; 4. La creazione di una nuova popolazione, che contiene le migliori soluzioni e quelle alterate. 5. L iterazione dei passi 1-4. Identificazione e Controllo Intelligente 2 1

2 Algoritmi Evolutivi Programmazione Genetica (Genetic Programming, GP) sperimentata da J. R. Koza al Massachusetts Institute of Technology in questo caso gli individui di una popolazione che competono per la sopravvivenza sono costituiti da programmi, talvolta in grado di auto-modificarsi Programmazione Evolutiva (Evolutionary Programming, EP) fu ideata e sperimentata da Lawrence J. Fogel nel 1960 nell ambito di uno studio su automi a stati finiti per esperimenti di intelligenza artificiale. Identificazione e Controllo Intelligente 3 Algoritmi Evolutivi Algoritmi Genetici (Genetic Algorithms, GA), senza dubbio i più famosi algoritmi evolutivi, furono sviluppati all Università del Michigan da John Holland ed alcuni suoi studenti nel corso di un progetto di ricerca finalizzato all analisi ed emulazione artificiale dei meccanismi di evoluzione naturale. Strategie Evolutive (Evolutionary Strategies, ES) furono ideate da due studenti dell Università Tecnica di Berlino nel 1963, Ingo Rechenberg e Hans-Paul Schwefel, per lo studio di sagome aerodinamiche in una galleria del vento. Identificazione e Controllo Intelligente 4 2

3 Algoritmi Evolutivi Il termine comune per indicare tutti queste tecniche di ottimizzazione basate sulla sopravvivenza degli individui più forti è Algoritmi (o Programmi) Evolutivi (Evolutionary Algorithms, EA). Gli EA sono in alcuni aspetti simili ad altre tecniche di ricerca derivativefree (metodo del Simplesso, Random Search), spesso utilizzate anche nell ambito di problemi di ottimizzazione combinatoria come i metodi di Tabu Search, Simulated Annealing. Esistono ad oggi molte tecniche di ricerca ispirate ad altri fenomeni o comunità di organismi biologici che rientrano negli EA come ad ad esempio le immune networks, la ant colony optimization. Identificazione e Controllo Intelligente 6 Vantaggi per applicare un EA non è necessario imporre né ipotizzare che la funzione obbiettivo soddisfi i prerequisiti tipici delle tecniche di ottimizzazione convessa basate sul calcolo dei gradienti. In altre parole, è possibile applicare un GA a problemi di cui si conosce ben poco sulla forma della funzione obiettivo, cosa che rende questi algoritmi estremamente versatili. la scrittura di un EA è particolarmente semplice, perlomeno rispetto a molte altre tecniche di ottimizzazione stocastica di paragonabile efficacia. Gli EA sono implicitamente paralleli: ad ogni generazione, si indaga in parallelo su punti diversi. All inizio dell esecuzione, ogni soluzione nella popolazione è estremamente diversa dalle altre, e quindi l algoritmo parte esplorando in parallelo svariate zone. In particolare, l operatore di selezione è progettato in modo tale da dirigere l esplorazione nell intorno di quelle soluzioni più promettenti. Identificazione e Controllo Intelligente 7 3

4 Role of GAs in Global Problems GA largely motivated for global search/optimization problems Global problem generally very difficult GAs (and related) have long history of success in global problems Some global problems essentially impossible to solve Much solid research and applications with GAs But also more misrepresentations and dubious claims Much hype with many methods (genetic algorithm [GA] software advertisements): can handle the most complex problems, including problems unsolvable by any other method. uses GAs to solve any optimization problem! No clear indication of problem class(es) for which GAs are superior to other methods Identificazione e Controllo Intelligente 8 Struttura di un EA begin t 0 initialize P(t) (population at time t) evaluate P(t) while (not terminate condition) do begin t t+1 select P(t) from P(t-1) alter P(t) evaluate P(t) end end Identificazione e Controllo Intelligente 9 4

5 Tipi di EA e campi di applicazione In base allo spazio delle soluzioni Ottimizzazione numerica vincolata e non Ottimizzazione combinatoria Problemi ibridi In base alla funzione obiettivo Singolo obiettivo Problema multi-modale Problema ad obiettivi multipli Identificazione e Controllo Intelligente 10 Gli Algoritmi Genetici Sono la forma di EA più largamente utilizzata. La principale peculiarità dei GA è la presenza di un operatore matematico che combina due soluzioni (dette genitori) al fine di trovare due nuove soluzioni che ereditino parte delle caratteristiche di entrambi i genitori. Questa operazione è detta crossover. Vi è poi una seconda strategia per trovare nuove soluzioni, detta mutazione. La mutazione altera casualmente una o più caratteristiche della soluzione che la subisce. Identificazione e Controllo Intelligente 11 5

6 Struttura di un GA Define Initial Population Pop(i) Fitness Function Increment Generation Assess Fitness Children Best Individuals Mutation Reproduction Crossover Genetic Algorithm Identificazione e Controllo Intelligente 12 Realizzare un GA I passi basilari per la costruzione di un algoritmo genetico sono i seguenti: scelta della codifica genetica di ogni individuo della popolazione determinazione di una funzione obiettivo per la valutazione degli individui definizione di una popolazione iniziale Definizione di una funzione di selezione degli individui destinati alla ricombinazione Definizione degli operatori di ricombinazione genetica (come si generano nuove soluzioni). Identificazione e Controllo Intelligente 13 6

7 Codifica di una soluzione La popolazione di un GA è composta da un insieme di soluzioni. Ciascuna soluzione è detta individuo, ed è univocamente descritta da una stringa di simboli in un predefinito alfabeto. La stringa che specifica un individuo si chiama cromosoma e ciascuno dei simboli che al compone è detto gene. In termini pratici, ogni gene specifica o contribuisce a specificare il valore di uno dei parametri che costituiscono la generica soluzione. Se, per esempio, consideriamo il problema di ricerca della migliore stima dei coefficienti di un polinomio (P(s)=a 0 s n +a 1 s n-1 + +a n ) che descriva i poli di un processo dinamico, si può pensare di codificare la generica soluzione di un problema con un vettore di n+1 parametri (geni) reali, ciascuno direttamente legato ad un coefficiente del polinomio. a 0 a 1 a 2 a 3 a 4 Bounded Double Prec. Real Identificazione e Controllo Intelligente 14 Codifica Un altra alternativa potrebbe essere data da geni che rappresentano direttamente le radici del polinomio cercato, ma ciò richiederebbe di specificare se le radici sono complesse, ed in tal caso rappresentare sia la parte reale che quella immaginaria di ogni radice, garantendo la presenza di coppie complesse e coniugate. Molto frequentemente i parametri che descrivono una soluzione sono soggetti a vincoli che possono far preferire una codifica rispetto ad un altra (ad esempio poli nel cerchio di raggio unitario). La scelta di come rappresentare un individuo nella stringa assume un ruolo decisivo anche per la velocità di esecuzione dell algoritmo, e per la qualità della soluzione finale raggiunta. Ogni possibile rappresentazione presenta dei vantaggi e svantaggi: alcune possono rendere difficoltoso o inefficace (o addirittura impossibile) l uso di alcuni operatori genetici, o più o meno oneroso il calcolo della fitness di ogni individuo. Identificazione e Controllo Intelligente 15 7

