Esercitazione n 5. 1 Limiti e continuità di funzioni in più variabili. Esercizio 1: Si verifichi che la funzione f definita per ogni (x, y) R 2 da

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Esercitazione n 5. 1 Limiti e continuità di funzioni in più variabili. Esercizio 1: Si verifichi che la funzione f definita per ogni (x, y) R 2 da"

Transcript

1 Esercitazione n 5 1 Limiti e continuità di funzioni in più variabili Esercizio 1: Si verifici ce la funzione f definita per ogni (, y) R 2 da { 4 y 4 se (, y) (0, 0) f(, y) = 2 +y 2 0 se (, y) = (0, 0) è continua in (0, 0) come funzione di due variabili. Sol.: Osserviamo ce per (, y) (0, 0) si a e ce 4 y y 2 = 2 y 2 2 y y 2 0. (,y) 0 Esercizio 2: Si consideri la funzione f definita per ogni (, y) R 2 da { 4 se (, y) (0, 0) f(, y) = 2 +y 2 0 se (, y) = (0, 0) Si verifici la continuità di f in (0, 0) come funzione di due variabili. Sol.: Basta verificare ce esiste e ce tale ite vale 0. Infatti (,y) (0,0) y y 2 2 ( 2 + y 2 ) 2 + y 2 = y 2 = (, y) 2 Dunque se (, y) 0 ance la funzione converge a 0 come voluto. Esercizio 3: Si consideri la funzione f definita per ogni (, y) R 2 da { y se (, y) (0, 0) f(, y) = 2 +y 2 0 se (, y) = (0, 0) 1

2 Si verifci ce f è continua separatamente nelle due variabili e y, ma non è continua in (0, 0) come funzione di due variabili. Sol.: Considerare la funzione f separatamente nelle due variabili vuol dire studiarne il comportamento sulle rette y = y 0 e = 0 dove 0 e y 0 sono valori fissati. Nel primo caso si a g() = f(, y 0 ) = y y0 2 la quale è continua se y 0 0 in quanto rapporto di due polinomi con denominatore non nullo, ed è identicamente nulla per y 0 = 0. Abbiamo quindi la continuità nella variabile. Nel secondo caso (y) = f( 0, y) = 0y y 2 e con un ragionamento del tutto analogo al precedente si mostra la continuità ance nella variabile y. Mostriamo ora però ce non esiste f(, y) (,y) (0,0) Infatti, se consideriamo le rette y = m abbiamo f(, m) = m m 2 2 = Se dunque esistesse il ite cercato si dovrebbe avere Assurdo. f(, y) = (,y) (0,0) m 1 + m 2 m 1 + m 2 m R Nota: si osservi ce una volta mostrata la continuità rispetto ad una delle due variabili, si ottiene ance la continuità nell altra variabile in quanto f è una funzione simmetrica in e y. Esercizio 4: Si consideri la funzione f(, y) = 2 y 4 + y 2 Si verifci ce esiste il ite per t 0 di f su tutte le rette di equazione parametrica = lt, y = mt ed il valore di tale ite è indipendente da l e m. Si mostri ce tuttavia non esiste il ite di f per (, y) tendente a (0, 0). Sol.: Sulle rette di equazione = lt, y = mt si a f(lt, mt) = l 2 mt 3 (l 4 t 2 + m 2 )t = t l 2 m 2 l 4 t 2 + m 0 2 t 0 Consideriamo però ora le curve di equazione y = m 2 : f(, m 2 ) = m 4 (1 + m 2 ) = m m 2 2

