Rappresentazione in s dei sistemi lineari continui.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Rappresentazione in s dei sistemi lineari continui."

Transcript

1 Capitolo. INTRODUZIONE. Rappresentazione in s dei sistemi lineari continui. Applicando la trasformazione di Laplace alle funzioni di stato ed uscita di un sistema lineare: L e quindi: ẋ(t) Ax(t)+Bu(t) y(t) Cx(t)+Du(t) sx(s) x 0 Ax(s)+Bu(s) y(s) Cx(s)+Du(s) x(s) (si A) x 0 +(si A) Bu(s) y(s) C(sI A) x 0 +[C(sI A) B + D]u(s) Quando u(t) 0, t 0, si ha l evoluzione libera: da cui si ricava che x(s) (si A) x 0 y(s) C(sI A) x 0 e At L [(si A) ] Quando x 0 0,sihal evoluzione forzata: x(s) (si A) Bu(s) y(s) [C(sI A) B + D]u(s) x(t) e At x 0 y(t) Ce At x 0 L inversa di una matrice M quadrata di ordine n non singolare, èdefinita come segue: M agg M det M La matrice aggiunta, agg M, èlatrasposta (coniugata trasposta) della matrice dei complementi algebrici M i,j della matrice M. Il complemento algebrico M i,j è ( ) i+j volte il determinante della matrice (n ) (n ) che si ottiene eliminando la i esima riga e la j esima colonna di M.

2 Capitolo. INTRODUZIONE.2 Matrice di trasferimento. La matrice razionale propria di dimensioni (p m): y(s) H(s)u(s) H(s) C(sI A) B + D. H(s) C agg(si A) B + D. det(si A) Le funzioni razionali nella matrice H(s) D sono strettamente proprie in quanto det(si A) è un polinomio di grado n, C agg(si A) B è una matrice polinomiale i cui elementi hanno gradi uguali a n ( o minori, nel caso vi siano cancellazioni di fattori comuni nel numeratore e nel denominatore delle frazioni polinomiali). Esempio. Consideriamo un sistema in forma diagonale: ẋ ẋ 2 ẋ 3 a, a 2, a 3,3 x x 2 x 3 + b, b,2 b 2, b 2,2 b 3, b 3,2 u u 2 y y 2 c, c,2 c,3 c 2, c 2,2 c 2,3 x x 2 x 3

3 Capitolo. INTRODUZIONE.3 La funzione di transizione e At si calcola nel modo seguente: L [ e At] (si A) agg(si A) det(si A) (s a 2,2 )(s a 3,3 ) (s a, )(s a 3,3 ) (s a, )(s a 2,2 ) (s a, )(s a 2,2 ) (s a, ) (s a 2,2 ) (s a 3,3 ) La matrice di trasferimento ha la forma seguente: H(s) c, c,2 c,3 c 2, c 2,2 c 2,3 c, c,2 c,3 c 2, c 2,2 c 2,3 (s a, ) (s a 2,2 ) b, (s a, ) b 2, (s a 2,2 ) b 3, b,2 (s a, ) b 2,2 (s a 2,2 ) b 3,2 b, b,2 b 2, b 2,2 b 3, b 3,2 c, b, (s a, ) + c,2b 2, (s a 2,2 ) + c,3b 3, ; c, b,2 (s a, ) + c,2b 2,2 (s a 2,2 ) + c,3b 3,2 c 2, b, (s a, ) + c 2,2b 2, (s a 2,2 ) + c 2,3b 3, ; c 2, b,2 (s a, ) + c 2,2b 2,2 (s a 2,2 ) + c 2,3b 3,2

4 Capitolo. INTRODUZIONE.4 Esempio. Calcolare l esponenziale di matrice della matrice A e At dove A Il polinomio caratteristico della matrice A è: det(si A) det Si ottiene quindi che (si A) s 2 s +3 s +3 2 s (s + )(s +2) s 2 +3s +2(s + )(s +2) s +3 (s + )(s +2) 2 (s + )(s +2) Antitrasformando i singoli termini di questa matrice si ottiene L L L s +3 (s + )(s +2) (s + )(s +2) s (s + )(s +2) per cui, sostituendo, si ha che e At L [ (si A) ] L 2 (s +) (s +2) L (s +) (s +2) L (s +) + 2 (s +2) 2e t e 2t 2e t +2e 2t (s + )(s +2) s (s + )(s +2) 2e t e 2t e t e 2t e t +2e 2t e t e 2t e t +2e 2t cioè si ottiene esattamente la stessa espressione ottenuta utilizzando la forma canonica di Jordan della matrice A.

5 Capitolo. INTRODUZIONE.5 Rappresentazione in z dei sistemi lineari discreti. Applicando la trasformazione Z alle funzioni di stato ed uscita di un sistema lineare: Z e quindi: x(k +)Ax(k)+Bu(k) y(k) Cx(k)+Du(k) z(x(z) x 0)Ax(z)+Bu(z) y(z) Cx(z)+Du(z) x(z) (zi A) zx 0 +(zi A) Bu(z) y(z) C(zI A) zx 0 +[C(zI A) B + D]u(z) Quando u(k) 0, t 0, si ha l evoluzione libera: x(z) (zi A) zx 0 y(z) C(zI A) zx 0 x(k) A k x 0 y(k) CA k x 0 Quando x 0 0,sihal evoluzione forzata: x(z) (zi A) Bu(z). y(z) [C(zI A) B + D]u(z). Vale la relazione: da cui si ricava che: z(zi A) Z[A k ] A k Z [z(zi A) ]

6 Capitolo. INTRODUZIONE.6 Matrice di trasferimento. La matrice razionale propria di dimensioni (p m): y(z) u(z) H(z) C(zI A) B + D. H(z) C agg(zi A) B + D. det(zi A) Le funzioni razionali nella matrice H(z) D sono strettamente proprie in quanto det(zi A) è un polinomio di grado n, C agg(zi A) B è una matrice polinomiale i cui elementi hanno gradi uguali a n ( o minori, nel caso vi siano cancellazioni di fattori comuni nel numeratore e nel denominatore delle frazioni polinomiali).

