Anteprima. Operatori nello spazio di Hilbert. C. Operatori compatti

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Anteprima. Operatori nello spazio di Hilbert. C. Operatori compatti"

Transcript

1 Anteprima Operatori nello spazio di Hilbert C. Operatori compatti

2 Prima parte Ideali di Schatten

3 Operatori compatti : proprietà generali. Richiamo : La palla unitaria di H è compatta per la topologia debole. Theorema e definizione : T B(H) è compatto se soddisfa una di queste tante proprietà equivalenti : (i) T è limite uniforme di operatori di rango finito. (ii) T manda le parti limitate di H su delle parti relativamente compatte di H. (iii) T è continuo di H, con la sua topologia debole, in H con la topologia uniforme. K(H) è un ideale bilatero autoaggiunto chiuso di B(H).

4 Diagonalizzazione dei operatori compatti Theorema. Se T è compatto e normale, a) Ogni valore spettrale non nullo è un autovalore, e il corrispondente autospazio è di dimensione finita. b) L insieme degli autovalori non nulli, se infinito, amette 0 come unico punto di accumulazione. c) T è diagonalizzabile in una base orthonormale : Un altro modo di dire : T ξ = n λ n < ε n, ξ > ε n, ε n b.o. T = n λ np n con dim(p n ) < + e λ n 0.

5 Valori singolari : il caso positivo. Se T K(H) + e non di rango finito, i autovalori non nulli, che sono > 0, possono essere ordinati nell ordine decrescente, con ripetizione secondo la moltiplicità Definizione. µ 0 µ 1 µ n con µ n 0. µ n = µ n (T ) è l ennesimo valore singolare di T. Osservare che µ 0 (T ) = T. Osservare che T ξ = n µ n < ε n, ξ > ε n con (ε n ) un sistema ortonormale (una base se T è injettivo).

6 Valori singolari : il caso generale. Definition. Per T K(H), si nota µ n (T ) l ennesimo valore singolare di T. Cioè µ n (T ) = µ n ( T ). Abbiamo ancora µ 0 (T ) = T e T ξ = n µ n(t ) < η n, ξ > ε n con (e n ), (η n ) due sistemi ortonormali. Proprietà (cf. A.C. Ch4. 2) 1. µ n (T ) = inf T (1 p), p proiezione di rango n. 2. µ n (T ) = inf T S, S operatore di rango n. µ n (T 2 ) µ n (T 1 ) T 2 T µ n+m (T 1 + T 2 ) µ n (T 1 ) + µ n (T 2 ). 4. µ n+m (T 1 T 2 ) µ n (T 1 )µ m (T 2 ). 5. µ n (at ) a B(H) µ n (T ) e µ n (Ta) µ n (T ) a B(H).

7 La traccia canonica su K(H) Definizione e prime proprietà 1. Per T B(H) +, la somme n < ε n, T ε n > non dipende delle scelta di une base ortonormale (ε n ). Questa somma è la traccia di T, notata Tr(T ). 2. Se T è compatto, Tr(T ) = n=0 µ n(t ). 3. Per S in B(H), Tr(SS ) = Tr(S S). 4. Per u B(H) unitario, Tr(u Tu) = Tr(T ). 5. Per 0 S T, Tr(S) Tr(T ). 6. Se T non è compatto, Tr(T ) = +.

8 La traccia canonica su K(H) Prova di 1. e 3. Si sceglie S B(H) e (ε n ), (η n ) due b.o. Si fa il conto < ε n,s Sε n >= Sε n 2 = < η m, Se n > 2 n n n m = < η m, Se n > 2 = < S η m, ε n > 2 m n m n = S η m 2 = < η m, SS η m >. m m Applicandolo a S = S = T 1/2 per T 0, si ottiene 1. Poi, si ottiene 3. Per 2., prendere una base di diagonalizzazione di T. Per 6., si nota che, se T non è compatto, allora per qualche δ > 0, χ [δ, ) (T ) è di rango infinito, e dunque Tr(χ [δ, ) (T )) = +. Poi Tr(T ) Tr(χ [δ, ) (T )T ) δtr(χ [δ, ) (T )) = +.

9 L ideale degli operatori dihilbert-schmidt. Definition. Proposizione. L 2 (H) = {S K(H) Tr(S S) < + } = {S K(H) n µ n(s) 2 < + }. 1. L 2 (H) è un ideale auto-aggiunto di B(H). 2. È un spazio di Hilbert per la norma S HS = S L 2 = Tr(S S) 1/2. Prova di 1. Si scrive (T S) (T S) 0, di cui T S + S T S S + T T, poi (S + T ) (S + T ) 2(S S + T T ). L 2 è stabile per la somma, quindi un spazio vettoriale. È autoaggiunto perche Tr(SS ) = Tr(S S). È un ideale a sinistra perche, se a B(H), S a as a 2 S S, Tr(S a as) a 2 Tr(S S), quindi as L 2 (H). Poi (Sa) = a S L 2 Sa L 2.

10 Disuguaglianza di Cauchy-Schwartz. Proposizione. Per S, T L 2 (H), la serie n < ε n, T Sε n > è assolutamente convergente e la sua somma, notata Tr(T S), non dipende della scelta della b.o. (ε n )). Essa soddisfa Tr(T S) Tr(T T ) 1/2 Tr(S S) 1/2 oppure < T, S > L 2 T L 2 S L 2. Prova. n < ε n, T Sε n > n T ε n Sε n ( n T ε n 2) 1/2( n Sε n 2) 1/2. Proposizione : sullo spazio degli operatori H.S. La mappa che, a ζ = j η j ξ j H H associa T ζ L 2 (H) T ζ (ξ) = j < η j, ζ > ξ j si estende in un isomorfismo isometrico di spazi di Hilbert tra H H e L 2 (H).