3 Dunque il ite per tendente a 0 di f su tali curve dipende dal parametro m della curva scelta. Non può quindi esistere f(, y). (,y) (0,0) Esercizio 5: Estendere con continuità (dove possibile) su tutto R 2 le seguenti funzioni: (a)f(, y) = sin(2 2y) y (b)f(, y) = y log( 2 + y 2 ) Sol.: (a): la funzione è definita al di fuori della retta y =. Poniamo t = y. Ricordando ce sin 2t = 2 t 0 t possiamo estendere f con continuità sulla retta y = ponendo f(, ) = 2. (b): f non è definita soltanto nell origine. Abbiamo y log( 2 + y 2 ) = y log( 2 + y 2 ) 1 2 (2 + y 2 ) log( 2 + y 2 ) e l ultimo membro delle disuguaglianze converge a 0 nell origine. Quindi la funzione data può essere estesa ponendo f(0, 0) = 0. 2 Derivate parziali e differenziabilità Definizione 2.1 Una funzione f definita in un intorno di un punto di coordinate (, y) ammette derivate parziali in tale punto se esistono finiti i due iti f( +, y) f(, y) e f(, y + ) f(, y) Tali iti si diranno in tal caso rispettivamente derivata parziale rispetto a e derivata parziale rispetto a y della funzione f nel punto (, y). Per il seguito indiceremo le derivate parziali di una funzione f rispetto ad una variabile con il simbolo f indicizzato dalla variabile rispetto a cui si deriva (ad esempio, la derivata parziale di f(, y) rispetto alla variabile sarà indicata con f ). Analogamente, le derivate parziali seconde saranno indicizzate dalle variabili rispetto a cui si deriva nell ordine di derivazione (f y indicerà la derivata di f rispetto ad y). Esercizio 6: Calcolare le derivate parziali delle seguenti funzioni nei punti interni ai loro insiemi di definizione: (a)f(, y) = y +y (b)f(, y) = (c)f(, y) = y log( 2 + y 2 ) (d)f(, y) = sin(y) Sol.: (a): deriviamo prima rispetto a e poi rispetto a y f = ( + y) ( y) ( + y) 2 = 3 2y ( + y) 2

4 (b): f y = ( + y) ( y) ( + y) 2 = 2 ( + y) 2. f = Poicé nell espressione di f non compare la variabile y (c): f y = 0 f = y log( 2 + y 2 ) + y y 2 Poicé f è simmetrica nelle due variabili f y a la stessa espressione di f (in cui scambi il ruolo di ed y). Dunque f y = log( 2 + y 2 2y ) + y 2 + y 2 (d): ance in questo caso una volta determinata f l altra derivata parziale si ottiene per simmetria: f = y cos(y) f y = cos(y) Esercizio 7: Verificare ce la funzione f(, y) = 2 + y 2 non ammette derivate parziali nel punto (0, 0). Sol.: Basta verificare ce sugli assi coordinati la funzione non è derivabile. Infatti se y = 0 abbiamo f(, 0) = 2 = ce non ammette derivata per = 0. Per simmetria se = 0 f(0, y) = y da cui segue ce non esistono f né f y nell origine. Definizione 2.2 Siano, R n. Una funzione f è differenziabile nel punto se esiste una funzione lineare L : R n R tale ce f( + ) f() L() Il funzionale L si dice allora differenziale di f e si a = 0. L() = n f i () i. i=1 4

5 Esercizio 8: Verificare ce la funzione { y se (, y) (0, 0) f(, y) = 2 +y 2 0 se (, y) = (0, 0) è continua ma non differenziabile nell origine. Sol.: Si a da cui segue la continuità in (0, 0). Calcoliamo le derivate parziali prime di f: ed analogamente Tuttavia y y 2 + y f (0, 0) = f(, 0) f(0, 0) f y (0, 0) = f(0, ) f(0, 0) = 0 = 0 f(, k) f(0, 0) k = (,k) (0,0) 2 + k 2 (,k) (0,0) 2 + k 2 e tale ite non esiste (si veda l esercizio 3). Dunque f non è differenziabile nell origine. Esercizio 9: Verificare ce la funzione f(, y) = y α (α > 0) è differenziabile nell origine se e solo se α > 1/2. Sol.: Poicé la funzione è identicamente nulla su entrambi gli assi coordinati abbiamo f (0, 0) = f y (0, 0) = 0. La condizione di differenziabilità diventa quindi (,k) (0,0) k α 2 + k 2 = 0. Si tratta quindi di studiare la funzione di due variabili g(, y) = y α 2 + y 2 Guardiamo cosa avviene sulle rette y = m: Se α < 1/2 abbiamo g(, m) = 2α 1 m α 1 + m 2 g(, m) = + 0 5