7 Capitolo. INTRODUZIONE.7 Esempio. Calcolare l evoluzione libera del seguente sistema discreto autonomo x(k +) }{{} A x(k) a partire dalla condizione iniziale x(0) x 0. Il polinomio caratteristico e gli autovalori della matrice A sono: p(λ) λ 2 +3λ +2, λ e λ 2 2. La soluzione del problema posto è formalmente nota: x(k) A k x 0 Vengono ora mostrati tre modi diversi di calcolare la matrice A k. Modo I. Uso della forma canonica di Jordan. Si calcolano gli autovettori v e v 2 corrispondenti agli autovalori λ e λ 2 e si opera una trasformazione x Tx nello spazio degli stati T [ v v 2 ] 2 in modo da diagonalizzare la matrice A A TDT 2 La matrice A k si calcola come segue A k, T (TDT ) k TD k T }{{} D ( )k 0 0 ( 2) k 2( ) k ( 2) k 2( ) k +2( 2) k ( ) k ( 2) k ( ) k +2( 2) k

8 Capitolo. INTRODUZIONE.8 Modo II. Uso delle Z-trasformate. Questo procedimento si basa sulla relazione A k Z [ (zi A) z ] Procedendo nei calcoli si ha che A k Z z +3 z 2 z (z + )(z +2) Z Antitrasformando, si ottiene il risultato A k 2( ) k ( 2) k 2( ) k +2( 2) k z +3 (z + )(z +2) 2 (z + )(z +2) ( ) k ( 2) k ( ) k +2( 2) k (z + )(z +2) z (z + )(z +2) z Modo III. Uso del polinomio minimo annullante. Il polinomio minimo della matrice A coincide con il polinomio caratteristico. Ne segue che matrice la A k deve potersi esprimere nel seguente modo A k i0 γ i A i γ 0 I 2 + γ A Iparametriγ 0 e γ si determinano risolvendo il sistema λk λ k 2 λ λ 2 γ 0 γ γ 0 γ Sostituendo nella precedente relazione si ha che λ 2 λ λ 2 λ A k γ 0 I 2 + γ A λ 2λ k λ λ k 2 I 2 + λk 2 λ k A λ 2 λ λ 2 λ Posto λ e λ 2 2 si ottiene A k [2( ) k ( 2) k ] 0 0 2( ) k ( 2) k 2( ) k +2( 2) k +[( ) k ( 2) k ] ( ) k ( 2) k ( ) k +2( 2) k λk λ k 2

Rappresentazione in s dei sistemi lineari continui.

Rappresentazione in s dei sistemi lineari continui. Capitolo. INTRODUZIONE. Rappresentazione in s dei sistemi lineari continui. Applicando la trasformazione di Laplace alle funzioni di stato ed uscita di un sistema lineare: L e quindi: ẋ(t) = Ax(t) + Bu(t)

Dettagli

Lezione VIII: Funzioni di Trasferimento

Lezione VIII: Funzioni di Trasferimento ANALISI E SIMULAZIONE DI SISTEMI DINAMICI Lezione VIII: Funzioni di Trasferimento Sistemi LTI - TC (TD): soluzione nel dominio della frequenza e del tempo Evoluzione libera ed evoluzione forzata Modi naturali

Dettagli

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI

TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI TEORIA DEI SISTEMI Laurea Specialistica in Ingegneria Meccatronica Laurea Specialistica in Ingegneria Gestionale Indirizzo Gestione Industriale TEORIA DEI SISTEMI ANALISI DEI SISTEMI LTI Ing. Cristian

Dettagli

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0

MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO. Sistema lineare stazionario a tempo continuo in equazioni di stato. = Cx(t) + Du(t) x(0) = x 0 MODELLI A TEMPO CONTINUO IN EQUAZIONI DI STATO Sistema lineare stazionario a tempo continuo in equazioni di stato ẋ(t) y(t) = Ax(t) + Bu(t) = Cx(t) + Du(t) x() = x Risposta completa (risposta libera e

Dettagli

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande

Esame scritto di Teoria dei Sistemi - Modena - 22 Giugno Domande Esame scritto di Teoria dei Sistemi - Modena - Giugno 5 - Domande Per ciascuno dei seguenti test a risposta multipla segnare con una crocetta le affermazioni che si ritengono giuste. Alcuni test sono seguiti

Dettagli

Sintesi del regolatore

Sintesi del regolatore Capitolo 1. INTRODUZIONE 5.1 Sintesi del regolatore Si definisce regolatore il sistema composto dalla serie dello stimatore dello stato e dall elemento statico di retroazione K: v(k) u(k) x(k +1) z 1 I

Dettagli

I prova in itinere di Fondamenti di Automatica A.A Novembre 2011 Prof. SILVIA STRADA Tempo a disposizione: 1 h. 45 m.