8 Codifica binaria La rappresentazione binaria ha il vantaggio di rendere più semplice la definizione degli operatori genetici, ed inoltre si presta meglio ad alcune analisi di carattere teorico sulle garanzie di convergenza dell algoritmo (note come Schemata Theory ). Per contro, essa rallenta l esecuzione dell algoritmo a causa delle continue conversioni binario-decimale e viceversa determina una maggiore lunghezza dei cromosomi (se si scegliesse di rappresentare su 16 bit (65k quanti) ciascun parametro reale, un cromosoma con 20 parametri sarebbe codificato con: 16 x 20 bit = 320 bit). Con una codifica binaria dei parametri reali, è necessario scegliere preliminarmente la risoluzione della strategia di codifica, la quale determina il numero di bit necessari a rappresentare le soluzioni. Identificazione e Controllo Intelligente 16 Codifica binaria l metodo più semplice per codificare in binario un parametro reale è suddividere l intervallo di variazione del parametro [Pmin,Pmax] nell insieme discreto [0, 2 L ] (con L lunghezza massima della stringa di bit) in modo tale da ottenere la seguente risoluzione β: β= (Pmax-Pmin)/(2 L -1) Naturalmente usando un numero maggiore di bit L si ottiene una maggiore precisione, ma anche cromosomi più lunghi. I codici di conversione di gran lunga più usati sono il BCD (Binary-Coded Digit) o i codici Gray, in molte fonti indicati come del tutto equivalenti in termini di prestazioni. La codifica di un vettore di n parametri reali si può ottenere semplicemente concatenando n stringhe di lunghezza l. Identificazione e Controllo Intelligente 17 8

9 Codifica reale La codifica reale invece offre una maggiore compattezza e leggibilità del cromosoma, la possibilità di esplorare più ampi intervalli di variabilità dei parametri e una precisione che dipende dalla macchina su cui si lavora (generalmente migliore di quella binaria). si dovranno utilizzare operatori genetici diversi da quelli binari che impongano ai nuovi individui generati di appartenere ai relativi range. La codifica reale ha inoltre la proprietà che due punti vicini nello spazio della rappresentazione sono vicini anche nello spazio del problema e viceversa. Questo non è generalmente vero per l approccio binario, ma si può ovviare al problema utilizzando la codifica di Gray. Identificazione e Controllo Intelligente 18 Esempio P(s)=a 0 s n +a 1 s n-1 + +a n a 0 a 1 a 2 a 3 a 4 Real bounded Re(p 1 ) Im(p 1 ) Re(p 1 ) Im(p 1 ) Real bounded Binary Identificazione e Controllo Intelligente 19 9

10 Hybrid encoding: unstructured controllers e(k) z z1 z p 1 z z z p 2 2 ( z z )( z z ) 3 3 ( z p )( z p ) 3 3 u(k) F1 F2 F3 F4 F5 Chromosome of a single controller : F1 F2 F3 F4 F5 K Z 1 P 1 Z 2 P 2 Z 3 Structure Binary Flags Real or complex Parameters La soluzione finale si ottiene come cascata dei blocchi attivi (quelli con il flag su on ). Identificazione e Controllo Intelligente 20 Popolazione iniziale In assenza di informazioni preliminari, la popolazione iniziale di un GA è generata in modo casuale. La dimensione della popolazione è uno dei principali parametri di configurazione dell algoritmo. Se si sceglie una popolazione piccola, l algoritmo è in grado di eseguire le sue iterazioni più velocemente, ma presenta una minore capacità esplorativa, cosa che può determinare una convergenza prematura in una soluzione molto lontana dall ottimo effettivo. Se si sceglie invece una dimensione della popolazione troppo ampia, si rende l algoritmo eccessivamente ed inutilmente lento. La scelta appropriata della dimensione della popolazione dipende anche dalla lunghezza dei cromosomi che descrivono una soluzione. All aumentare del numero di geni di una soluzione corrisponde un aumento della minima dimensione della popolazione in grado di garantire risultati soddisfacenti. Identificazione e Controllo Intelligente 21 10

11 Scelta e calcolo della fitness Per definire quanto sia buona la qualità di un individuo della popolazione si definisce una funzione obiettivo che specifica numericamente la fitness dell individuo: un valore migliore della fitness indica una migliore soluzione del problema considerato. In questo modo la funzione obiettivo emula lo stesso ruolo della naturale capacità di sopravvivenza degli organismi biologici, legata alla loro forza. I GA non richiedono particolari ipotesi sulla forma o altre caratteristiche della funzione obiettivo, che può quindi essere non lineare nei parametri ottimizzati, multi-modale e discontinua. Al contrario, è necessario rendere il più possibile efficienti i meccanismi necessari alla valutazione della fitness, perché un GA richiede in genere (centinaia di) migliaia di chiamate alla funzione obiettivo per convergere alla soluzione finale. Identificazione e Controllo Intelligente 22 Scelta e calcolo della fitness Un tipico esempio di fitness può essere, nell esempio già citato di stima dei coefficienti di un modello dinamico, la somma degli scarti quadratici tra la risposta misurata del sistema dinamico y i e quella del modello y i stimata, corrispondenti alla medesima sollecitazione di ingresso: n fitness = ( y y ) i= 1 i istimata 2 Identificazione e Controllo Intelligente 23 11

12 Meccanismi di selezione Nella versione dei GA più frequentemente utilizzata, la selezione degli individui che partecipano alla riproduzione è di tipo probabilistico. Il meccanismo di scelta più frequentemente utilizzato assegna a ciascun individuo della popolazione una probabilità di sopravvivenza proporzionale alla sua fitness. Ciò implica che, in media, gli individui più forti si riproducano più frequentemente. Il principale inconveniente della riproduzione probabilistica è che essa comporta il rischio di un fenomeno denominato convergenza prematura. p =0.5 1 p =0.17 Esempio: In una popolazione costituita da tre individui 2 caratterizzati dalle seguenti fitness: f 1 =0.9, f 2 =0.3, f 3 =0.6 p 3=0.33 si ha: p 1 =f 1 /1.8 = 0.5, p 2 = f 2 /1.8 = 0.17, p 3 = 0.6/1.8 = Identificazione e Controllo Intelligente 24 Altri criteri di selezione Tra le soluzioni più adottate per risolvere questo problema citiamo le strategie di fitness scaling (la fitness di ogni individuo viene scalata in modo lineare o per elevazione a potenza secondo coefficienti predefiniti), di ranking (gli individui della popolazione sono ordinati per fitness decrescente ed a ciascuno di essi è assegnata una probabilità di riproduzione in base alla posizione nella graduatoria e non in base al valore specifico della fitness) ed infine di tournament selection (si estraggono casualmente n coppie di individui nella popolazione e li si confronta fra di loro, e selezionando per la riproduzione i vincitori di ciascun confronto come individui ). Identificazione e Controllo Intelligente 25 12