6 indipendentemente dal valore di m. Per α = 1/2 il ite cercato non esiste. Osserviamo inoltre ce t α = ( t 2 ) α ( t 2 + u 2 ) α = (t 2 + u 2 ) α/2 per ogni t, u R. Dunque per α > 1/2 abbiamo g(, y) = y α 2 + y (2 + y 2 ) α y 2 = (2 + y 2 ) α 1/2 ce converge a 0 quando (, y) (0, 0). Ne segue la differenziabilità di f per α > 1/2 come voluto. Esercizio 10: Stabilire se in (0, 0) risulta continua, derivabile o differenziabile la funzione definita da f(0, 0) = 0 e, per (, y) (0, 0), da: f(, y) = Sol.: Calcoliamo f sulle rette y = m f(, m) = 1 cos y 4 + y 4 1 cos m2 1 cos m2 m 2 = (1 + m 4 )4 m m m m 4 Pertanto f non è continua né differenziabile in (0, 0). Però è derivabile: f è identicamente nulla sugli assi coordinati dunque f (0, 0) = f y (0, 0) = 0 3 Altri esercizi svolti Esercizio 11: Estendere con continuità (dove possibile) su tutto R 2 le seguenti funzioni: (a)f(, y) = y y (b)f(, y) = e+y 1 3+3y Sol.: (a): f è definita al di fuori degli assi coordinati. In questo caso però osserviamo ce sull iperbole y = 1 (come su tutte le iperboli y = t con t > 0) la funzione vale identicamente 1, mentre sulle iperboli y = t con t < 0 la funzione vale -1. Non esiste quindi il ite di f sugli assi coordinati e la funzione non si estende. (b): f non è definita sulla retta + y = 0. Ponendo + y = t abbiamo e t 1 t 0 3t = 1 3 e dunque la funzione si estende ponendo f(, ) = 1 3. Esercizio 12: Calcolare le derivate parziali delle seguenti funzioni nei punti interni ai loro insiemi di definizione: (a)f(, y) = 2 y (b)f(, y) = y log (c)f(, y) = ( ) y (d)f(, y) = y 6

7 da cui Sol.: (a): abbiamo (b): scriviamo f come 2 y = e y log 2 f = e y log 2 log 2 y 2 = 2 y log 2 y 2 f y = e y log 2 log 2 1 = 2 y log 2 1 y log log log y = e Calcoliamo f log log y 1 f = e log y = ylog 1 log y e per simmetria (c): f(, y) = (1 + 1 )y = e y log(1+ 1 ) da cui f y = e log log y 1 y log = ylog 1 y log f = e y log(1+ 1 ) y 1 1 (1 + 1) = (1 + 1 y 2 )y 1 2 mentre f y = e y log(1+ 1 ) log(1 + 1 ) = (1 + 1 )y log(1 + 1 ) (d): abbiamo y = e y log = e ey log log. Ne segue ( f = e ey log log e y log y log + ey log 1 ) = y y y log + 1 = y y 1 (y log + 1) mentre per f y si ottiene f y = e ey log log e y log log 2 = y y (log ) 2 Esercizio 13: Calcolare le derivate seconde delle seguenti funzioni nei punti interni ai loro insiemi di definizione e verificare ce le derivate seconde miste sono uguali tra loro: (a)f(, y) = y +y (b)f(, y) = (c)f(, y) = y log( 2 + y 2 ) (d)f(, y) = sin(y) Sol.: Abbiamo già calcolato nell esercizio 6 le derivate parziali prime di queste funzioni. Si tratta quindi di derivare ancora rispetto alle due variabili. (a): abbiamo f = 2y (+y) 2, f y = 2 (+y) 2 da cui f = 4y f ( + y) 3 y = 2( + y)2 4y( + y) = ( + y) 4 7 2( y) ( + y) 3