I prova in itinere di Fondamenti di Automatica A.A Novembre 2011 Prof. SILVIA STRADA Tempo a disposizione: 1 h. 45 m. I prova in itinere di Fondamenti di Automatica A.A. - 8 Novembre Prof. SILVIA STRADA Tempo a disposizione: h. 45 m. SOLUZIONE N.B. Svolgere i vari punti nello spazio che segue ogni esercizio. ESERCIZIO

Dettagli

Definizione di Sistema Dinamico

Definizione di Sistema Dinamico Capitolo 1. INTRODUZIONE 1.1 Definizione di Sistema Dinamico Esistono vari tipi di sistemi dinamici: tempo continui, tempo discreti, lineari, non lineari, a variabili concentrate, a variabili distribuite,

Dettagli

Esercizi di teoria dei sistemi

Esercizi di teoria dei sistemi Esercizi di teoria dei sistemi Controlli Automatici LS (Prof. C. Melchiorri) Esercizio Dato il sistema lineare tempo continuo: ẋ(t) 2 y(t) x(t) x(t) + u(t) a) Determinare l evoluzione libera dello stato

Dettagli

Spazio degli stati. G(s) = Y (s) X(s) = b m s m + b m 1 s m b 1 s + b 0

Spazio degli stati. G(s) = Y (s) X(s) = b m s m + b m 1 s m b 1 s + b 0 .. MODELLISTICA - Modellistica dinamica 2. Spazio degli stati I sistemi dinamici lineari vengono tipicamente descritti utilizzando la trasformata di Laplace e il concetto di funzione di trasferimento.

Dettagli

Soluzione per sistemi dinamici LTI TC Esercizi risolti

Soluzione per sistemi dinamici LTI TC Esercizi risolti Eserciio per sistemi dinamici LTI TC Esercii risolti Dato il seguente sistema dinamico LTI a tempo continuo: [ [ 5 ẋ(t) x(t) + u(t) 4 8 y(t) [ x(t) + 8u(t) determinare l espressione analitica del dello

Dettagli

Osservabilità e ricostruibilità

Osservabilità e ricostruibilità Capitolo. TEORIA DEI SISTEMI 5. Osservabilità e ricostruibilità Osservabilità: il problema dell osservabilità consiste nel determinare lo stato iniziale x(t ) mediante osservazioni degli ingressi u(t)

Dettagli

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica

CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI Laurea Specialistica in Ingegneria Meccatronica CONTROLLO DI SISTEMI ROBOTICI ANALISI DEI SISTEMI LTI Ing. Tel. 0522 522235 e-mail: secchi.cristian@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati . Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento ad un esempio: un

Dettagli

Punti di equilibrio: sistemi tempo continui

Punti di equilibrio: sistemi tempo continui Capitolo 3 ANALISI DELLA STABILITÀ 31 Punti di equilibrio: sistemi tempo continui Si consideri il seguente sistema tempo continuo: ẋ(t) A x(t) + B u(t) y(t) C x(t) + D u(t) I punti di equilibrio x 0 del

Dettagli

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es.

Equilibrio di sistemi dinamici Esercizi proposti. 1 Esercizio (derivato dall es. #8 del 18/09/2002) 2 Esercizio (proposto il 10/02/2003, es. Equilibrio di sistemi dinamici Esercizio (derivato dall es. #8 del 8/9/22) Dato il sistema dinamico, non lineare, a tempo continuo, descritto dalle seguenti equazioni: ẋ (t) = x (t).5x 2 2 (t)+4u(t) ẋ

Dettagli

Sistemi dinamici lineari

Sistemi dinamici lineari Capitolo 1. INTRODUZIONE 1.19 Sistemi dinamici lineari La funzione di stato che descrive un sistema dinamico lineare, è rappresentabile in forma matriciale nel seguente modo: Per sistemi continui: Per

Dettagli

Traiettorie nello spazio degli stati

Traiettorie nello spazio degli stati Capitolo. INTRODUZIONE. Traiettorie nello spazio degli stati Per mostrare i tipici andamenti delle traiettorie nello spazio degli stati in funzione della posizione dei poli del sistema si farà riferimento

Dettagli

Scomposizione canonica di Kalman

Scomposizione canonica di Kalman Capitolo. TEORIA DEI SISTEMI 5. Scomposizione canonica di Kalman Si consideri il sistema S = (A, B, C). Sia X + il sottospazio raggiungibile ed E il sottospazio non osservabile. Sia una matrice di base

Dettagli

Forma canonica di Jordan

Forma canonica di Jordan Capitolo INTRODUZIONE Forma canonica di Jordan Siano λ i, per i =,, h, gli autovalori distinti della matrice A e siano r i i corrispondenti gradi di molteplicità all interno del polinomio caratteristico:

Dettagli

Matrici diagonalizzabili

Matrici diagonalizzabili Capitolo INTRODUZIONE 2 Matrici diagonalizzabili Se una matrice A ha n autovalori λ i reali distinti, allora ha anche n autovettori v i reali linearimente indipendenti tra di loro: Av i = λ i v i, i {,

Dettagli

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento

Esercitazione 05: Trasformata di Laplace e funzione di trasferimento Esercitazione 05: Trasformata di Laplace e funzione di trasferimento 28 marzo 208 (3h) Fondamenti di Automatica Prof. M. Farina Responsabile delle esercitazioni: Enrico Terzi Queste dispense sono state