13 Ulteriori criteri Esistono poi numerose varianti dei criteri di selezione citati, ideate con varie finalità. L elitist GA conserva il miglior individuo della popolazione prima che qualsiasi operazione di selezione e riproduzione avvenga; e lo ricopia nella popolazione discendente. In questo modo si evita il rischio di perdere il migliore individuo finora trovato, tipico dei meccanismi di selezione probabilistica. La tecnica del crowding factor seleziona gli individui che partecipano alla riproduzione non solo sulla base della fitness, ma anche di quanto ciascuna soluzione sia in media vicina ad altre soluzioni nella popolazione (crowding factor). Lo scopo di questa tecnica e favorire l esplorazione di nuove aree dello spazio delle soluzioni, evitando che le soluzioni si avvicinino troppo l una all altra. Identificazione e Controllo Intelligente 26 Crossover e mutazione Negli algoritmi genetici l operatore a cui è demandato il compito che in natura è svolto dalla riproduzione sessuata è sicuramente il crossover. Tale operatore deve generare nuove soluzioni a partire da quelle prescelte dall operatore di selezione. In natura un discendente è raramente un esatto clone di un genitore: esso ha due genitori ed eredita geni da entrambi. Il crossover opera appunto su due individui e trae da loro preziose informazioni combinandole per trovare dei discendenti con una fitness migliore. Parametro caratteristico del crossover è la sua probabilità di applicazione agli individui della popolazione. Identificazione e Controllo Intelligente 27 13

14 Encoding-crossover-mutation Binary encoding Chromosome (11, 6, 9) Crossover Gene Mutation Crossover point Mutation bit Identificazione e Controllo Intelligente 28 Crossover operators Simple crossover x = (x 1,,x k, x k+1,,x n ) y = (y 1, y k, y k+1,,y n ) scelta a caso una posizione k tra 1 ed n-1, si generano i due discendenti: x = (x 1,,x k, y k+1,,y n ) y = (y 1, y k, x k+1,,x n ) Arithmetic crossover Se x e y sono i genitori, scegliendo un numero casuale a tra 0 e 1, si ottengono i due discendenti x e y dalla seguente combinazione lineare: x = ax+(1-a)y y = ay+(1-a)x Identificazione e Controllo Intelligente 29 14

15 Crossover Heuristic Crossover La versione più comune di questo crossover genera solo un nuovo individuo, che viene affiancato al genitore a fitness maggiore. Se x e y sono i genitori e x è quello con la maggiore fitness, i due discendenti z 1 e z 2 si generano nel modo seguente: z 1 = x z 2 = x+a(x-y) con a numero scelto a caso tra 0 e 1. Identificazione e Controllo Intelligente 30 Mutation operators Uniform mutation - random selected element v k replaced by v k in the range [v min k and v max k ] Multiple uniform mutation - uniform mutation of n randomly selected elements, n {1,2,,N} t 1 Gaussian mutation - all elements are mutated: s + = ( v + f,, v + f,, v + f ) v 1 1 k k n n s + = ( v + f,, v + f,, v + f ) t 1 v 1 1 k k n n where f k, k=1,2,,n is a random number drawn from a Gaussian distribution Identificazione e Controllo Intelligente 31 15

16 Riassunto Terminologia Fitness function Population Encoding Individual Chromosome Gene Generation Selection Elitism Crossover Mutation Identificazione e Controllo Intelligente 32 The Basic Structure of the GA /* Single Criterion EA */ /* Algorithm Startup */ i = 1; Pop(1) = random_pop fitness_eval(pop(1)) i = 2; /* main loop of the EA */ For each individual in the population Simulate the system specified in the chromosome subject to the reference input. Compute the fitness (deviation of the simulated output from true reference output) WHILE terminating_condition == false p_best = findbest(pop(i-1)) /*elitist preservation of the best-known individual*/ Pop(i) = select(pop(i-1),sel_ops); Pop(i) = crossover(pop(i),p_cro); Pop(i) = mutation(pop(i),p_mut); fitness_eval(pop(i)) Pop(i)=Pop(i) p_best i=i+1; END WHILE Identificazione e Controllo Intelligente 33 16

17 (A) Single Run - Fitness (B) Single Run - Fitness std. dev x x Comportamento tipico Best Fitness Avg Fitness (C) Multiple Runs - Fitness 4 x Identificazione e Controllo Intelligente Number of generations Genetic Algorithms Example: Find the max. of the peaks function z = f(x, y) = 3*(1-x)^2*exp(-(x^2) - (y+1)^2) - 10*(x/5 - x^3 - y^5)*exp(-x^2-y^2) -1/3*exp(-(x+1)^2 - y^2). Identificazione e Controllo Intelligente 35 17

18 Genetic Algorithms Derivatives of the peaks function dz/dx = -6*(1-x)*exp(-x^2-(y+1)^2) - 6*(1-x)^2*x*exp(-x^2-(y+1)^2) - 10*(1/5-3*x^2)*exp(-x^2-y^2) + 20*(1/5*x-x^3-y^5)*x*exp(-x^2-y^2) - 1/3*(- 2*x-2)*exp(-(x+1)^2-y^2) dz/dy = 3*(1-x)^2*(-2*y-2)*exp(-x^2-(y+1)^2) + 50*y^4*exp(-x^2-y^2) + 20*(1/5*x-x^3-y^5)*y*exp(-x^2-y^2) + 2/3*y*exp(-(x+1)^2-y^2) d(dz/dx)/dx = 36*x*exp(-x^2-(y+1)^2) - 18*x^2*exp(-x^2-(y+1)^2) - 24*x^3*exp(-x^2-(y+1)^2) + 12*x^4*exp(-x^2-(y+1)^2) + 72*x*exp(-x^2-y^2) - 148*x^3*exp(-x^2-y^2) - 20*y^5*exp(-x^2-y^2) + 40*x^5*exp(-x^2-y^2) + 40*x^2*exp(-x^2-y^2)*y^5-2/3*exp(-(x+1)^2-y^2) - 4/3*exp(-(x+1)^2- y^2)*x^2-8/3*exp(-(x+1)^2-y^2)*x d(dz/dy)/dy = -6*(1-x)^2*exp(-x^2-(y+1)^2) + 3*(1-x)^2*(-2*y-2)^2*exp(- x^2-(y+1)^2) + 200*y^3*exp(-x^2-y^2)-200*y^5*exp(-x^2-y^2) + 20*(1/5*xx^3-y^5)*exp(-x^2-y^2) - 40*(1/5*x-x^3-y^5)*y^2*exp(-x^2-y^2) + 2/3*exp(- (x+1)^2-y^2)-4/3*y^2*exp(-(x+1)^2-y^2) Identificazione e Controllo Intelligente 36 Genetic Algorithms GA process: Initial population 5th generation 10th generation Identificazione e Controllo Intelligente 37 18

19 Genetic Algorithms Performance profile Identificazione e Controllo Intelligente 38 Criteri di arresto Basati sul tempo di calcolo tempo a disposizione Numero di valutazioni della funzione obiettivo Basati sulle condizioni di convergenza Nessun incremento di prestazioni nelle ultime t iterazioni Fitness media della popolazione coincidente con fitness migliore Bassa diversità nella popolazione (individui praticamente tutti uguali). Identificazione e Controllo Intelligente 39 19