8 (b): da f = f y = 2( + y)2 4( + y) ( + y) 4 = 1+ 2, f y = 0 otteniamo f = = f y = f yy = 0 (c): le derivate prime sono f = y log( 2 + y 2 ) + y Ne segue f = 2y 2 + y + 2 2( y) ( + y) 3 f yy = 1 ( ) 3 f y = 0 4 ( + y) 3 2, f 2 +y 2 y = log( 2 + y 2 ) + y 4y2 ( 2 + y 2 ) 2 Per calcolare f y riscriviamo f nella forma seguente: ) f = y (log( 2 + y 2 ) y 2 Dunque ( ) f y = log( 2 + y 2 ) y 2 + y + y y 42 y = 2 ( 2 + y 2 ) ( ) 2 = log( 2 + y 2 ) y( y + y + y 2 ) 4 2 y = 2 ( 2 + y 2 ) 2 = log( 2 + y 2 ) y 2 + 2y2 y 2 2 ( 2 + y 2 ) 2 = = log( 2 + y 2 ) y 4 ( 2 + y 2 ) 2 Analogamente riscriviamo l espressione di f y : ) f y = (log( 2 + y 2 ) + 2y2 2 + y 2 Con gli stessi passaggi di prima otteniamo f y = log( 2 + y 2 ) + mentre per l ultima derivata 2y2 2 + y 2 + ( y 2 = log( 2 + y 2 ) + 2y2 2 + y y 2 ( 2 + y 2 ) 2 = = log( 2 + y 2 ) y 4 ( 2 + y 2 ) 2 f yy = 2y 2 + y + 42 y 2 ( 2 + y 2 ) 2 8 ) 4y2 = ( 2 + y 2 ) 2 2y 2 +y 2.

9 (d): abbiamo f = y cos(y), f y = cos(y) da cui f = y 2 sin(y) f y = cos(y) y sin(y) f y = cos(y) y sin(y) f yy = 2 sin(y) Esercizio 14: Verificare ce la funzione { 3 y se (, y) (0, 0) f(, y) = 2 +y 2 0 se (, y) = (0, 0) ammette derivate seconde miste distinte nell origine. Sol.: Verificiamo ce f è continua nell origine: 3 y 2 + y (2 + y 2 ) 0. (,y) (0,0) Abbiamo mentre f = 32 y( 2 + y 2 ) 2 4 y = 4 y y 3 ( 2 + y 2 ) 2 ( 2 + y 2 ) 2 f y = 3 ( 2 + y 2 ) 2 3 y 2 ( 2 + y 2 ) 2 = 5 3 y 2 ( 2 + y 2 ) 2 per ogni (, y) (0, 0). Sia f ce f y convergono a 0 nell origine: f = 4 y y 3 ( 2 + y 2 ) 2 = 2 y 2 + 3y 2 ( 2 + y 2 ) D altra parte f y = 5 3 y 2 ( 2 + y 2 ) 2 = 3 2 y 2 ( 2 + y 2 ) 2 f (0, 0) = f(, 0) f(0, 0) f(0, ) f(0, 0) f y (0, 0) = = 0 = 0 = 0 = 0 quindi ance le derivate parziali prime sono continue. Calcoliamo allora le derivate parziali seconde miste nell origine: f y (0, 0) = f (0, ) f (0, 0) f y (0, 0) = f y (, 0) f y (0, 0) = 0 = 0 = = 1 0 9