11 L ideale L 1 (H) degli operatori di classe traccia. lemma 1. Per T K(H), i due sono equivalenti : (i) Tr( T ) < +. (ii) S 1, S 2 L 2 (H), T = S 1 S 2. Prova : Se T = u T e T = S 1 S 2 L 2 (H) 2, allora Tr( T ) = Tr(u S 1 S 2 ) con u S 1, S 2 L 2 (H). Quindi, la serie n < ε n, T ε n > è assolutamente convergente. Conversamente, se Tr( T ) < +, allora T = u T 1/2 T 1/2 con T 1/2, u T 1/2 L 2. Lemma 2. Se Tr( T ) < +, la serie < ε n, T ε n > è ass. cv. la sua somma non dipende della scelta di una base ortonormale (ε n ). Abbiamo Tr(T ) Tr( T ).

12 L ideale L 1 (H) degli operatori di classe traccia. Definizione. L 1 (H) = {T K(H) Tr( T ) < + } = {T K(H) n µ n(t ) < + } = {T = S 1 S 2 S 1, S 2 L 2 (H) }. Proposizione. 1. L 1 (H) è un ideale bilatero autoaggiunto di B(H). 2. È completo per la norma T L1 = Tr( T ). Osservazione : Tr(aT ) = Tr(au T ) = Tr( T 1/2 au T 1/2 ) Tr( T ) 1/2 Tr( T 1/2 u a au T 1/2 ) 1/2 a Tr( T ).

13 L ideale L 1 (H) degli operatori di classe traccia. Abbiamo visto Tr(aT ) a Tr( T ) = a B(H) T L 1. In particolare, Tr(T ) = Tr(u T ) Tr( T ). Poi Ossia Tr( T 1 + T 2 ) = Tr(v (T 1 + T 2 )) Tr(v T 1 ) + Tr(v T 2 ) Tr( T 1 ) + Tr( T 2 ). T 1 + T 2 L 1 T 1 L 1 + T 2 L 1.

14 Ideali di Schatten Definizione. Per p [1, ), si definisce L p (H) = {T K(H) Tr( T p ) < + } Disuguaglianza di Minkowski Proposizione. = {T K(H) n µ n(t ) p < + }. Tr( T 1 + T 2 p ) 1/p Tr( T 1 p ) 1/p + Tr( T 2 p ) 1/p. 1. Per p [1, ), L p (H) è un ideale bilatero chiuso. 2. T L p = Tr( T p ) 1/p è una norma su L p (H), per la quale L p (H) è completo. 3. Per T L p (H), a B(H) abbiamo T L p = T L p at L p a B(H) T L p.

15 Disuguaglianza di Hölder e dualità. p e p sono due esponenti coniugati : 1 p + 1 p = 1, p > 1. Disuguaglianza di Hölder Tr(ST ) S L p T L p, S Lp (H) T L p (H). Dualità. Per p e p come sopra, la mappa L p (H) T ω T L p (H), ω T (S) = Tr(TS) è un isomorfismo isometrico tra spazi di Banach. Più rapidamente Il duale di L p (H) è L p (H). In particolare, per p 1, L p (H) è reflessivo.

16 Il duale di L 1 (H). Proposizione 1. La mappa che, a S L 1 (H) associa ω S K(H) ω S (T ) = Tr(ST ), T K(H) è un isomorfismo isometrico tra L 1 (H) e K(H). Proposizione 2. La mappa che, a a B(H) associa ψ a L 1 (H) ψ a (S) = Tr(aS) è un isomorfismo isometrico tra B(H) e L 1 (H). Più rapidamente : K(H) = L 1 (H) L 1 (H) = B(H).

17 Il duale di L 1 (H). Analogia : l p (N) = l p (N), p 1 ; ma l 0 (N) = l 1 (N), l 1 (N) = l (N). l (N) =? Un mostro? pieno di cose inaspettate, sorprendenti, orribili ou paradossali... Duale di L (X, m)? di B(H)? Mostruoso? Sorprendente?

18 Applicazione alle algebre di von Neumann. B(H) è un duale topologia -debole σ(b(h), L 1 (H)). La palla unitaria di B(H) è -debolmente compatta. Proposizione. Sulla palla unitaria di B(H), la topologia -debole (o topologia σ ) coincida colla topologia delle convergenza simplice debole Proposizione. a i a sse ξ, η H, < η, a i ξ > < η, aξ >. Sia M B(H) una sotto- -algebra σ -chiusa di B(H). Allora M = ( L 1 (H)/M ). Filosofia. Un algebra di von Neumann, quanto spazio di Banach, è un duale. Appare come il duale del suo preduale M = L 1 (H)/M = { forme σ -continue su M }.

Esercizi per il corso di Analisi 6.

Esercizi per il corso di Analisi 6. Esercizi per il corso di Analisi 6. 1. Si verifichi che uno spazio normato (X, ) è uno spazio vettoriale topologico con la topologia indotta dalla norma. Si verifichi poi che la norma è una funzione continua

Dettagli

Appendice B ANALISI FUNZIONALE. 1 Spazi di Banach

Appendice B ANALISI FUNZIONALE. 1 Spazi di Banach Appendice B ANALISI FUNZIONALE In questo capitolo si introducono gli spazi di Banach e di Hilbert, gli operatori lineari e loro spettro. Inoltre si discutono gli operatori compatti su uno spazio di Hilbert.

Dettagli

Capitolo II. Spazi di Hilbert. C. Operatori autoaggiunti positivi e forme quadratiche chiuse

Capitolo II. Spazi di Hilbert. C. Operatori autoaggiunti positivi e forme quadratiche chiuse Capitolo II Spazi di Hilbert C. Operatori autoaggiunti positivi e forme quadratiche chiuse 1. Forme quadratiche densamente definite. Definizione. Una forma quadratica densamente definita su un spazio di

Dettagli

Argomento della lezione N. 2. Argomento della lezione N. 1. Argomento della lezione N. 11. Argomento della lezione N. 12

Argomento della lezione N. 2. Argomento della lezione N. 1. Argomento della lezione N. 11. Argomento della lezione N. 12 C. Presilla Modelli e Metodi Matemacici della Fisica a.a. 2015/2016 1 Argomento della lezione N. 1 Argomento della lezione N. 2 Argomento della lezione N. 11 Argomento della lezione N. 12 Fondamenti assiomatici.