Dettagli

4 I modelli ingresso/uscita dei sistemi lineari

4 I modelli ingresso/uscita dei sistemi lineari 4 I modelli ingresso/uscita dei sistemi lineari In questo capitolo verranno descritte le proprietà dei modelli di ingresso/uscita dei sistemi lineari stazionari ed i loro legami con i modelli ingresso/stato/uscita

Dettagli

CONTROLLO DI ROBOT INDUSTRIALI Laurea Magistrale in Ingegneria Meccatronica

CONTROLLO DI ROBOT INDUSTRIALI Laurea Magistrale in Ingegneria Meccatronica CONTROLLO DI ROBOT INDUSTRIALI Laurea Magistrale in Ingegneria Meccatronica CONTROLLO DI ROBOT INDUSTRIALI ANALISI DEI SISTEMI LTI Ing. Tel. 5 535 e-mail: cristian.secchi@unimore.it http://www.dismi.unimo.it/members/csecchi

Dettagli

Proprietà strutturali e leggi di controllo

Proprietà strutturali e leggi di controllo Proprietà strutturali e leggi di controllo sservabilità e rilevabilità Definizioni ed esempi introduttivi Analisi dell osservabilità di sistemi dinamici LTI Esempi di studio dell osservabilità sservabilità

Dettagli

Raggiungibilità e controllabilità

Raggiungibilità e controllabilità Capitolo. TEORIA DEI SISTEMI 4. Raggiungibilità e controllabilità Raggiungibilità. Il problema della raggiungibilità consiste nel determinare l insieme di stati raggiungibili a partire da un dato stato

Dettagli

Definizione di Sistema Dinamico

Definizione di Sistema Dinamico Capitolo 1. INTRODUZIONE 1.1 Definizione di Sistema Dinamico Esistono vari tipi di sistemi dinamici: tempo continui, tempo discreti, lineari, non lineari, a variabili concentrate, a variabili distribuite,

Dettagli

Esercizi. { ẋ1 = 2x 1 (1 + x 2 2 ) ẋ 2 = x 2 (1 x 2 1 ) x(k +1) = x(k)+ 1 u(k) dove x(k) =

Esercizi. { ẋ1 = 2x 1 (1 + x 2 2 ) ẋ 2 = x 2 (1 x 2 1 ) x(k +1) = x(k)+ 1 u(k) dove x(k) = Capitolo. INTRODUZIONE 7. Esercizi. Si consideri il seguente sistema non lineare tempo-continuo: { ẋ x x x + u ẋ x x + u.a) Posto u u, trovare i punti di equilibrio del sistema e studiarne la stabilità

Dettagli

6. Trasformate e Funzioni di Trasferimento

6. Trasformate e Funzioni di Trasferimento 6. Trasformate e Funzioni di Trasferimento 6.3 Richiami sulla Trasformata di Laplace Definizione La trasformata di Laplace di f(t) è la funzione di variabile complessa s C, (s = σ + jω), F (s) = e st f(t)dt

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Proprietà strutturali e leggi di controllo aggiungibilità e controllabilità etroazione statica dallo stato Osservabilità e rilevabilità Stima dello stato e regolatore dinamico

Dettagli

Analisi nel dominio del tempo delle rappresentazioni in variabili di stato

Analisi nel dominio del tempo delle rappresentazioni in variabili di stato 4 Analisi nel dominio del tempo delle rappresentazioni in variabili di stato Versione del 21 marzo 2019 In questo capitolo 1 si affronta lo studio, nel dominio del tempo, dei modelli di sistemi lineari,

Dettagli

Equazioni di Stato: soluzione tramite la matrice esponenziale

Equazioni di Stato: soluzione tramite la matrice esponenziale Equazioni di Stato: soluzione tramite la matrice esponenziale A. Laudani November 15, 016 Un po di Sistemi Consideriamo il problema di Cauchy legato allo stato della nostra rete elettrica {Ẋ(t) = A X(t)

Dettagli

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno Voto Cognome/Nome & No. Matricola FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A. 5 6) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno PROVA DEL 9 DICEMBRE 6

Dettagli

Capitolo 6. Sistemi lineari di equazioni differenziali. 1

Capitolo 6. Sistemi lineari di equazioni differenziali. 1 Capitolo 6 Sistemi lineari di equazioni differenziali L integrale generale In questo capitolo utilizzeremo la forma canonica di Jordan per studiare alcuni tipi di equazioni differenziali Un sistema lineare

Dettagli

Esercizio di modellistica a tempo discreto

Esercizio di modellistica a tempo discreto Esercizio di modellistica a tempo discreto Si consideri un corso di laurea triennale, e si indichi con k =,, 2,... l anno accademico dall attivazione del corso. Si indichi con x i (k) il numero di studenti

Dettagli

Dispensa n.1. Sul legame tra autovalori della matrice A e poli della funzione di trasferimento

Dispensa n.1. Sul legame tra autovalori della matrice A e poli della funzione di trasferimento Dispensa n.1 Sul legame tra autovalori della matrice A e poli della funzione di trasferimento E dato un sistema lineare, avente un solo ingresso, una sola uscita e uno spazio di stato a dimensione n. Tale

Dettagli

Controlli Automatici e Teoria dei Sistemi I Sistemi Lineari Stazionari Retroazione, Modelli di Ingresso Uscita, Realizzazione