10 Esercizio 15: Stabilire se la funzione sin 2 +y 2 se (, y) (0, 0) f(, y) = 2 +y 2 1 se (, y) = (0, 0) è differenziabile nell origine. Sol.: Abbiamo e per simmetria f (0, 0) = f(, 0) f(0, 0) f y (0, 0) = 0 Per la differenziabilità dobbiamo quindi verificare se Ma = sin f(, k) f(0, 0) = 0. (,k) (0,0) 2 + k 2 f(, k) f(0, 0) sin = 2 + k k 2 (,k) (0,0) 2 + k 2 (,k) (0,0) 2 + k 2 Dunque f è differenziabile in (0, 0). = 0 = t= 2 +k 2 sin t t = 0 t 0 t 2 Esercizio 16: Stabilire se in (0, 0) risulta continua, derivabile o differenziabile la funzione definita da f(0, 0) = 0 e, per (, y) (0, 0), da: (a)f(, y) = 1 cos y (b)f(, y) = log 2 + 3y y y 2 Sol.: (a): possiamo scrivere f(, y) = 1 cos y (y) 2 (y) y 2 0 (,y) (0,0) Dunque f è continua nell origine. Per un ragionamento del tutto analogo a quello dell esercizio 10 f è ance derivabile e le sue derivate parziali in (0, 0) sono nulle. D altra parte f(, k) f(0, 0) = (,k) (0,0) 2 + k 2 (,k) (0,0) 1 cos k ( 2 + k 2 ) 3 = 1 2 (,k) (0,0) da cui segue ce f è ance differenziabile. (b): abbiamo f(, y) = log(1 + 2y2 2 + y ) 2 y 2y 2 + y y k 2 ( 2 + k 2 ) 3 = 0

11 Pertanto f è continua nell origine. Inoltre f è nulla sugli assi coordinati da cui Tuttavia f (0, 0) = f y (0, 0) = k2 f(, k) f(0, 0) log = 2 +k 2 (,k) (0,0) 2 + k 2 (,k) (0,0) 2 + k 2 e tale ite non esiste (ciò si può vedere ad esempio sulle rette k = m). Ne segue ce f non è differenziabile. 11

1 Note ed esercizi risolti a ricevimento

1 Note ed esercizi risolti a ricevimento 1 Note ed esercizi risolti a ricevimento Nota 1. Il polinomio di Taylor della funzione f x, y) due variabili), del secondo ordine, nel punto x 0, y 0 ), è P 2 x, y) = f x 0, y 0 ) + f x x 0, y 0 ) x x

Dettagli

Alcune nozioni di calcolo differenziale

Alcune nozioni di calcolo differenziale Alcune nozioni di calcolo differenziale G. Mastroeni, M. Pappalardo 1 Limiti per funzioni di piu variabili Supporremo noti i principali concetti algebrici e topologici relativi alla struttura dello spazio

Dettagli

1 Limiti di funzioni di più variabili

1 Limiti di funzioni di più variabili 1 Limiti di funzioni di più variabili Sia f : D R N R e x 0 un punto di accumulazione per D. Riportiamo alcune utili strategie per verificare se la funzione ammette o non ammette ite finito in x 0. Le

Dettagli

Corso di Laurea in Ingegneria Elettrica Corso di Analisi Matematica - a.a. 2001/02 Docente: Dott. Alberto Maria BERSANI. xy 2 x 2 + y 4.

Corso di Laurea in Ingegneria Elettrica Corso di Analisi Matematica - a.a. 2001/02 Docente: Dott. Alberto Maria BERSANI. xy 2 x 2 + y 4. Corso di Laurea in Ingegneria Elettrica Corso di Analisi Matematica - aa 00/0 Docente: Dott Alberto Maria BERSANI ESERCIZI SVOLTI SU LIMITI, CONTINUITÀ, DERIVABILITÀ E DIFFERENZIABILITÀ DI FUNZIONI DI

Dettagli

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) =

Derivate parziali, derivate direzionali, differenziabilità. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = Derivate parziali, derivate direzionali, differenziabilità 1. a) Calcolare le derivate direzionali e le derivate parziali in (0, 1) di f(x, y) = 3 x (y 1) + 1. b) Calcolare D v f(0, 1), dove v è il versore