Dettagli

Argomento della lezione N. 1. Argomento della lezione N. 2. Argomento della lezione N. 12. Argomento della lezione N. 11

Argomento della lezione N. 1. Argomento della lezione N. 2. Argomento della lezione N. 12. Argomento della lezione N. 11 C. Presilla Modelli e Metodi Matemacici della Fisica a.a. 2011/2012 2 Argomento della lezione N. 1 Fondamenti assiomatici. L unità immaginaria Argomento della lezione N. 2 Moduli e coniugati. Disuguaglianza

Dettagli

SPAZI COMPATTI. Proposizione 2 Sia (X, d) uno spazio metrico. Se esso è sequenzialmente compatto allora è completo.

SPAZI COMPATTI. Proposizione 2 Sia (X, d) uno spazio metrico. Se esso è sequenzialmente compatto allora è completo. SPAZI COMPATTI D ora in poi tutti gli spazi topologici sono di Hausdorff. Definizione 1 Uno spazio topologico (X, τ) si dice sequenzialmente compatto, o compatto per successioni, se ogni successione di

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2009/2010 Algebra Lineare ed Elementi di Geometria Programma svolto nel Modulo Algebra Lineare 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi

Dettagli

REGISTRO DELLE LEZIONI

REGISTRO DELLE LEZIONI UNIVERSITA DEGLI STUDI DI GENOVA FACOLTA DI SCIENZE MATEMATICHE, FISICHE E NATURALI REGISTRO DELLE LEZIONI del Corso UFFICIALE di GEOMETRIA B tenute dal prof. Domenico AREZZO nell anno accademico 2006/2007

Dettagli

Argomento della lezione N. 11. Argomento della lezione N. 12. Argomento della lezione N. 13. Argomento della lezione N. 14

Argomento della lezione N. 11. Argomento della lezione N. 12. Argomento della lezione N. 13. Argomento della lezione N. 14 C. Presilla Modelli e Metodi Matemacici della Fisica a.a. 2016/2017 1 Argomento della lezione N. 1 Argomento della lezione N. 2 Argomento della lezione N. 11 Argomento della lezione N. 12 Fondamenti assiomatici.

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2012/13 Algebra Lineare ed Elementi di Geometria Programma svolto nel Modulo Algebra Lineare 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi 1.2

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2014/15 Algebra Lineare ed Elementi di Geometria (Programma aggiornato in data 26 novembre 2014) 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi

Dettagli

con l operatore di derivazione densamente definito in L 2 ([0, 1]). Classificazione delle estensioni autoaggiunte (sd). Bibliografia: Pedersen.

con l operatore di derivazione densamente definito in L 2 ([0, 1]). Classificazione delle estensioni autoaggiunte (sd). Bibliografia: Pedersen. 1. DIARIO DELLE LEZIONI 1 marzo: Introduzione mediante esempi agli spazi vettoriali topologici: spazio delle funzioni continue su un aperto di R d, delle funzioni analiiche in un aperto di C, delle funzioni

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A MODELLI e METODI MATEMATICI della FISICA Programma dettagliato del corso - A.A. 2018-19 Lezione 1, 25 febbraio 2019: Organizzazione del corso. Introduzione ai numeri complessi. Rappresentazione cartesiana

Dettagli

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A

MODELLI e METODI MATEMATICI della FISICA. Programma dettagliato del corso - A.A MODELLI e METODI MATEMATICI della FISICA Programma dettagliato del corso - A.A. 2017-18 Lezione 1, 28 febbraio 2018: Introduzione ai numeri complessi. Rappresentazione cartesiana e polare. Radice n-esima

Dettagli

0.1 Coordinate in uno spazio vettoriale

0.1 Coordinate in uno spazio vettoriale 0.. COORDINATE IN UNO SPAZIO VETTORIALE 0. Coordinate in uno spazio vettoriale Sia V uno spazio vettoriale di dimensione finita n costruito sul campo K. D ora in poi, ogni volta che sia fissata una base

Dettagli

PROVE PARZIALI DEL CORSO DI ANALISI FUNZIONALE CORSO DI LAUREA MAGISTRALE IN MATEMATICA APPLICATA A.A

PROVE PARZIALI DEL CORSO DI ANALISI FUNZIONALE CORSO DI LAUREA MAGISTRALE IN MATEMATICA APPLICATA A.A POVE PAZIALI DEL COSO DI ANALISI FUNZIONALE COSO DI LAUEA MAGISTALE IN MATEMATICA APPLICATA A.A. 29-21 SISTO BALDO, GIANDOMENICO OLANDI E ANTONIO MAIGONDA 1. Prima prova parziale Esercizio 1. Sia {E n

Dettagli

UNIVERSITÀ DEGLI STUDI DI BARI

UNIVERSITÀ DEGLI STUDI DI BARI UNIVERSITÀ DEGLI STUDI DI BARI Facoltà di Scienze Matematiche, Fisiche e Naturali Corso di Laurea Triennale in Matematica Tesi di Laurea in Analisi Matematica TEOREMA SPETTRALE PER OPERATORI COMPATTI E

Dettagli

Compattezza in spazi di Banach, in spazi di funzioni e in spazi Lp, debole compattezza e Spazi riflessivi

Compattezza in spazi di Banach, in spazi di funzioni e in spazi Lp, debole compattezza e Spazi riflessivi Compattezza in spazi di Banach, in spazi di funzioni e in spazi Lp, debole compattezza e Spazi riflessivi Lucia Miggiano,Emanuela Miggiano,Davide Cera April 5, 2012 1 Compattezza in Spazi di Banach 1.1

Dettagli

Convergenza per funzioni tra spazi metrici. Funzioni uniformemente continue e Lipschitz continue. Esempi. somma e prodotto, il campo C dei numeri

Convergenza per funzioni tra spazi metrici. Funzioni uniformemente continue e Lipschitz continue. Esempi. somma e prodotto, il campo C dei numeri Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Fondamenti assiomatici del sistema di numeri L unita immaginaria. Convergenza per funzioni

Dettagli

AM5: Tracce delle lezioni- V Settimana

AM5: Tracce delle lezioni- V Settimana AM5: Tracce delle lezioni- V Settimana Sia µ misura su X, p. SPAZI L p L p = L p (X, µ) : = {f : X [, + ] f é misurabile e Siccome t + s p ( ) p s p + t p s, t R, é 2 2 f, g L p f + g L p X f p dµ < }