20 Quadro conclusivo Quando è opportuno usare un GA? Quando si deve risolvere un problema di ricerca dell ottimo in un dominio multidimensionale del quale non si hanno informazioni preliminari. Quando i parametri sono di tipo eterogeneo (binari, discreti, reali). Quando si vuole realizzare un algoritmo derivative-free in tempo rapido. Quando si vuole trovare una soluzione ottimale senza particolari restrizioni sul tempo di ricerca. Quando si è ragionevolmente certi che esistono più ottimi locali (se ce ne sono molti bisogna usare GA ad hoc) Quando può essere più efficiente il ricorso ad altre tecniche di ottimizzazione? Quando lo spazio di ricerca è a poche dimensioni (1, 2) in un rettangolo continuo. Quando sono necessarie garanzie di raggiungimento dell ottimo assoluto. Quando è disponibile analiticamente la forma della funzione obiettivo e la sua derivata prima. Quando si è certi che la funzione obiettivo non presenti minimi locali. Identificazione e Controllo Intelligente 40 Approfondimenti I principali campi di applicazione dei GA sui quali abbiamo recentemente condotto attività di ricerca sono: A. problemi combinatori GA per problemi di assegnamento, sequencing, scheduling nell ambito del controllo di sistemi manifatturieri automatizzati. Strategie di coordinamento per sistemi di controllo distribuito ad eventi (sistemi multi-agente). Ottimizzazione della gestione in tempo-reale di AGV. Problemi di logistica (scheduling della produzione in impianti distribuiti, gestione flotte di veicoli per il trasporto). B. Problemi di ottimizzazione numerica Identificazione di modelli non-lineari (Hammerstein, Wiener, reti neurofuzzy) per azionamenti e processi di laboratorio. Progetto automatico (hardware-in-the-loop) di sistemi di controllo lineari e non-lineari per azionamenti e manipolatori industriali. Identificazione e Controllo Intelligente 41 20

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1

DI D AGRA R MM M I M A BLOCC C H C I TEORI R A E D D E SERC R I C ZI 1 1 DIAGRAMMI A BLOCCHI TEORIA ED ESERCIZI 1 1 Il linguaggio dei diagrammi a blocchi è un possibile formalismo per la descrizione di algoritmi Il diagramma a blocchi, o flowchart, è una rappresentazione grafica

Dettagli

EQUAZIONI non LINEARI

EQUAZIONI non LINEARI EQUAZIONI non LINEARI Francesca Pelosi Dipartimento di Matematica, Università di Roma Tor Vergata CALCOLO NUMERICO e PROGRAMMAZIONE http://www.mat.uniroma2.it/ pelosi/ EQUAZIONI non LINEARI p.1/44 EQUAZIONI

Dettagli

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1

CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 1.1 Che cos è un algoritmo CAPITOLO PRIMO IL CONCETTO DI ALGORITMO 1 Gli algoritmi sono metodi per la soluzione di problemi. Possiamo caratterizzare un problema mediante i dati di cui si dispone all inizio

Dettagli

Elementi di Statistica

Elementi di Statistica Elementi di Statistica Contenuti Contenuti di Statistica nel corso di Data Base Elementi di statistica descrittiva: media, moda, mediana, indici di dispersione Introduzione alle variabili casuali e alle

Dettagli

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera

Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera Ricerca Operativa Branch-and-Bound per problemi di Programmazione Lineare Intera L. De Giovanni AVVERTENZA: le note presentate di seguito non hanno alcuna pretesa di completezza, né hanno lo scopo di sostituirsi

Dettagli

Rapida Introduzione all uso del Matlab Ottobre 2002

Rapida Introduzione all uso del Matlab Ottobre 2002 Rapida Introduzione all uso del Matlab Ottobre 2002 Tutti i tipi di dato utilizzati dal Matlab sono in forma di array. I vettori sono array monodimensionali, e così possono essere viste le serie temporali,

Dettagli

Ricerca non informata in uno spazio di stati

Ricerca non informata in uno spazio di stati Università di Bergamo Facoltà di Ingegneria Intelligenza Artificiale Paolo Salvaneschi A5_2 V2.4 Ricerca non informata in uno spazio di stati Il contenuto del documento è liberamente utilizzabile dagli

Dettagli

(accuratezza) ovvero (esattezza)

(accuratezza) ovvero (esattezza) Capitolo n 2 2.1 - Misure ed errori In un analisi chimica si misurano dei valori chimico-fisici di svariate grandezze; tuttavia ogni misura comporta sempre una incertezza, dovuta alla presenza non eliminabile

Dettagli

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile

Corso di Informatica Generale (C. L. Economia e Commercio) Ing. Valerio Lacagnina Rappresentazione in virgola mobile Problemi connessi all utilizzo di un numero di bit limitato Abbiamo visto quali sono i vantaggi dell utilizzo della rappresentazione in complemento alla base: corrispondenza biunivoca fra rappresentazione

Dettagli

Le leggi di Mendel esposte in modo ragionato e critico di Luciano Porta

Le leggi di Mendel esposte in modo ragionato e critico di Luciano Porta Le leggi di Mendel esposte in modo ragionato e critico di Luciano Porta Le tre leggi di Mendel, che descrivono la trasmissione dei caratteri ereditari da una generazione all altra, segnano l inizio della

Dettagli

METODI ITERATIVI PER SISTEMI LINEARI

METODI ITERATIVI PER SISTEMI LINEARI METODI ITERATIVI PER SISTEMI LINEARI LUCIA GASTALDI 1. Metodi iterativi classici Sia A R n n una matrice non singolare e sia b R n. Consideriamo il sistema (1) Ax = b. Un metodo iterativo per la soluzione

Dettagli

Data Alignment and (Geo)Referencing (sometimes Registration process)

Data Alignment and (Geo)Referencing (sometimes Registration process) Data Alignment and (Geo)Referencing (sometimes Registration process) All data aquired from a scan position are refered to an intrinsic reference system (even if more than one scan has been performed) Data

Dettagli

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni.

MATEMATICA. { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un numero x ed un numero y che risolvano entrambe le equazioni. MATEMATICA. Sistemi lineari in due equazioni due incognite. Date due equazioni lineari nelle due incognite x, y come ad esempio { 2 x =12 y 3 y +8 x =0, si pone il problema di trovare, se esistono, un

Dettagli

Architettura dei Calcolatori

Architettura dei Calcolatori Architettura dei Calcolatori Sistema di memoria parte prima Ing. dell Automazione A.A. 2011/12 Gabriele Cecchetti Sistema di memoria parte prima Sommario: Banco di registri Generalità sulla memoria Tecnologie

Dettagli

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice

+ / operatori di confronto (espressioni logiche/predicati) / + 5 3 9 = > < Pseudo codice. Pseudo codice Pseudo codice Pseudo codice Paolo Bison Fondamenti di Informatica A.A. 2006/07 Università di Padova linguaggio testuale mix di linguaggio naturale ed elementi linguistici con sintassi ben definita e semantica

Dettagli

I file di dati. Unità didattica D1 1

I file di dati. Unità didattica D1 1 I file di dati Unità didattica D1 1 1) I file sequenziali Utili per la memorizzazione di informazioni testuali Si tratta di strutture organizzate per righe e non per record Non sono adatte per grandi quantità