Dettagli

ANALISI B alcuni esercizi proposti

ANALISI B alcuni esercizi proposti ANALISI B alcuni esercizi proposti G.P. Leonardi Parte II 1 Limiti e continuità per funzioni di 2 variabili Esercizio 1.1 Calcolare xy log(1 + x ) lim (x,y) (0,0) 2x 2 + 5y 2 Esercizio 1.2 Studiare la

Dettagli

Le derivate parziali

Le derivate parziali Sia f(x, y) una funzione definita in un insieme aperto A R 2 e sia P 0 = x 0, y 0 un punto di A. Essendo A un aperto, esiste un intorno I(P 0, δ) A. Preso un punto P(x, y) I(P 0, δ), P P 0, possiamo definire

Dettagli

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011.

Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Bacchelli - a.a. 2010/2011. Appunti sul corso di Complementi di Matematica mod. Analisi prof. B.Baccelli - a.a. 2010/2011. 06 - Derivate, differenziabilità, piano tangente, derivate di ordine superiore. Riferimenti: R.Adams, Calcolo

Dettagli

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x

Esercitazione n 6. Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (b)f(x, y) = 4y 4 16x 2 y + x Esercitazione n 6 1 Massimi e minimi di funzioni di più variabili Esercizio 1: Determinare i punti di massimo e minimo relativo delle seguenti funzioni: (a)f(x, y) = x 3 + y 3 + xy (b)f(x, y) = 4y 4 16x

Dettagli

AM210 - Analisi Matematica 3: Soluzioni Tutorato 1

AM210 - Analisi Matematica 3: Soluzioni Tutorato 1 AM210 - Analisi Matematica 3: Soluzioni Tutorato 1 Università degli Studi Roma Tre - Dipartimento di Matematica Docente: Luca Biasco Tutori: Patrizio Caddeo, Davide Ciaccia 19 ottobre 2016 1 Se z = (1

Dettagli

Argomento 6 Derivate

Argomento 6 Derivate Argomento 6 Derivate Derivata in un punto Definizione 6. Data una funzione f definita su un intervallo I e 0 incrementale di f in 0 di incremento h = 0 = il rapporto I, si chiama rapporto per = 0 + h =

Dettagli

41 POLINOMI DI TAYLOR

41 POLINOMI DI TAYLOR 4 POLINOMI DI TAYLOR DERIVATE DI ORDINI SUCCESSIVI Allo stesso modo della derivata seconda si definiscono per induzione le derivate di ordine k: la funzione derivata 0-ima di f si definisce ponendo f (0

Dettagli

Limiti di funzioni di due variabili

Limiti di funzioni di due variabili Limiti di funzioni di due variabili Definizione 1 Sia f : A R 2 R e x 0 = (x 0, y 0 ) punto di accumulazione di A. Diciamo che se e solo se Diciamo che se e solo se f(x) = f(x, y) = L x x 0 (x,y) (x 0,y

Dettagli

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME

ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME ESERCIZI SUI PUNTI DI NON DERIVABILITÀ TRATTI DA TEMI D ESAME a cura di Michele Scaglia FUNZIONI DERIVABILI Sia f : domf R una funzione e sia 0 domf di accumulazione per domf Chiamiamo derivata prima di

Dettagli

Forme indeterminate e limiti notevoli

Forme indeterminate e limiti notevoli Forme indeterminate e iti notevoli Limiti e continuità Forme indeterminate e iti notevoli Forme indeterminate Teorema di sostituzione Limiti notevoli Altre forme indeterminate 2 2006 Politecnico di Torino

Dettagli

Esercizi. Misti iniziali. Più variabili. 1. Data la funzione. F (x) = x3 3 + x e t2 dt. se ne studino massimi, minimi, flessi, limiti a ±.

Esercizi. Misti iniziali. Più variabili. 1. Data la funzione. F (x) = x3 3 + x e t2 dt. se ne studino massimi, minimi, flessi, limiti a ±. Esercizi Misti iniziali. Data la funzione se ne studino massimi, minimi, flessi, iti a ±. 2. Provare che Più variabili F x) = 3. Calcolare, se esistono, i seguenti iti a) b) c) d) x,y),) x 2 + y 2 2 x,y),)

Dettagli

ESERCIZIO SULLE FUNZIONI DI DUE VARIABILI. g(x, y). x arctan x + y 2.