Dettagli

Spazi di Banach classici

Spazi di Banach classici Spazi di Banach classici 1. Gli spazi L p ([, 1]) Le funzioni misurabili su [, 1] costituiscono uno spazio vettoriale V. Definizione 1.1. Due funzioni f, g V si dicono uguali quasi ovunque se esiste N

Dettagli

Programma del corso di Analisi Funzionale, 2011/12

Programma del corso di Analisi Funzionale, 2011/12 Programma del corso di Analisi Funzionale, 2011/12 Claudia Pinzari Assioma della scelta: Insiemi parzialmente ordinati, principio del buon ordinamento, assioma della scelta di Zermelo, Lemma di Zorn e

Dettagli

RACCOLTA DEGLI ESAMI SCRITTI DI ANALISI FUNZIONALE DAL 2011 AL Corso di Laurea Magistrale in Matematica. Francesca Prinari

RACCOLTA DEGLI ESAMI SCRITTI DI ANALISI FUNZIONALE DAL 2011 AL Corso di Laurea Magistrale in Matematica. Francesca Prinari RACCOLTA DEGLI ESAMI SCRITTI DI ANALISI FUNZIONALE DAL 2011 AL 2018 Corso di Laurea Magistrale in Matematica Francesca Prinari Dipartimento di Matematica Università di Ferrara Date: Aggiornato al 15/02/2018.

Dettagli

Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Maggio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A

Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Maggio 2017 A.A. 2016/2017. Prof. M. Bramanti Tema A Esame di Analisi Funzionale e Trasformate Prima prova in itinere. Maggio 7 A.A. 6/7. Prof. M. Bramanti Tema A Cognome: Nome N matr. o cod. persona: Dom Dom Dom 3 Es Es Es 3 Tot. Punti Domande di teoria

Dettagli

Geometria BAER Canale A-K Esercizi 8

Geometria BAER Canale A-K Esercizi 8 Geometria BAER 6-7 Canale A-K Esercizi 8 Esercizio Si consideri il sottospazio (a) Si trovi una base ortonormale di U (b) Si trovi una base ortonormale di U U = L v =, v, v 3 = (c) Si scriva la matrice

Dettagli

0. Introduzione al linguaggio matematico

0. Introduzione al linguaggio matematico Prof. Lidia Angeleri Università di Verona, 2013/14 Algebra Lineare ed Elementi di Geometria (Programma aggiornato in data 23 gennaio 2014) 0. Introduzione al linguaggio matematico 1. Insiemi 1.1 Esempi

Dettagli

I. CENNI SULL ANALISI FUNZIONALE

I. CENNI SULL ANALISI FUNZIONALE I. CENNI SULL ANALISI FUNZIONALE 0 Introduzione In questo capitolo discutiamo la definizione di un operatore lineare su uno spazio di Banach e di Hilbert e alcune delle sue proprietà. Nell appendice presentiamo

Dettagli

Università degli Studi di Palermo

Università degli Studi di Palermo Università degli Studi di Palermo Facoltà di Scienze MM.FF.NN. CORSO DI LAUREA IN: Laurea Magistrale in MATEMATICA (Classe LM-40) REGISTRO DELLE LEZIONI DI: ANALISI FUNZIONALE (c.i. 01236) IMPARTITE DAL

Dettagli

In questo capitolo si introducono gli spazi di Banach e di Hilbert, gli operatori lineari e loro spettro.

In questo capitolo si introducono gli spazi di Banach e di Hilbert, gli operatori lineari e loro spettro. Capitolo 1 Spazi di Banach e di Hilbert In questo capitolo si introducono gli spazi di Banach e di Hilbert, gli operatori lineari e loro spettro. 1.1 Spazi di Banach Consideriamo noto il concetto di spazio

Dettagli

Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari

Spazi euclidei, endomorfismi simmetrici, forme quadratiche. R. Notari Spazi euclidei, endomorfismi simmetrici, forme quadratiche R. Notari 14 Aprile 2006 1 1. Proprietà del prodotto scalare. Sia V = R n lo spazio vettoriale delle n-uple su R. Il prodotto scalare euclideo

Dettagli

INTRODUZIONE ALLA ANALISI FUNZIONALE. Dispensa del Corso di Metodi Matematici della Fisica

INTRODUZIONE ALLA ANALISI FUNZIONALE. Dispensa del Corso di Metodi Matematici della Fisica INTRODUZIONE ALLA ANALISI FUNZIONALE Dispensa del Corso di Metodi Matematici della Fisica (versione ridotta, 25 febbraio 2011) Prof. Marco Boiti a.a. 2010-2011 2 Indice 1 Spazi Metrici 5 1.1 Insiemi Aperti.

Dettagli

TECNICHE DI REGOLARIZZAZIONE IN ELABORAZIONE

TECNICHE DI REGOLARIZZAZIONE IN ELABORAZIONE TECNICHE DI REGOLARIZZAZIONE IN ELABORAZIONE DI IMMAGINI Ivan Gerace, Francesca Martinelli e Patrizia Pucci Università degli Studi di Perugia Giornate di Algebra Lineare e Applicazioni 2009 Martinelli

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica. Corso di Geometria ed Algebra Docente F. Flamini

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica. Corso di Geometria ed Algebra Docente F. Flamini Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria: Elettronica Corso di Geometria ed Algebra Docente F. Flamini Capitolo IV - 3: Teorema Spettrale degli operatori autoaggiunti e Teorema

Dettagli

Indice 1 Spazi a dimensione finita... 1 1.1 Primi esempi di strutture vettoriali... 1 1.2 Spazi vettoriali (a dimensione finita)...... 3 1.3 Matrici come trasformazioni lineari...... 5 1.4 Cambiamenti

Dettagli

GE210 Geometria e algebra lineare 2 A.A. 2018/2019

GE210 Geometria e algebra lineare 2 A.A. 2018/2019 GE210, I Semestre, Crediti 9 GE210 Geometria e algebra lineare 2 A.A. 2018/2019 Prof. Angelo Felice Lopez 1. Forme bilineari e forme quadratiche Forme bilineari, simmetriche ed antisimmetriche. Esempi:

Dettagli

AM310- IV Settimana 2012

AM310- IV Settimana 2012 AM310- IV Settimana 2012 L 2 e gli spazi di HILBERT f 2 2 := f 2 = < f, f > ove < f, g > := fg dµ, f, g L 2 é un prodotto scalare (ovvero una forma bilineare simmetrica positiva) in L 2. Notiamo che la

Dettagli

GAAL: Capitolo dei prodotti scalari

GAAL: Capitolo dei prodotti scalari GAAL: Capitolo dei prodotti scalari Teorema di Rappresentazione rappresentabile Aggiunto Autoaggiunto Unitariamente diagonalizzabile Teorema spettrale reale Accoppiamento Canonico Forme bilineari Prodotti

Dettagli

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sulla prima metà del corso Marco Bramanti Politecnico di Milano April 20, 2017 Cap. 1. Elementi di analisi funzionale

Dettagli

Spazi di Hilbert. Spazi pre-hilbertiani ([H]-Cap. 1.1) - Esercizi ([E]-Cap. 1.1) NASTASI Antonella

Spazi di Hilbert. Spazi pre-hilbertiani ([H]-Cap. 1.1) - Esercizi ([E]-Cap. 1.1) NASTASI Antonella Spazi di Hilbert Spazi pre-hilbertiani ([H]-Cap. 1.1) - Esercizi ([E]-Cap. 1.1) Def1.1-Def1.2-T1.1-Def1.3-T1.2-T1.3-T1.4-T1.5- Oss1.1-Def1.4-Def1.4-Def1.5- Esempio1.5-T1.6-T1.7-C1.1-C1.2-T1.8-T1.9 Esempio1.1-Esempio1.2-Esempio1.3-Esempio1.4-

Dettagli

Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Introduzione al corso.

Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Introduzione al corso. Argomento della Lezione N. 1 Argomento della Lezione N. 2 Argomento della Lezione N. 11 Argomento della Lezione N. 12 Introduzione al corso. Il campo C dei numeri complessi. Fondamenti assiomatici del

Dettagli

CORSO DI LAUREA IN MATEMATICA ANALISI MATEMATICA 6, A.A PRIMA PARTE DEL CORSO

CORSO DI LAUREA IN MATEMATICA ANALISI MATEMATICA 6, A.A PRIMA PARTE DEL CORSO CORSO DI LAUREA IN MATEMATICA ANALISI MATEMATICA 6, A.A. 2009 2010 PRIMA PARTE DEL CORSO F. ZANOLIN, UNIVERSITÀ DEGLI STUDI DI UDINE, DIPARTIMENTO DI MATEMATICA E INFORMATICA, VIA DELLE SCIENZE 206, 33100

Dettagli

Applicazioni lineari simmetriche e forme quadratiche reali.

Applicazioni lineari simmetriche e forme quadratiche reali. Applicazioni lineari simmetriche e forme quadratiche reali 1 Applicazioni lineari simmetriche Consideriamo lo spazio IR n col prodotto scalare canonico X Y = t XY = x 1 y 1 + + x n y n Definizione Un applicazione

Dettagli

p(ϕ) = a 0 Id + a 1 ϕ + + a n ϕ n,

p(ϕ) = a 0 Id + a 1 ϕ + + a n ϕ n, 1. Autospazi e autospazi generalizzati Sia ϕ: V V un endomorfismo. Allora l assegnazione x ϕ induce un morfismo di anelli ρ: K[x] End K (V ). Più esplicitamente, al polinomio p dato da viene associato

Dettagli

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso

Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso Corso di Metodi Matematici per l Ingegneria A.A. 2017/2018 Domande-tipo di teoria sulla seconda metà del corso Marco Bramanti Politecnico di Milano December 20, 2017 Parte 3. Teoria della misura e dell

Dettagli

Serie e Trasformata di Fourier

Serie e Trasformata di Fourier Serie e Trasformata di Fourier Corso di Analisi Funzionale Prof. Paolo Nistri Cancelli, D Angelo, Giannetti Polinomio di Fourier Si consideri la successione costituita dalle restrizioni delle funzioni

Dettagli

6 Sesta lezione: Compattezza sequenziale nelle topologie deboli. Dualità e convergenze deboli negli spazi L p.

6 Sesta lezione: Compattezza sequenziale nelle topologie deboli. Dualità e convergenze deboli negli spazi L p. 6 Sesta lezione: Compattezza sequenziale nelle topologie deboli. Dualità e convergenze deboli negli spazi L p. Metrizzabilità delle topologie deboli Anche se le topologie deboli non sono mai metrizzabili,

Dettagli

AM5 2008: Tracce delle lezioni- 4

AM5 2008: Tracce delle lezioni- 4 AM5 008: Tracce delle lezioni- 4 L e gli spazi di HILBERT f := f = < f, f > ove < f, g > := fg dµ, f, g L é un prodotto scalare (ovvero una forma bilineare simmetrica positiva) in L. Notiamo che la diseguaglianza

Dettagli

L. Pandolfi Spazi di Hilbert

L. Pandolfi Spazi di Hilbert L. Pandolfi Spazi di Hilbert CAF in Matematica per Le Scienze dell Ingegneria Corso di Elementi di Analisi Reale e Complessa 19 gennaio 2006 Indice 1 Spazi di Hilbert 3 1.1 Prodotto interno e norma........................

Dettagli

Analisi a più variabili: Integrale di Lebesgue

Analisi a più variabili: Integrale di Lebesgue Analisi a più variabili: Integrale di Lebesgue 1 Ripasso delle definizioni di Algebre, σ-algebre, misure additive, misure σ-additive, Proprietà della misura astratta, misura esterna. Definizione (Insieme

Dettagli

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE

DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DIARIO DEL CORSO DI GEOMETRIA E ALGEBRA LINEARE DOCENTI: S. MATTAREI (TITOLARE), G. VIGNA SURIA, D. FRAPPORTI Prima settimana. Lezione di martedí 23 febbraio 2010 Introduzione al corso: applicazioni dell

Dettagli

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile.