Dettagli

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE

QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE QUARTA E QUINTA ISTITUTO TECNICO INDUSTRIALE - Matematica - Griglie di valutazione Materia: Matematica Obiettivi disciplinari Gli obiettivi indicati si riferiscono all intero percorso della classe quarta

Dettagli

Codifica dei numeri negativi

Codifica dei numeri negativi E. Calabrese: Fondamenti di Informatica Rappresentazione numerica-1 Rappresentazione in complemento a 2 Codifica dei numeri negativi Per rappresentare numeri interi negativi si usa la cosiddetta rappresentazione

Dettagli

Introduzione alla Teoria degli Errori

Introduzione alla Teoria degli Errori Introduzione alla Teoria degli Errori 1 Gli errori di misura sono inevitabili Una misura non ha significato se non viene accompagnata da una ragionevole stima dell errore ( Una scienza si dice esatta non

Dettagli

Flusso a costo minimo e simplesso su reti

Flusso a costo minimo e simplesso su reti Flusso a costo minimo e simplesso su reti La particolare struttura di alcuni problemi di PL può essere talvolta utilizzata per la progettazione di tecniche risolutive molto più efficienti dell algoritmo

Dettagli

Gli algoritmi. Gli algoritmi. Analisi e programmazione

Gli algoritmi. Gli algoritmi. Analisi e programmazione Gli algoritmi Analisi e programmazione Gli algoritmi Proprietà ed esempi Costanti e variabili, assegnazione, istruzioni, proposizioni e predicati Vettori e matrici I diagrammi a blocchi Analisi strutturata

Dettagli

FORM FINDIG E OTTIMIZZAZIONE DEL BUCKLING DI GRID SHELLS CON L UTILIZZO DI ALGORITMI GENETICI

FORM FINDIG E OTTIMIZZAZIONE DEL BUCKLING DI GRID SHELLS CON L UTILIZZO DI ALGORITMI GENETICI FORM FINDIG E OTTIMIZZAZIONE DEL BUCKLING DI GRID SHELLS CON L UTILIZZO DI ALGORITMI GENETICI GRID SHELL /// 01 Una grid shell (gitterschale in tedesco) è una struttura di barre, curva nello spazio. Le

Dettagli

Da una a più variabili: derivate

Da una a più variabili: derivate Da una a più variabili: derivate ( ) 5 gennaio 2011 Scopo di questo articolo è di evidenziare le analogie e le differenze, relativamente al calcolo differenziale, fra le funzioni di una variabile reale

Dettagli

Rappresentazione dei numeri in un calcolatore

Rappresentazione dei numeri in un calcolatore Corso di Calcolatori Elettronici I A.A. 2010-2011 Rappresentazione dei numeri in un calcolatore Lezione 2 Università degli Studi di Napoli Federico II Facoltà di Ingegneria Rappresentazione dei numeri

Dettagli

Esercizi Capitolo 5 - Alberi

Esercizi Capitolo 5 - Alberi Esercizi Capitolo 5 - Alberi Alberto Montresor 19 Agosto, 2014 Alcuni degli esercizi che seguono sono associati alle rispettive soluzioni. Se il vostro lettore PDF lo consente, è possibile saltare alle

Dettagli

Lab. 1 - Introduzione a Matlab

Lab. 1 - Introduzione a Matlab Lab. 1 - Introduzione a Matlab Alcune informazioni su Matlab Matlab è uno strumento per il calcolo scientifico utilizzabile a più livelli, dalla calcolatrice tascabile, alla simulazione ed analisi di sistemi

Dettagli

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI

INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI INTRODUZIONE AGLI ALGORITMI Prima di riuscire a scrivere un programma, abbiamo bisogno di conoscere un metodo risolutivo, cioè un metodo che a partire dai dati di ingresso fornisce i risultati attesi.

Dettagli

Funzioni di più variabili. Ottimizzazione libera e vincolata

Funzioni di più variabili. Ottimizzazione libera e vincolata libera e vincolata Generalità. Limiti e continuità per funzioni di 2 o Piano tangente. Derivate successive Formula di Taylor libera vincolata Lo ordinario è in corrispondenza biunivoca con i vettori di

Dettagli

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997

RAPPRESENTAZIONE BINARIA DEI NUMERI. Andrea Bobbio Anno Accademico 1996-1997 1 RAPPRESENTAZIONE BINARIA DEI NUMERI Andrea Bobbio Anno Accademico 1996-1997 Numeri Binari 2 Sistemi di Numerazione Il valore di un numero può essere espresso con diverse rappresentazioni. non posizionali:

Dettagli

Cristian Secchi Pag. 1

Cristian Secchi Pag. 1 CONTROLLI DIGITALI Laurea Magistrale in Ingegneria Meccatronica SISTEMI A TEMPO DISCRETO Ing. Tel. 0522 522235 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi Richiami di Controlli

Dettagli

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello

Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08. Alberto Perotti, Roberto Garello Corso di Laurea a Distanza in Ingegneria Elettrica Corso di Comunicazioni Elettriche Processi casuali A.A. 2007-08 Alberto Perotti, Roberto Garello DELEN-DAUIN Processi casuali Sono modelli probabilistici

Dettagli

Cosa succede in un laboratorio di genetica?

Cosa succede in un laboratorio di genetica? 12 laboratori potrebbero utilizzare campioni anonimi di DNA per lo sviluppo di nuovi test, o condividerli con altri in quanto parte dei programmi di Controllo di Qualità, a meno che si chieda specificatamente

Dettagli

Accuratezza di uno strumento

Accuratezza di uno strumento Accuratezza di uno strumento Come abbiamo già accennato la volta scora, il risultato della misurazione di una grandezza fisica, qualsiasi sia lo strumento utilizzato, non è mai un valore numerico X univocamente

Dettagli

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee

Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Algoritmo euclideo, massimo comun divisore ed equazioni diofantee Se a e b sono numeri interi, si dice che a divide b, in simboli: a b, se e solo se esiste c Z tale che b = ac. Si può subito notare che:

Dettagli

Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale.

Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale. Modal 2 Modulo Analisi modale Modulo per l Analisi della dinamica strutturale. L analisi modale è un approccio molto efficace al comportamento dinamico delle strutture, alla verifica di modelli di calcolo

Dettagli

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net

Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Lezione 1 Introduzione agli algoritmi e alla programmazione in VisualBasic.Net Definizione di utente e di programmatore L utente è qualsiasi persona che usa il computer anche se non è in grado di programmarlo

Dettagli

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06

Analisi Mat. 1 - Ing. Inform. - Soluzioni del compito del 23-3-06 Analisi Mat. - Ing. Inform. - Soluzioni del compito del 3-3-6 Sia p il polinomio di quarto grado definito da pz = z 4. Sia S il settore circolare formato dai numeri complessi che hanno modulo minore o

Dettagli

Dimensione di uno Spazio vettoriale

Dimensione di uno Spazio vettoriale Capitolo 4 Dimensione di uno Spazio vettoriale 4.1 Introduzione Dedichiamo questo capitolo ad un concetto fondamentale in algebra lineare: la dimensione di uno spazio vettoriale. Daremo una definizione