ESERCIZIO SULLE FUNZIONI DI DUE VARIABILI. g(x, y). x arctan x + y 2. Sia f : R R la funzione definita da ESERCIZIO SULLE FUNZIONI DI DUE VARIABILI f, y = + y 4 y + 4, y R e sia g la funzione di due variabili reali definita da g, y = f, y + y.. Determinare il dominio D di

Dettagli

Prima parte: DOMINIO E INSIEMI DI LIVELLO

Prima parte: DOMINIO E INSIEMI DI LIVELLO FUNZIONI DI DUE VARIABILI 1 Prima parte: DOMINIO E INSIEMI DI LIVELLO Domini e disequazioni in due variabili. Insiemi di livello. Elementi di topologia insiemi aperti, chiusi, limitati, convessi, connessi

Dettagli

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y.

variabili. se i limiti esistono e si chiamano rispettivamente derivata parziale rispetto ad x e rispetto ad y. Funzioni di più variabili Derivate parziali Qui saranno considerate soltanto funzioni di due variabili, ma non c è nessuna difficoltà ad estendere le nuove nozioni a funzioni di n ( > variabili ( Definizione:

Dettagli

Argomento 6: Derivate Esercizi. I Parte - Derivate

Argomento 6: Derivate Esercizi. I Parte - Derivate 6: Derivate Esercizi I Parte - Derivate E. 6.1 Calcolare le derivate delle seguenti funzioni: 1) log 5 3 + cos ) + 3 + 4 + 3 3) 5 tan 4) ( + 3e ) sin 5) arctan( + 1) 6) log 7) 10) + + 3 8) 3 3 1 + 16 11)

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo.

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo http://www.dimi.uniud.it/biomat/ Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università

Dettagli

1 Limiti e continuità

1 Limiti e continuità Calcolo infinitesimale e differenziale Gli esercizi indicati con l asterisco (*) sono più impegnativi. Limiti e continuità Si ricorda che per una funzione di più variabili, la definizione di continuità

Dettagli

Campi conservativi e forme esatte - Esercizi svolti

Campi conservativi e forme esatte - Esercizi svolti Campi conservativi e forme esatte - Esercizi svolti 1) Dire se la forma differenziale è esatta. ω = 2 2 (1 + 2 2 ) 2 d + 2 2 (1 + 2 2 ) 2 d 2) Individuare in quali regioni sono esatte le seguenti forme

Dettagli

Funzioni derivabili (V. Casarino)

Funzioni derivabili (V. Casarino) Funzioni derivabili (V. Casarino) Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in = 0 delle funzioni: a) 5 b) 3 4 c) + 1 d) sin. ) Scrivere l equazione della retta tangente

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log

Analisi Matematica II Corso di Ingegneria Gestionale Compito del (x y) log Analisi Matematica II Corso di Ingegneria Gestionale Compito del -6-4 Esercizio. punti Data la funzione { x y log +, fx, y = x +y 4 x, y,, x, y =, i dire in quali punti del dominio è continua; ii dire

Dettagli

Analisi Matematica II (Prof. Paolo Marcellini)

Analisi Matematica II (Prof. Paolo Marcellini) Vero o falso? Analisi Matematica II (Prof. Paolo Marcellini) Università degli Studi di Firenze Corso di laurea in Matematica Esercitazione del 8//205 Michela Eleuteri eleuteri@math.unifi.it web.math.unifi.it/users/eleuteri

Dettagli

ESERCIZI sui VETTORI

ESERCIZI sui VETTORI ESERCIZI sui VETTORI 1. Calcolare la somma di v 1 (2, 3) e v 2 (1, 4). 2. Calcolare la somma di v 1 (1, 5, 4) e v 2 (6, 8, 2). 3. Calcolare il prodotto di α = 2 e v 1 (1, 4). 4. Calcolare il prodotto di