SPAZI TOPOLOGICI. La nozione di spazio topologico è più generale di quella di spazio metrizzabile. SPAZI TOPOLOGICI La nozione di spazio topologico è più generale di quella di spazio metrizzabile. Definizione 1 Uno spazio topologico (X, τ) è una coppia costituita da un insieme X e da una famiglia τ

Dettagli

Errata corrige. p. 10 riga 5 del secondo paragrafo: misurare

Errata corrige. p. 10 riga 5 del secondo paragrafo: misurare Errata corrige p. 9 esercizio 5. Modificare testo dell esercizio come segue: Dati una retta r e un punto P, esistono infiniti piani per P paralleli a r: si tratta dei piani che contengono la retta s per

Dettagli

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale

CONTROLLI AUTOMATICI LS Ingegneria Informatica. Analisi modale CONTROLLI AUTOMATICI LS Ingegneria Informatica Analisi modale Prof. Claudio Melchiorri DEIS-Università di Bologna Tel. 5 9334 e-mail: claudio.melchiorri@unibo.it http://www-lar.deis.unibo.it/~cmelchiorri

Dettagli

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sull intero programma

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sull intero programma Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2016/2017 Domande-tipo di teoria sull intero programma Marco Bramanti Politecnico di Milano June 22, 2017 Cap. 1. Elementi di analisi funzionale

Dettagli

Forme di Dirichlet e derivazioni. Esempi di forme di Dirichlet generate da derivazioni.

Forme di Dirichlet e derivazioni. Esempi di forme di Dirichlet generate da derivazioni. Forme di Dirichlet e derivazioni. forme di Dirichlet bimoduli e derivazioni Esempi di forme di Dirichlet generate da derivazioni. Esempio 1. Diversi Laplaciani su una varietà Riemanniana Laplaciano di

Dettagli

Il Teorema Spettrale. 0.1 Applicazioni lineari simmetriche ed hermitiane

Il Teorema Spettrale. 0.1 Applicazioni lineari simmetriche ed hermitiane 0.1. APPLICAZIONI LINEARI SIMMETRICHE ED HERMITIANE 1 Il Teorema Spettrale In questa nota vogliamo esaminare la dimostrazione del Teorema Spettrale e studiare le sue conseguenze per quanto riguarda i prodotti

Dettagli

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente

Soluzione. (a) L insieme F 1 e linearmente indipendente; gli insiemi F 2 ed F 3 sono linearmente 1. Insiemi di generatori, lineare indipendenza, basi, dimensione. Consideriamo nello spazio vettoriale R 3 i seguenti vettori: v 1 = (0, 1, ), v = (1, 1, 1), v 3 = (, 1, 0), v 4 = (3, 3, ). Siano poi F

Dettagli

SOLUZIONI DEL COMPITO DEL 24/02/ l unica radice reale di f (X), l insieme delle radici di f (X) è [E : Q] [F : Q]

SOLUZIONI DEL COMPITO DEL 24/02/ l unica radice reale di f (X), l insieme delle radici di f (X) è [E : Q] [F : Q] SOLUIONI DEL COMPITO DEL 24/02/206 Esercizio Sia E il campo di spezzamento del polinomio X 3 6 X] e sia F = ( i, 3 ( Si calcoli il grado EF : ] del campo composto EF (2 Si esibisca una -base di EF (3 Si

Dettagli

3. Determinare dimensione a basi per l annullatore ker(f) e per il complemento. Esercizio 2. Sia V uno spazio vettoriale reale di dimensione finita d.

3. Determinare dimensione a basi per l annullatore ker(f) e per il complemento. Esercizio 2. Sia V uno spazio vettoriale reale di dimensione finita d. Esercizi --- 5-- Esercizio. Sia f =: L A : R 4 R 4, ove A = 3 e sia B =:.. Dimostrare che B è una base di R 4.. Determinare la matrice di L A nella base B. 3. Determinare dimensione a basi per l annullatore

Dettagli

Algebra Lineare - Autunno 2008

Algebra Lineare - Autunno 2008 Algebra Lineare - Autunno 2008 Kieran O Grady 1 29 Settembre: Vettori geometrici Segmenti orientati ed equipollenza. Vettori geometrici. Somma e prodotto per uno scalare: definizione e proprietà algebriche.

Dettagli

INTRODUZIONE ALLA ANALISI FUNZIONALE. Dispensa del Corso di Metodi Matematici della Fisica

INTRODUZIONE ALLA ANALISI FUNZIONALE. Dispensa del Corso di Metodi Matematici della Fisica INTRODUZIONE ALLA ANALISI FUNZIONALE Dispensa del Corso di Metodi Matematici della Fisica (versione estesa, 25 febbraio 2011) Prof. Marco Boiti a.a. 2010-2011 2 Indice 1 Spazi Metrici 5 1.1 Insiemi Aperti.

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

Diagonalizzabilità di endomorfismi

Diagonalizzabilità di endomorfismi Capitolo 16 Diagonalizzabilità di endomorfismi 16.1 Introduzione Nei capitoli precedenti abbiamo definito gli endomorfismi su uno spazio vettoriale E. Abbiamo visto che, dato un endomorfismo η di E, se

Dettagli

Canale Basile - Programma completo

Canale Basile - Programma completo 24 maggio 2019 Attenzione: il blu e l'asterisco segnalano le dierenze tra il programma completo e quello minimo. Tutti gli argomenti elencati fanno parte del programma completo. Indice Equazioni della

Dettagli

Autovalori e autovettori di una matrice quadrata

Autovalori e autovettori di una matrice quadrata Autovalori e autovettori di una matrice quadrata Data la matrice A M n (K, vogliamo stabilire se esistono valori di λ K tali che il sistema AX = λx ammetta soluzioni non nulle. Questo risulta evidentemente

Dettagli

3. Elementi di Algebra Lineare.

3. Elementi di Algebra Lineare. CALCOLO NUMERICO Francesca Mazzia Dipartimento Interuniversitario di Matematica Università di Bari 3. Elementi di Algebra Lineare. 1 Sistemi lineari Sia A IR m n, x IR n di n Ax = b è un vettore di m componenti.