Dettagli

Consideriamo due polinomi

Consideriamo due polinomi Capitolo 3 Il luogo delle radici Consideriamo due polinomi N(z) = (z z 1 )(z z 2 )... (z z m ) D(z) = (z p 1 )(z p 2 )... (z p n ) della variabile complessa z con m < n. Nelle problematiche connesse al

Dettagli

Minimizzazione di Reti Logiche Combinatorie Multi-livello

Minimizzazione di Reti Logiche Combinatorie Multi-livello Minimizzazione di Reti Logiche Combinatorie Multi-livello Maurizio Palesi Maurizio Palesi 1 Introduzione Obiettivo della sintesi logica: ottimizzazione delle cifre di merito area e prestazioni Prestazioni:

Dettagli

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table

Universita' di Ferrara Dipartimento di Matematica e Informatica. Algoritmi e Strutture Dati. Rappresentazione concreta di insiemi e Hash table Universita' di Ferrara Dipartimento di Matematica e Informatica Algoritmi e Strutture Dati Rappresentazione concreta di insiemi e Hash table Copyright 2006-2015 by Claudio Salati. Lez. 9a 1 Rappresentazione

Dettagli

STRUTTURE (O COSTRUTTI) DI CONTROLLO

STRUTTURE (O COSTRUTTI) DI CONTROLLO Le strutture di controllo Le strutture di controllo STRUTTURE (O COSTRUTTI) DI CONTROLLO determinano l ordine con cui devono essere eseguite le istruzioni sono indipendenti dalla natura delle istruzioni

Dettagli

Così come le macchine meccaniche trasformano

Così come le macchine meccaniche trasformano DENTRO LA SCATOLA Rubrica a cura di Fabio A. Schreiber Il Consiglio Scientifico della rivista ha pensato di attuare un iniziativa culturalmente utile presentando in ogni numero di Mondo Digitale un argomento

Dettagli

Lezione 12: La visione robotica

Lezione 12: La visione robotica Robotica Robot Industriali e di Servizio Lezione 12: La visione robotica L'acquisizione dell'immagine L acquisizione dell immagine Sensori a tubo elettronico (Image-Orthicon, Plumbicon, Vidicon, ecc.)

Dettagli

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione.

Quando A e B coincidono una coppia ordinata é determinata anche dalla loro posizione. Grafi ed Alberi Pag. /26 Grafi ed Alberi In questo capitolo richiameremo i principali concetti di due ADT che ricorreranno puntualmente nel corso della nostra trattazione: i grafi e gli alberi. Naturale

Dettagli

Materiale di approfondimento: numeri interi relativi in complemento a uno

Materiale di approfondimento: numeri interi relativi in complemento a uno Materiale di approfondimento: numeri interi relativi in complemento a uno Federico Cerutti AA. 2011/2012 Modulo di Elementi di Informatica e Programmazione http://apollo.ing.unibs.it/fip/ 2011 Federico

Dettagli

Elementi di informatica

Elementi di informatica Elementi di informatica Sistemi di numerazione posizionali Rappresentazione dei numeri Rappresentazione dei numeri nei calcolatori rappresentazioni finalizzate ad algoritmi efficienti per le operazioni

Dettagli

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem)

Raccolta di Esercizi di Matematica. Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Raccolta di Esercizi di Matematica Capitolo 8 : Modalità CAS (Computer Algebra S ystem) Contenuti: 8-1. L ordine Algebrico delle Operazioni 8-2. Problemi sulle Percentuali 8-3. Le Forme Standard e Point-Slope

Dettagli

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno

GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno GeoGebra 4.2 Introduzione all utilizzo della Vista CAS per il secondo biennio e il quinto anno La Vista CAS L ambiente di lavoro Le celle Assegnazione di una variabile o di una funzione / visualizzazione

Dettagli

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2)

Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Fondamenti dell Informatica Ricorsione e Iterazione Simona Ronchi Della Rocca (dal testo: Kfoury, Moll and Arbib, cap.5.2) Definiamo innanzitutto una relazione d ordine tra le funzioni. Siano φ e ψ funzioni

Dettagli

Integrazione numerica

Integrazione numerica Integrazione numerica Lucia Gastaldi Dipartimento di Matematica, http://dm.ing.unibs.it/gastaldi/ Lezione 6-20-26 ottobre 2009 Indice 1 Formule di quadratura semplici e composite Formule di quadratura

Dettagli

Esercizi per il corso di Algoritmi e Strutture Dati

Esercizi per il corso di Algoritmi e Strutture Dati 1 Esercizi per il corso di Algoritmi e Strutture Dati Esercizi sulla Tecnica Divide et Impera N.B. Tutti gli algoritmi vanno scritti in pseudocodice (non in Java, né in C++, etc. ). Di tutti gli algoritmi

Dettagli

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f.

La funzione è continua nel suo dominio perchè y = f(x) è composizione di funzioni continue. Il punto x = 0 è un punto isolato per D f. FUNZIONI CONTINUE - ALCUNI ESERCIZI SVOLTI SIMONE ALGHISI 1. Continuità di una funzione Dati un insieme D R, una funzione f : D R e x 0 R, si è detto che f è continua in x 0 se sono soddisfatte le seguenti

Dettagli

Confronto tra software illuminotecnici

Confronto tra software illuminotecnici Agenzia Nazionale per le Nuove Tecnologie, l Energia e lo Sviluppo Economico Sostenibile RICERCA DI SISTEMA ELETTRICO Confronto tra software illuminotecnici F. Bisegna, F. Gugliermetti, M. Barbalace, L.

Dettagli

Algebra Relazionale. algebra relazionale

Algebra Relazionale. algebra relazionale Algebra Relazionale algebra relazionale Linguaggi di Interrogazione linguaggi formali Algebra relazionale Calcolo relazionale Programmazione logica linguaggi programmativi SQL: Structured Query Language

Dettagli

Esposizioni in condizioni complesse. Gian Marco Contessa grazie a Rosaria Falsaperla gianmarco.contessa@ispesl.it

Esposizioni in condizioni complesse. Gian Marco Contessa grazie a Rosaria Falsaperla gianmarco.contessa@ispesl.it Esposizioni in condizioni complesse Gian Marco Contessa grazie a Rosaria Falsaperla gianmarco.contessa@ispesl.it Valutazione dell esposizione a CEM La valutazione pratica dell esposizione ai campi elettrici

Dettagli

Esercizi svolti sui numeri complessi

Esercizi svolti sui numeri complessi Francesco Daddi - ottobre 009 Esercizio 1 Risolvere l equazione z 1 + i = 1. Soluzione. Moltiplichiamo entrambi i membri per 1 + i in definitiva la soluzione è z 1 + i 1 + i = 1 1 + i z = 1 1 i. : z =

Dettagli

C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese

C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese C è solo un acca tra pi e phi ing. Rosario Turco, prof. Maria Colonnese Introduzione Nell articolo vengono mostrate vari possibili legami tra la costante di Archimede (pi greco) e la sezione aurea (phi).