Controlli Automatici e Teoria dei Sistemi I Sistemi Lineari Stazionari Retroazione, Modelli di Ingresso Uscita, Realizzazione Controlli Automatici e Teoria dei Sistemi I Sistemi Lineari Stazionari Retroazione, Modelli di Ingresso Uscita, Realizzazione Prof. Roberto Guidorzi Dipartimento di Elettronica, Informatica e Sistemistica

Dettagli

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile;

s + 6 s 3, b) i valori di K per i quali il sistema a ciclo chiuso risulta asintoticamente stabile; 1 Esercizi svolti Esercizio 1. Con riferimento al sistema di figura, calcolare: ut) + K s s + 6 s 3 yt) a) la funzione di trasferimento a ciclo chiuso tra ut) e yt); b) i valori di K per i quali il sistema

Dettagli

La teoria della Realizzazione nei sistemi dinamici

La teoria della Realizzazione nei sistemi dinamici Università degli Studi di Padova DIPARTIMENTO DI INGEGNERIA Corso di Laurea Triennale in Ingegneria Elettronica Tesi di laurea triennale La teoria della Realizzazione nei sistemi dinamici Realization theory

Dettagli

Definizione di Sistema Dinamico

Definizione di Sistema Dinamico Capitolo 1. INTRODUZIONE 1.1 Definizione di Sistema Dinamico Esistono vari tipi di sistemi dinamici: tempo continui, tempo discreti, lineari, non lineari, a variabili concentrate, a variabili distribuite,

Dettagli

MATRICI. Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: a 2 m. a n m) i j R, 1 i n, 1 j m.

MATRICI. Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: a 2 m. a n m) i j R, 1 i n, 1 j m. MATRICI Matrici Una matrice A con n-righe e m-colonne, ad elementi reali, è una tabella con la seguente forma: 11 a 12 a 1 3 a 1m A=(a a 21 a 2 3 a 2m con a a n1 a n2 a n 3 a nm i j R, 1 i n, 1 j m. per

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo 5. OSSERVABILITÀ E RICOSTRUIBILITÀ 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le

Dettagli

w 1 (z) = z2 z + 1 z 3 z 2 + z 1, w 2(z) = z2

w 1 (z) = z2 z + 1 z 3 z 2 + z 1, w 2(z) = z2 Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 3///7 Esercizio Si considerino le funzioni di trasferimento (a tempo discreto) w (z) = z z + z 3 z + z, w (z) = z z 3 (.) (i)

Dettagli

Rappresentazioni e parametri della funzione di trasferimento

Rappresentazioni e parametri della funzione di trasferimento FUNZIONE DI TRASFERIMENTO Definizione e proprietà Rappresentazioni e parametri della funzione di trasferimento Risposta allo scalino Illustrazioni dal Testo di Riferimento per gentile concessione degli

Dettagli

COMPITO A: soluzione

COMPITO A: soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA (PRIMA PARTE) A.A. 2005/2006 9 novembre 2005 nome e cognome: numero di matricola: Note: Scrivere le risposte negli spazi appositi. Non consegnare fogli aggiuntivi.

Dettagli

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u

k 2 m 1 u 2 Figura 1 z 1 β m 1 ż 1 + β m 1 ż m 2 z 2 β m 2 ẋ = A x + B u y = C x + D u Esercizio Si consideri il sistema meccanico riportato in Figura, dove m e m sono le masse dei carrelli, z e z sono le rispettive posizioni, k e k sono i coefficienti elastici delle molle, e β è un coefficiente

Dettagli

Domande. x(t) =ψ(t, t 0,x(t 0 ),u( ))

Domande. x(t) =ψ(t, t 0,x(t 0 ),u( )) Capitolo. INTRODUZIONE 7. Domande. Quali sono le due funzioni che definiscono un sistema dinamico? La funzione di transizione dello stato: x(t) ψ(t, t,x(t ),u( )) e la funzione di uscita: y(t) η(t, x(t),u(t))

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 20 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 2 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema lineare con ingresso u ed uscita y descritto dalle seguenti

Dettagli

COMPITO DI SEGNALI E SISTEMI 2 febbraio 2017

COMPITO DI SEGNALI E SISTEMI 2 febbraio 2017 COMPITO DI SEGNALI E SISTEMI 2 febbraio 2017 NOTA: Tutte le risposte vanno adeguatamente giustificate. Risposte errate e/o con motivazioni errate avranno valore negativo nella valutazione Teoria 1. Si

Dettagli

Esercizi di Fondamenti di Sistemi Dinamici

Esercizi di Fondamenti di Sistemi Dinamici Giuseppe Fusco Esercizi di Fondamenti di Sistemi Dinamici ARACNE Copyright MMVIII ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133 a/b 00173 Roma (06 93781065

Dettagli

Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia

Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia Elementi di Analisi dei Sistemi Soluzione esercizi prima prova intermedia Gianluca Mereu, Alessandro Giua {gianluca.mereu,giua}@diee.unica.it 07/04/207 Soluzione Esercizio. Si risponda in modo chiaro ed

Dettagli

COMPITO DI ANALISI DEI SISTEMI 4 Aprile A.A. 2007/2008

COMPITO DI ANALISI DEI SISTEMI 4 Aprile A.A. 2007/2008 COMPITO DI ANALISI DEI SISTEMI 4 Aprile 28 - AA 27/28 Esercizio Si consideri il sistema a tempo continuo non lineare descritto dalla seguente equazione di stato: ẋ (t) = f (x (t),x 2 (t),u(t)) = ax (t)