Dettagli

Operatori Compatti Decomposizione spettrale degli operatori autoaggiunti compatti Autofunzioni e Decomposizione Spettrale

Operatori Compatti Decomposizione spettrale degli operatori autoaggiunti compatti Autofunzioni e Decomposizione Spettrale Operatori Compatti Decomposizione spettrale degli operatori autoaggiunti compatti Autofunzioni e Decomposizione Spettrale Maria Eleuteri Andrea Gullotto Alessia Selvaggini 1 1 Operatori Compatti Decomposizione

Dettagli

Prova scritta di Approfondimenti di Algebra. 10 Gennaio 2008

Prova scritta di Approfondimenti di Algebra. 10 Gennaio 2008 10 Gennaio 2008 1. Nell anello Mat 3 (Q): (a) si determini la forma normale di A = (b) si trovi B tale che rango(b 2 ) < rango(b). 1 1 5 0 1 0 2 2 4 ; 3. Considerando M := Z 24 Z 15 Z 30 come Z-modulo,

Dettagli

Indice analitico. distanza, 2 discreta, 2 disuguaglianza triangolare, 2. simmetria, 2 disuguaglianza di Bessel, 101

Indice analitico. distanza, 2 discreta, 2 disuguaglianza triangolare, 2. simmetria, 2 disuguaglianza di Bessel, 101 Indice analitico condizione di Cauchy, 14 continuità, 13 convergenza di una successione crescente di funzioni semplici verso una funzione sommabile, 127 inl p (E) implica in L q (E) sep>qe m(e) < +, 95

Dettagli

3. Vettori, Spazi Vettoriali e Matrici

3. Vettori, Spazi Vettoriali e Matrici 3. Vettori, Spazi Vettoriali e Matrici Vettori e Spazi Vettoriali Operazioni tra vettori Basi Trasformazioni ed Operatori Operazioni tra Matrici Autovalori ed autovettori Forme quadratiche, quadriche e

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005

COMPLEMENTI DI ANALISI MATEMATICA DI BASE. Prova scritta del 26 gennaio 2005 Prova scritta del 26 gennaio 2005 Esercizio 1. Posto B = x R 2 : x 2 2}, sia f n } una successione di funzioni (misurabili e) integrabili in B tali che f n f q.o. in B e, per ogni n N, f n (x) 2 x 3 per

Dettagli

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica.

(2) Dato il vettore w = (1, 1, 1), calcolare T (w). (3) Determinare la matrice A associata a T rispetto alla base canonica. 1. Applicazioni lineari Esercizio 1.1. Sia T : R 2 R 3 l applicazione lineare definita sulla base canonica di R 2 nel seguente modo: T (e 1 ) = (1, 2, 1), T (e 2 ) = (1, 0, 1). a) Esplicitare T (x, y).

Dettagli

Daniela Lera A.A

Daniela Lera A.A Daniela Lera Università degli Studi di Cagliari Dipartimento di Matematica e Informatica A.A. 2016-2017 Richiami Algebra Lineare Spazio normato Uno spazio lineare X si dice normato se esiste una funzione

Dettagli

Moduli Semisemplici e Teorema di Wedderburn-Artin

Moduli Semisemplici e Teorema di Wedderburn-Artin Moduli Semisemplici e Teorema di Wedderburn-Artin Giulia Corbucci Università di Bologna 15 Luglio 2011 Moduli Sia R un anello unitario. Definizione Un R-modulo sinistro è una coppia (M, µ) dove: µ : R

Dettagli

1 Il polinomio minimo.

1 Il polinomio minimo. Abstract Il polinomio minimo, così come il polinomio caratterisico, è un importante invariante per le matrici quadrate. La forma canonica di Jordan è un approssimazione della diagonalizzazione, e viene

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Richiami di Algebra Lineare Eduardo Rossi Università degli Studi di Pavia Corso di Econometria Marzo 2012 Rossi Algebra Lineare 2012 1 / 59 Vettori Prodotto interno a : (n 1) b : (n 1) a b = a 1 b 1 +

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

Appunti di Analisi Funzionale

Appunti di Analisi Funzionale Appunti di Analisi Funzionale a cura di Stefano Meda Dipartimento di Matematica e Applicazioni Università di Milano-Bicocca c 2006 Stefano Meda ii Chapter 1 Spazi localmente convessi 1.1 Spazi vettoriali

Dettagli

Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì e Metodi Matematici per l ingegneria Ing. Gestionale

Spazi di Funzioni. Docente:Alessandra Cutrì. A. Cutrì e Metodi Matematici per l ingegneria Ing. Gestionale Spazi di Funzioni Docente:Alessandra Cutrì Spazi vettoriali normati Uno spazio Vettoriale V si dice NORMATO se è definita su V una norma, cioè una funzione che verifica: v 0 e v = 0 v = 0 λv = λ v λ R(o

Dettagli

UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI ESERCITAZIONI SEMINARI Anno accademico 2016/17. Corso di laurea specialistica/magistrale...

UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI ESERCITAZIONI SEMINARI Anno accademico 2016/17. Corso di laurea specialistica/magistrale... REGISTRO DELLE LEZIONI ESERCITAZIONI SEMINARI Anno accademico 2016/17 Cognome e Nome BISI FULVIO Qualifica PROFESSORE ASSOCIATO MAT/07 DIPARTIMENTO DI MATEMATICA Insegnamento di GEOMETRIA E ALGEBRA (500473)

Dettagli

Operatori limitati nello spazio di Hilbert: aspetti generali

Operatori limitati nello spazio di Hilbert: aspetti generali Capitolo 2 Operatori limitati nello spazio di Hilbert: aspetti generali Sia H uno spazio di Hilbert. Indichiamo con B(H) l insieme degli operatori lineari limitati su H. Cioè A B(H) se, e soltanto se esiste

Dettagli

APPUNTI PER IL CORSO DI ANALISI FUNZIONALE

APPUNTI PER IL CORSO DI ANALISI FUNZIONALE Gianni A. Pozzi APPUNTI PER IL CORSO DI ANALISI FUNZIONALE Anno Accademico 2007-8 David Hilbert Stefan Banach Versione del 23/8/2007 Indice Capitolo 1. Spazi di Hilbert 1.1 Prodotto scalare. Esempi.....