Dettagli

Parte 3. Rango e teorema di Rouché-Capelli

Parte 3. Rango e teorema di Rouché-Capelli Parte 3. Rango e teorema di Rouché-Capelli A. Savo Appunti del Corso di Geometria 203-4 Indice delle sezioni Rango di una matrice, 2 Teorema degli orlati, 3 3 Calcolo con l algoritmo di Gauss, 6 4 Matrici

Dettagli

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito.

INTEGRALI DEFINITI. Tale superficie viene detta trapezoide e la misura della sua area si ottiene utilizzando il calcolo di un integrale definito. INTEGRALI DEFINITI Sia nel campo scientifico che in quello tecnico si presentano spesso situazioni per affrontare le quali è necessario ricorrere al calcolo dell integrale definito. Vi sono infatti svariati

Dettagli

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t.

if t>=0 x=1; else x=0; end fornisce, nella variabile x, il valore della funzione gradino a tempi continui, calcolata in t. Il programma MATLAB In queste pagine si introduce in maniera molto breve il programma di simulazione MAT- LAB (una abbreviazione di MATrix LABoratory). Introduzione MATLAB è un programma interattivo di

Dettagli

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati

Tipologie di pianificatori. Pianificazione. Partial Order Planning. E compiti diversi. Pianificazione gerarchica. Approcci integrati Tipologie di pianificatori Pianificazione Intelligenza Artificiale e Agenti II modulo Pianificazione a ordinamento parziale (POP) (HTN) pianificazione logica (SatPlan) Pianificazione come ricerca su grafi

Dettagli

Informatica Applicata

Informatica Applicata Ing. Irina Trubitsyna Concetti Introduttivi Programma del corso Obiettivi: Il corso di illustra i principi fondamentali della programmazione con riferimento al linguaggio C. In particolare privilegia gli

Dettagli

Manipolazione di testi: espressioni regolari

Manipolazione di testi: espressioni regolari Manipolazione di testi: espressioni regolari Un meccanismo per specificare un pattern, che, di fatto, è la rappresentazione sintetica di un insieme (eventualmente infinito) di stringhe: il pattern viene

Dettagli

IV-1 Funzioni reali di più variabili

IV-1 Funzioni reali di più variabili IV- FUNZIONI REALI DI PIÙ VARIABILI INSIEMI IN R N IV- Funzioni reali di più variabili Indice Insiemi in R n. Simmetrie degli insiemi............................................ 4 2 Funzioni da R n a R

Dettagli

Informazioni su questo libro

Informazioni su questo libro Informazioni su questo libro Si tratta della copia digitale di un libro che per generazioni è stato conservata negli scaffali di una biblioteca prima di essere digitalizzato da Google nell ambito del progetto

Dettagli

Matlab: Funzioni. Informatica B. Daniele Loiacono

Matlab: Funzioni. Informatica B. Daniele Loiacono Matlab: Funzioni Informatica B Funzioni A cosa servono le funzioni? 3 x = input('inserisci x: '); fx=1 for i=1:x fx = fx*x if (fx>220) y = input('inserisci y: '); fy=1 for i=1:y fy = fy*y A cosa servono

Dettagli

LIVELLO STRATEGICO E TATTICO

LIVELLO STRATEGICO E TATTICO Corso di Laurea Triennale in INGEGNERIA GESTIONALE Anno Accademico 2012/13 Prof. Davide GIGLIO 1 ESEMPI DI PROBLEMI DECISIONALI LIVELLO STRATEGICO Capacity growth planning LIVELLO TATTICO Aggregate planning

Dettagli

Richiami: funzione di trasferimento e risposta al gradino

Richiami: funzione di trasferimento e risposta al gradino Richiami: funzione di trasferimento e risposta al gradino 1 Funzione di trasferimento La funzione di trasferimento di un sistema lineare è il rapporto di due polinomi della variabile complessa s. Essa

Dettagli

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori"

Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori Esercitazioni su rappresentazione dei numeri e aritmetica dei calcolatori" slide a cura di Salvatore Orlando & Marta Simeoni " Architettura degli Elaboratori 1 Interi unsigned in base 2" Si utilizza un

Dettagli

Funzioni. Corso di Fondamenti di Informatica

Funzioni. Corso di Fondamenti di Informatica Dipartimento di Informatica e Sistemistica Antonio Ruberti Sapienza Università di Roma Funzioni Corso di Fondamenti di Informatica Laurea in Ingegneria Informatica (Canale di Ingegneria delle Reti e dei

Dettagli

Studente: SANTORO MC. Matricola : 528

Studente: SANTORO MC. Matricola : 528 CORSO di LAUREA in INFORMATICA Corso di CALCOLO NUMERICO a.a. 2004-05 Studente: SANTORO MC. Matricola : 528 PROGETTO PER L ESAME 1. Sviluppare una versione dell algoritmo di Gauss per sistemi con matrice

Dettagli

Le funzioni. Funzioni. Funzioni. Funzioni. Funzioni. Funzioni

Le funzioni. Funzioni. Funzioni. Funzioni. Funzioni. Funzioni Funzioni Le funzioni Con il termine funzione si intende, in generale, un operatore che, applicato a un insieme di operandi, consente di calcolare un risultato, come avviene anche per una funzione matematica

Dettagli

Esercizi su lineare indipendenza e generatori

Esercizi su lineare indipendenza e generatori Esercizi su lineare indipendenza e generatori Per tutto il seguito, se non specificato esplicitamente K indicherà un campo e V uno spazio vettoriale su K Cose da ricordare Definizione Dei vettori v,,v

Dettagli

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale

Il simbolo. è è = = = In simboli: Sia un numero naturale diverso da zero, il radicale. Il radicale. esiste. esiste 0 Il radicale Radicali 1. Radice n-esima Terminologia Il simbolo è detto radicale. Il numero è detto radicando. Il numero è detto indice del radicale. Il numero è detto coefficiente del radicale. Definizione Sia un

Dettagli

Indice generale. Modulo 1 Algebra 2

Indice generale. Modulo 1 Algebra 2 Indice generale Modulo 1 Algebra 2 Capitolo 1 Scomposizione in fattori. Equazioni di grado superiore al primo 1.1 La scomposizione in fattori 2 1.2 Raccoglimento a fattor comune 3 1.3 Raccoglimenti successivi

Dettagli

Analisi dei requisiti e casi d uso

Analisi dei requisiti e casi d uso Analisi dei requisiti e casi d uso Indice 1 Introduzione 2 1.1 Terminologia........................... 2 2 Modello della Web Application 5 3 Struttura della web Application 6 4 Casi di utilizzo della Web

Dettagli

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1

Le funzioni continue. A. Pisani Liceo Classico Dante Alighieri A.S. 2002-03. A. Pisani, appunti di Matematica 1 Le funzioni continue A. Pisani Liceo Classico Dante Alighieri A.S. -3 A. Pisani, appunti di Matematica 1 Nota bene Questi appunti sono da intendere come guida allo studio e come riassunto di quanto illustrato

Dettagli

Il giardino nella macchina

Il giardino nella macchina Idee per una rilettura Il giardino nella macchina La nuova scienza della vita artificiale Claus Emmeche Bollati Boringhieri, 1996 È possibile la vita artificiale? In che modo gli strumenti offerti dalla