Dettagli

Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio Esercizio 1

Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio Esercizio 1 Soluzione della seconda prova intermedia di Algebra lineare del 17 maggio 2012 Esercizio 1 (a) Si calcola il polinomio caratteristico λ 2 1 p(λ) = det k 1 2k λ k 1 2 2 λ usando lo sviluppo di Laplace secondo

Dettagli

Modelli nello spazio degli stati

Modelli nello spazio degli stati Modelli nello spazio degli stati Modelli nello spazio degli stati Stato: informazione che riassume, in ogni istante, l effetto della storia passata del sistema sul suo comportamento futuro. x(t) stato

Dettagli

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni

ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ESERCIZIO 1 Si consideri il sistema con ingresso u(t) ed uscita y(t) descritto dalle seguenti equazioni ẋ 1 (t) x 1 (t) + 3x 2 (t) + u(t) ẋ 2 (t) 2u(t) y(t) x 1 (t) + x 2 (t) 1. Si classifichi il sistema

Dettagli

Proprietà strutturali e leggi di controllo

Proprietà strutturali e leggi di controllo Proprietà strutturali e leggi di controllo Retroazione statica dallo stato La legge di controllo Esempi di calcolo di leggi di controllo Il problema della regolazione 2 Retroazione statica dallo stato

Dettagli

Stimatori dello stato

Stimatori dello stato Capitolo. TEORIA DEI SISTEMI 5. Stimatori dello stato La retroazione statica dello stato u(k) = K x(k) richiede la conoscenza di tutte le componenti del vettore di stato. Tipicamente le uniche variabili

Dettagli

COMPITO DI ANALISI DEI SISTEMI 21 Settembre 2005

COMPITO DI ANALISI DEI SISTEMI 21 Settembre 2005 COMPITO DI ANALISI DEI SISTEMI 21 Settembre 2005 Esercizio 1. Si consideri il sistema a tempo continuo descritto dalle seguenti equazioni: ẋ(t) = Fx(t) + [ g 1 g 2 ] u(t) = 0 1 0 2 1 0 x(t) + 0 0 1 1 u(t)

Dettagli

Sistemi LSTD: rappresentazione esplicita

Sistemi LSTD: rappresentazione esplicita Trasformata Zeta Outline Sistemi LSTD: rappresentazione esplicita x(k+1) = Ax(k)+Bu(k), x R n, u R m, k Z y(k) = Cx(k)+Du(k), y R p x R n : vettore delle variabili di stato; u R m : vettore dei segnali

Dettagli

Elementi di Analisi dei Sistemi Soluzione esercizi seconda prova intermedia

Elementi di Analisi dei Sistemi Soluzione esercizi seconda prova intermedia Elementi di Analisi dei Sistemi Soluzione esercizi seconda prova intermedia Gianluca Mereu, Alessandro Giua {gianluca.mereu,giua}@diee.unica.it 24/05/207 Soluzione Esercizio. Il modello ingresso-uscita

Dettagli

{ 1 per t = 0 u(t) = 0 per t 0. 2) Quali sono la funzione di trasferimento e la dimensione di Σ 2? 2 = (F 2 + g 2 K, g 2, H 2 )?

{ 1 per t = 0 u(t) = 0 per t 0. 2) Quali sono la funzione di trasferimento e la dimensione di Σ 2? 2 = (F 2 + g 2 K, g 2, H 2 )? Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del 4/2/26 Esercizio I sistemi discreti con un ingresso e un uscita Σ = (F, g, H ) e Σ 2 = (F 2, g 2, H 2 ) sono entrambi raggiungibili

Dettagli

Anno 4 Matrice inversa

Anno 4 Matrice inversa Anno 4 Matrice inversa 1 Introduzione In questa lezione parleremo della matrice inversa di una matrice quadrata: definizione metodo per individuarla Al termine della lezione sarai in grado di: descrivere

Dettagli

Scomposizione in fratti semplici

Scomposizione in fratti semplici 0.0. 2.2 Scomposizione in fratti semplici Evoluzione forzata di un equazione differenziale: la trasformata di Laplace Y(s) del segnale di uscita y(t) è uguale al prodotto della trasformata di Laplace X(s)

Dettagli

3) Stimatore dello stato di ordine ridotto :

3) Stimatore dello stato di ordine ridotto : Capitolo. TEORIA DEI SISTEMI 5. 3) Stimatore dello stato di ordine ridotto : Gli stimatori asintotici dello stato di ordine intero forniscono una informazione ridondante, in quanto non tengono conto che

Dettagli

iii) Si studi la raggiungibilità e l osservabilità dei seguenti sistemi:

iii) Si studi la raggiungibilità e l osservabilità dei seguenti sistemi: Teoria dei Sistemi - 9 cfu - L.M. in Ingegneria dell Automazione Compito del /9/7 Esercizio Sia (F, g, H) un sistema discreto, raggiungibile e osservabile, con un ingresso e un uscita, e sia n(z) R(z)

Dettagli

Soluzione nel dominio del tempo

Soluzione nel dominio del tempo Soluzione nel dominio del tempo Prof. Laura Giarré Laura.Giarre@UNIMORE.IT https://giarre.wordpress.com/ca/ Antitrasformate CA 2017 2018 Prof. Laura Giarré 1 Risposta nel dominio trasformato Ricordo che

Dettagli

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno

FONDAMENTI DI SISTEMI DINAMICI (prof. Vincenzo LIPPIELLO A.A ) Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno Voto Cognome/Nome & No. Matricola FONDAMENTI DI SISTEMI DINAMICI prof. Vincenzo LIPPIELLO A.A. 05 06 Corso di Laurea in Ingegneria Elettronica e delle Telecomunicazioni - II anno PROVA DEL 5 FEBBRAIO 06