Dettagli

UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI ESERCITAZIONI SEMINARI Anno accademico 2015/16

UNIVERSITA DEGLI STUDI DI PAVIA REGISTRO. DELLE LEZIONI ESERCITAZIONI SEMINARI Anno accademico 2015/16 REGISTRO DELLE LEZIONI ESERCITAZIONI SEMINARI Anno accademico 2015/16 Cognome e Nome BISI FULVIO Qualifica PROFESSORE ASSOCIATO MAT/07 DIPARTIMENTO DI MATEMATICA Insegnamento di GEOMETRIA E ALGEBRA (500473)

Dettagli

Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G. Parmeggiani - Programma

Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G. Parmeggiani - Programma Facoltà di Scienze Statistiche, Algebra Lineare 1 A, G. Parmeggiani - Programma Il testo di riferimento è: Appunti di Algebra Lineare, Gregorio, Parmeggiani, Salce 06/12/04 Matrici. Esempi. Tipi particolari

Dettagli

Geometria UNO Prodotti hermitiani

Geometria UNO Prodotti hermitiani Geometria UNO Prodotti hermitiani Corso di Laurea in Matematica Anno Accademico 2013/2014 Alberto Albano 2 aprile 2014 Queste note sono un riassunto delle lezioni di.... I fatti principali sono contenuti

Dettagli

Quesiti di Metodi Matematici per l Ingegneria

Quesiti di Metodi Matematici per l Ingegneria Quesiti di Metodi Matematici per l Ingegneria Presentiamo una raccolta di quesiti per la preparazione alla prova orale del modulo di Metodi Matematici per l Ingegneria. Per una buona preparazione é consigliabile

Dettagli

Appendice 1. Spazi vettoriali

Appendice 1. Spazi vettoriali Appendice. Spazi vettoriali Indice Spazi vettoriali 2 2 Dipendenza lineare 2 3 Basi 3 4 Prodotto scalare 3 5 Applicazioni lineari 4 6 Applicazione lineare trasposta 5 7 Tensori 5 8 Decomposizione spettrale

Dettagli

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2018/2019 Domande-tipo di teoria su tutto il programma

Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2018/2019 Domande-tipo di teoria su tutto il programma Corso di Elementi di Analisi Funzionale e Trasformate A.A. 2018/2019 Domande-tipo di teoria su tutto il programma Marco Bramanti Politecnico di Milano June 26, 2019 Cap. 1. Elementi di analisi funzionale

Dettagli

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 24 gennaio 2013 Tema A

Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 24 gennaio 2013 Tema A Università degli Studi di Bergamo Modulo di Geometria e Algebra Lineare (vecchio programma) 24 gennaio 23 Tema A Tempo a disposizione: 2 ore. Calcolatrici, libri e appunti non sono ammessi. Ogni esercizio

Dettagli

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013

ANALISI MATEMATICA 4. Prova scritta del 24 gennaio 2013 Prova scritta del 24 gennaio 2013 Esercizio 1. Sia Ω R 3 un insieme misurabile secondo Lebesgue e di misura finita. Sia {f n } n N una successione di funzioni f n : Ω R misurabili e tali che 1) f n (x)

Dettagli

1 f(x)dx 2f(0). f(x)dx + g(x)f(x),

1 f(x)dx 2f(0). f(x)dx + g(x)f(x), ANALISI III (Corso di Laurea in Matematica, Facoltà di Scienze mm.ff.nn., Università degli Studi di Padova, a.a. 1994/95), FASCICOLO 1: esercizi su argomenti dei capitoli 1,2,3 di H. Brezis, Analisi Funzionale,

Dettagli

Richiami di Algebra Lineare

Richiami di Algebra Lineare Università di Pavia Richiami di Algebra Lineare Eduardo Rossi Vettori a : (n 1) b : (n 1) Prodotto interno a b = a 1 b 1 + a 2 b 2 +... + a n b n Modulo (lunghezza): a = a 2 1 +... + a2 n Vettori ortogonali:

Dettagli

Analisi Stocastica Programma del corso 2008/09

Analisi Stocastica Programma del corso 2008/09 Analisi Stocastica Programma del corso 2008/09 [13/01] Introduzione. 0. Preludio (1 ora) [1] Descrizione del corso: obiettivi, prerequisiti, propedeuticità. Un esempio euristico: lavoro di una forza, valore

Dettagli

Prodotto tensoriale e algebra multilineare

Prodotto tensoriale e algebra multilineare Prodotto tensoriale e algebra multilineare Siano V e W due spazi vettoriali di dimensione finita sul campo K. All interno del corso abbiamo definito il prodotto tensoriale w v di un vettore w W e di una

Dettagli

Lezioni di Analisi Matematica 6 a.a

Lezioni di Analisi Matematica 6 a.a SPAZI DI LEBESGUE Lezioni di Analisi Matematica 6 a.a. 2002-2003 Introduzione In queste pagine troverete una traccia delle lezioni e dei seminari svolti nell ambito del Corso di Analisi Matematica 6. Questi

Dettagli

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati. Corso di laurea: Fisica ed Astronomia Programma di Analisi Matematica 2 a.a. 2017/18 Docente: Fabio Paronetto Gli argomenti denotati con un asterisco tra parentesi (e solo quelli) sono stati dimostrati.

Dettagli

Corso di Laurea in Ingegneria Informatica (270) Metodi Matematici e Probabilistici (9 CFU) Prova intermedia del 25/10/2013.

Corso di Laurea in Ingegneria Informatica (270) Metodi Matematici e Probabilistici (9 CFU) Prova intermedia del 25/10/2013. Prova intermedia del 25/10/2013 Compito A 1 Dimostrare che il determinante di una matrice A M n,n (C) è il prodotto dei suoi autovalori Soluzione Siano λ 1,, λ n gli autovalori e p A (s) = det(sid A) il

Dettagli