Dettagli

A i è un aperto in E. i=1

A i è un aperto in E. i=1 Proposizione 1. A è aperto se e solo se A c è chiuso. Dimostrazione. = : se x o A c, allora x o A = A o e quindi esiste r > 0 tale che B(x o, r) A; allora x o non può essere di accumulazione per A c. Dunque

Dettagli

Appunti di Logica Matematica

Appunti di Logica Matematica Appunti di Logica Matematica Francesco Bottacin 1 Logica Proposizionale Una proposizione è un affermazione che esprime un valore di verità, cioè una affermazione che è VERA oppure FALSA. Ad esempio: 5

Dettagli

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale

Prof. Caterina Rizzi Dipartimento di Ingegneria Industriale RUOLO DELLA MODELLAZIONE GEOMETRICA E LIVELLI DI MODELLAZIONE PARTE 2 Prof. Caterina Rizzi... IN QUESTA LEZIONE Modelli 2D/3D Modelli 3D/3D Dimensione delle primitive di modellazione Dimensione dell oggettoy

Dettagli

RETTE, PIANI, SFERE, CIRCONFERENZE

RETTE, PIANI, SFERE, CIRCONFERENZE RETTE, PIANI, SFERE, CIRCONFERENZE 1. Esercizi Esercizio 1. Dati i punti A(1, 0, 1) e B(, 1, 1) trovare (1) la loro distanza; () il punto medio del segmento AB; (3) la retta AB sia in forma parametrica,

Dettagli

Indicizzazione terza parte e modello booleano

Indicizzazione terza parte e modello booleano Reperimento dell informazione (IR) - aa 2014-2015 Indicizzazione terza parte e modello booleano Gruppo di ricerca su Sistemi di Gestione delle Informazioni (IMS) Dipartimento di Ingegneria dell Informazione

Dettagli

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE)

MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) MODULO 3 LEZIONE 23 FORMAZIONE DEL MOVIMENTO (SECONDA PARTE) Contenuti Michelene Chi Livello ottimale di sviluppo L. S. Vygotskij Jerome Bruner Human Information Processing Teorie della Mente Contrapposizione

Dettagli

Esempi di algoritmi. Lezione III

Esempi di algoritmi. Lezione III Esempi di algoritmi Lezione III Scopo della lezione Implementare da zero algoritmi di media complessità. Verificare la correttezza di un algoritmo eseguendolo a mano. Imparare a valutare le prestazioni

Dettagli

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE

TELECOMUNICAZIONI (TLC) Generico sistema di telecomunicazione (TLC) Trasduttore. Attuatore CENNI DI TEORIA (MATEMATICA) DELL INFORMAZIONE TELECOMUNICAZIONI (TLC) Tele (lontano) Comunicare (inviare informazioni) Comunicare a distanza Generico sistema di telecomunicazione (TLC) Segnale non elettrico Segnale elettrico TRASMESSO s x (t) Sorgente

Dettagli

Capitolo 9: PROPAGAZIONE DEGLI ERRORI

Capitolo 9: PROPAGAZIONE DEGLI ERRORI Capitolo 9: PROPAGAZIOE DEGLI ERRORI 9.1 Propagazione degli errori massimi ella maggior parte dei casi le grandezze fisiche vengono misurate per via indiretta. Il valore della grandezza viene cioè dedotto

Dettagli

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Alessandro Rezzani Abstract L articolo descrive una delle tecniche di riduzione della dimensionalità del data set: il metodo dell analisi delle componenti principali (Principal

Dettagli

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo).

. analisi teorica (studio di esistenza, unicità della soluzione, sensitività rispetto ai dati, regolarità, comportamento qualitativo). 1 Modelli matematici Un modello è un insieme di equazioni e altre relazioni matematiche che rappresentano fenomeni fisici, spiegando ipotesi basate sull osservazione della realtà. In generale un modello

Dettagli

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE

EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE EQUAZIONI E DISEQUAZIONI POLINOMIALI E COLLEGAMENTI CON LA GEOMETRIA ELEMENTARE 1. EQUAZIONI Definizione: un equazione è un uguaglianza tra due espressioni letterali (cioè in cui compaiono numeri, lettere

Dettagli

Fisica delle Particelle: esperimenti. Fabio Bossi (LNF-INFN) fabio.bossi@lnf.infn.it

Fisica delle Particelle: esperimenti. Fabio Bossi (LNF-INFN) fabio.bossi@lnf.infn.it Fisica delle Particelle: esperimenti Fabio Bossi (LNF-INFN) fabio.bossi@lnf.infn.it Il processo scientifico di conoscenza Esperimento Osservazione quantitativa di fenomeni riguardanti alcune particelle

Dettagli

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti

Middleware Laboratory. Dai sistemi concorrenti ai sistemi distribuiti Dai sistemi concorrenti ai sistemi distribuiti Problemi nei sistemi concorrenti e distribuiti I sistemi concorrenti e distribuiti hanno in comune l ovvio problema di coordinare le varie attività dei differenti

Dettagli

Ambienti di sviluppo integrato

Ambienti di sviluppo integrato Ambienti di sviluppo integrato Un ambiente di sviluppo integrato (IDE - Integrated Development Environment) è un ambiente software che assiste i programmatori nello sviluppo di programmi Esso è normalmente

Dettagli

PROGRAMMAZIONE LINEARE IN DUE VARIABILI

PROGRAMMAZIONE LINEARE IN DUE VARIABILI 1 PROGRAMMAZIONE LINEARE IN DUE VARIABILI La ricerca operativa nata durante la seconda guerra mondiale ed utilizzata in ambito militare, oggi viene applicata all industria, nel settore pubblico e nell

Dettagli

Programmazione Non Lineare Ottimizzazione vincolata

Programmazione Non Lineare Ottimizzazione vincolata DINFO-Università di Palermo Programmazione Non Lineare Ottimizzazione vincolata D. Bauso, R. Pesenti Dipartimento di Ingegneria Informatica Università di Palermo DINFO-Università di Palermo 1 Sommario

Dettagli

LA FUNZIONE ESPONENZIALE E IL LOGARITMO

LA FUNZIONE ESPONENZIALE E IL LOGARITMO LA FUNZIONE ESPONENZIALE E IL LOGARITMO APPUNTI PER IL CORSO DI ANALISI MATEMATICA I G. MAUCERI Indice 1. Introduzione 1 2. La funzione esponenziale 2 3. Il numero e di Nepero 9 4. L irrazionalità di e

Dettagli

Problema n. 1: CURVA NORD

Problema n. 1: CURVA NORD Problema n. 1: CURVA NORD Sei il responsabile della gestione del settore Curva Nord dell impianto sportivo della tua città e devi organizzare tutti i servizi relativi all ingresso e all uscita degli spettatori,

Dettagli

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2

Se x* e punto di minimo (locale) per la funzione nell insieme Ω, Ω = { x / g i (x) 0 i I, h j (x)= 0 j J } lo e anche per F(x) = f o (x) + c x x 2 NLP -OPT 1 CONDIZION DI OTTIMO [ Come ricavare le condizioni di ottimo. ] Si suppone x* sia punto di ottimo (minimo) per il problema min f o (x) con vincoli g i (x) 0 i I h j (x) = 0 j J la condizione

Dettagli