Dettagli

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018

Fondamenti di Automatica Prof. Luca Bascetta. Primo prova intermedia 27 Aprile 2018 Fondamenti di Automatica Prof. Luca Bascetta Primo prova intermedia 27 Aprile 28 ESERCIZIO E assegnato il sistema dinamico, a tempo continuo, lineare e invariante con ingresso u(t) e uscita y(t): { ẋ(t)

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Appendice A Richiami di Algebra Lineare In questo capitolo sono presentati alcuni concetti di algebra lineare L algebra lineare è quella branca della matematica che si occupa dello studio di vettori, spazi

Dettagli

Esercitazione Sistemi e Modelli n.6

Esercitazione Sistemi e Modelli n.6 Esercitaione Sistemi e Modelli n.6 Eserciio Si consideri un allevamento di conigli con il numero di maschi uguale al numero delle femmine. Come variabili di stato si consideri il numero di coppie di conigli

Dettagli

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij

il determinante che si ottiene da A, sopprimendo la i - esima riga e la j - esima colonna. Si definisce complemento algebrico dell'elemento a ij Determinanti Sia data la matrice quadrata a... a n a a n =...... a... a n nn Chiamiamo determinante di il numero det o che ad essa viene associato. det = a a... a... a... a n n n... a nn Un generico elemento

Dettagli

Analisi di sistemi lineari e stazionari: la trasformata di Laplace

Analisi di sistemi lineari e stazionari: la trasformata di Laplace Analisi di sistemi lineari e stazionari Analisi di sistemi lineari e stazionari: la trasformata di Laplace I modelli lineari e stazionari presentano proprietà estremamente interessanti e si dispone di

Dettagli

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 27/09/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI

Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 27/09/2016 SOLUZIONE DEGLI ESERCIZI PROPOSTI Corso di Laurea in Scienza dei Materiali PROVA SCRITTA DI GEOMETRIA DEL 7/9/6 SOLUZIONE DEGLI ESERCIZI PROPOSTI Esercizio. Si consideri la quadrica affine C d equazione cartesiana xy + yz z + 4x =. ()

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 10 settembre 2008: testo e soluzione. y = x 2. x 1 = 1 x 2 = 1

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 10 settembre 2008: testo e soluzione. y = x 2. x 1 = 1 x 2 = 1 AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 1 settembre 28: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema non lineare descritto dalle seguenti equazioni: ẋ 1

Dettagli

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente

Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Controlli Automatici (AUT) - 09AKSBL Sistemi dinamici Introduzione Descrizione Soluzione Funzione di trasferimento Stabilità Regime permanente Sistemi dinamici - Introduzione Concetto di sistema. Si parla

Dettagli

RIPASSO DI MATRICI. a 11 a 12 a 1m a 21 a 22 a 2m. a n1 a n2 a nm

RIPASSO DI MATRICI. a 11 a 12 a 1m a 21 a 22 a 2m. a n1 a n2 a nm RICHIAMI DI ALGEBRA LINEARE Appunti di supporto al corso di Fondamenti di Automatica Prof SILVIA STRADA RIPASSO DI MATRICI Definizione Una matrice `e una tabella di numeri o funzioni organizzati in righe

Dettagli

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A

TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - 12 CFU) COMPITO DI TEORIA DEI SISTEMI 20 Giugno A.A TEORIA DEI SISTEMI e IDENTIFICAZIONE DEI MODELLI (IMC - CFU) COMPITO DI TEORIA DEI SISTEMI Giugno - A.A. - Esercizio. Si consideri il sistema a tempo continuo descritto dalle seguenti equazioni: x(t +

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale CONTROLLI AUTOMATICI LS Ingegneria Informatica Analisi modale Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 5 9334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h.

Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 2016 Tempo a disposizione: 1.30 h. Politecnico di Milano Fondamenti di Automatica - Ingegneria Gestionale (H-PO) Prof. Silvia Strada Prima prova in itinere del 25 Novembre 206 Tempo a disposizione:.30 h. Nome e Cognome................................................................................

Dettagli

A =, c d. d = ad cb. c d A =

A =, c d. d = ad cb. c d A = Geometria e Algebra (II), 271112 1 Definizione D ora innanzi, al posto di dire matrice quadrata di tipo n n o matrice quadrata n n diremo matrice quadrata di ordine n o in breve matrice di ordine n Il

Dettagli

Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere

Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere Esercitazione 07: Esercitazione di ripasso per la prima prova in itinere 29 aprile 2016 (2h) Prof. Marcello Farina marcello.farina@polimi.it Fondamenti di Automatica 1 Sistemi a tempo discreto Un azienda

Dettagli

Fondamenti di Automatica

Fondamenti di Automatica Fondamenti di Automatica Stabilità esterna e analisi della risposta Stabilità esterna e risposta a regime Risposte di sistemi del I e II ordine 2 Stabilità esterna e analisi della risposta Stabilità esterna

Dettagli

Raggiungibilità e Controllabilità Esercizi risolti

Raggiungibilità e Controllabilità Esercizi risolti Raggiungibilità e ontrollabilità Esercizi risolti 1 Esercizio Dato il seguente sistema dinamico LTI a tempo discreto descritto dalle matrici A e B: [ [ 1 k k A, B 0 1 + k 1 studiare le proprietà di raggiungibilità

Dettagli

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ giugno Soluzione

PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 2003/ giugno Soluzione PROVA SCRITTA DI FONDAMENTI DI AUTOMATICA A.A. 23/24 giugno 24 Esercizio In riferimento allo schema a blocchi in figura. y r s s s2 y 2 K s dove Domanda.. Determinare una realizzazione in equazioni di

Dettagli

Controlli Automatici I

Controlli Automatici I Ingegneria Elettrica Politecnico di Torino Luca Carlone Controlli Automatici I LEZIONE II Sommario LEZIONE II Trasformata di Laplace Proprietà e trasformate notevoli Funzioni di trasferimento Scomposizione

Dettagli

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.

Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec. Teoria dei Sitemi e del Controllo Compito A del 6 Gennaio Domande ed eercizi Nome: Nr. Mat. Firma: C.L.: Info. Elet. Telec.. Nel cao di un itema lineare, continuo e tempo-variante ẋ = A(t)x(t)+B(t)x(t),

Dettagli

4 Autovettori e autovalori

4 Autovettori e autovalori 4 Autovettori e autovalori 41 Cambiamenti di base Sia V uno spazio vettoriale tale che dim V n Si è visto in sezione 12 che uno spazio vettoriale ammette basi distinte, ma tutte con la medesima cardinalità

Dettagli

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 2006: testo e soluzione

AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 2006: testo e soluzione AUTOMATICA I (Ingegneria Biomedica - Allievi da L a Z) Appello del 4 luglio 26: testo e soluzione Prof. Maria Prandini 1. Si consideri il sistema con ingresso u ed uscita y descritto dalle seguenti equazioni:

Dettagli

4 Analisi nel dominio del tempo delle rappresentazioni in

4 Analisi nel dominio del tempo delle rappresentazioni in Indice del libro Alessandro Giua, Carla Seatzu Analisi dei sistemi dinamici, Springer-Verlag Italia, II edizione, 2009 Pagina web: http://www.diee.unica.it/giua/asd/ Prefazione.....................................................

Dettagli

Elementi di Algebra Lineare. Spazio Vettoriale (lineare)

Elementi di Algebra Lineare. Spazio Vettoriale (lineare) Elementi di Algebra Lineare Spazio Vettoriale (lineare) Uno spazio vettoriale su un corpo F è una quadrupla (X, F, +, ) costituita da: un insieme di elementi X, detti vettori, un corpo F, i cui elementi

Dettagli

Analisi dei Sistemi. Pre-esame 2 Novembre 2002

Analisi dei Sistemi. Pre-esame 2 Novembre 2002 Analisi dei Sistemi Pre-esame 2 Novembre 22 Esercizio Si consideri un sistema descritto dal seguente modello ingresso-uscita dove ϱ e η sono parametri reali costanti (4 punti) Individuare le proprietà

Dettagli

3. Elementi di Algebra Lineare.

3. Elementi di Algebra Lineare. CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari 3. Elementi di Algebra Lineare. 1 Sistemi lineari Sia A IR m n, x IR n di n Ax = b è un vettore di m componenti.

Dettagli

Calcolo del movimento di sistemi dinamici LTI. Soluzione per sistemi dinamici LTI TD

Calcolo del movimento di sistemi dinamici LTI. Soluzione per sistemi dinamici LTI TD Calcolo del movimento di sistemi dinamici LTI Soluzione per sistemi dinamici LTI TD Soluzione per sistemi LTI TD Soluzione nel dominio del tempo Soluzione nel dominio della frequenza Esempio di soluzione

Dettagli

ALGEBRA LINEARE PARTE II

ALGEBRA LINEARE PARTE II DIEM sez. Matematica Finanziaria Marina Resta Università degli studi di Genova Dicembre 005 Indice PREMESSA INVERSA DI UNA MATRICE DETERMINANTE. DETERMINANTE DI MATRICI ELEMENTARI................. MATRICI

Dettagli

1 Addendum su Diagonalizzazione

1 Addendum su Diagonalizzazione Addendum su Diagonalizzazione Vedere le dispense per le definizioni di autovettorre, autovalore e di trasformazione lineare (o matrice) diagonalizzabile. In particolare, si ricorda che una condizione necessaria

Dettagli

Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento

Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento Esercitazione 06: Sistemi interconnessi e funzioni di trasferimento 20 aprile 2016 (3h) Alessandro Vittorio Papadopoulos alessandro.papadopoulos@polimi.it Fondamenti di Automatica Prof. M. Farina 1 Schema

Dettagli

Lezione XXVIII Sistemi vibranti a 2-n gdl. 6LVWHPLDSLJUDGLGLOLEHUWjQRQVPRU]DWL

Lezione XXVIII Sistemi vibranti a 2-n gdl. 6LVWHPLDSLJUDGLGLOLEHUWjQRQVPRU]DWL 6LVWHLDSLJUDGLGLOLEHUWjQRQVRU]DWL er un sistema non smorzato con gradi di libertà, le equazioni che ne governano il moto possono essere sempre scritte nella forma matriciale dove [ 0 ] e [ ] [ 0 ]{&& [()

Dettagli

Definizioni e operazioni fondamentali

Definizioni e operazioni fondamentali MATRICI Definizioni e operazioni fondamentali Autovalori e autovettori Potenza Esponenziale Limiti, derivate e integrali Illustrazioni dal Testo di Riferimento per gentile concessione degli Autori 1 DEFINIZIONI

Dettagli