Dettagli

Calcolo differenziale

Calcolo differenziale ANALISI MATEMATICA T-B (L-Z) (C.d.L. Ing. Gestionale) Università di Bologna - A.A.2008-2009 - Prof. G.Cupini A.A.2008-2009 - Prof. G.Cupini Calcolo differenziale (Grazie agli studenti del corso che comunicheranno

Dettagli

Analisi Matematica I Primo Appello ( ) - Fila 1

Analisi Matematica I Primo Appello ( ) - Fila 1 Analisi Matematica I Primo Appello (4-11-003) - Fila 1 1. Determinare la retta tangente alla funzione f() = (1 + ) 1+ in = 0. R. f(0) = 1, mentre la derivata è f () = ( e (1+) log(1+)) ( ) = e (1+) log(1+)

Dettagli

Mauro Sassetti. Calcolo differenziale ed integrale. per funzioni di due variabili reali.

Mauro Sassetti. Calcolo differenziale ed integrale. per funzioni di due variabili reali. Mauro Sassetti Calcolo differenziale ed integrale per funzioni di due variabili reali. Breve esposizione dei principali risultati. Parte prima : Calcolo differenziale 1. Generalità 1.1 L insieme R come

Dettagli

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006

Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/12/2006 Corso di Laurea in Scienze Biologiche Prova in Itinere di Matematica 20/2/2006 COGNOME NOME MATRICOLA.) Determinare 2. + 2 Possibile svolgimento. Il ite proposto si presenta nella forma indeterminata [

Dettagli

Esercizi sulle funzioni f : R 2 R. Soluzioni

Esercizi sulle funzioni f : R 2 R. Soluzioni Esercizi sulle funzioni f : R R Soluzioni. Disegnare il grafico della funzione f : R R, nei casi: (a) f(, ) =. La funzione dipende solo dalla coordinata. In questo caso il grafico rappresenta un piano

Dettagli

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) =

Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica. x2 1 x x + 7 ; d) f (x) = Soluzioni degli Esercizi per il Corso di Istituzioni di Matematica 1 La retta tangente al grafico di f nel punto ( 0, f( 0 ha equazione y = f( 0 + f ( 0 ( 0. a y = 2; b y = log 2 (e( 1; c y = 1 2 + 1 4

Dettagli

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti.

Prima prova in itinere di Analisi Matematica 2 Ingegneria Elettronica. Politecnico di Milano. A.A. 2016/2017. Prof. M. Bramanti. Prima prova in itinere di Analisi Matematica Ingegneria Elettronica. Politecnico di Milano Es. Punti A.A. 016/017. Prof. M. Bramanti 1 Tema n 1 4 5 6 Tot. Cognome e nome in stampatello) codice persona

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin

Analisi Matematica II Corso di Ingegneria Gestionale Compito del xy + 2x + 2y + 2xy + 2x + 2y + sin Analisi Matematica II Corso di Ingegneria Gestionale Compito del 9--8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo. - Le risposte senza giustificazione sono considerate nulle.

Dettagli

Esercizi con soluzioni dell esercitazione del 31/10/17

Esercizi con soluzioni dell esercitazione del 31/10/17 Esercizi con soluzioni dell esercitazione del 3/0/7 Esercizi. Risolvere graficamente la disequazione 2 x 2 2 cos(πx). 2. Determinare l insieme di definizione della funzione arcsin(exp( x 2 )). 3. Trovare

Dettagli

Teorema delle Funzioni Implicite

Teorema delle Funzioni Implicite Teorema delle Funzioni Implicite Sia F una funzione di due variabili definita in un opportuno dominio D di R 2. Consideriamo l equazione F (x, y) = 0, questa avrà come soluzioni coppie di valori (x, y)

Dettagli

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.

1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x. Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente

Dettagli

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7

SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 SOLUZIONE DEGLI ESERCIZI DEL FOGLIO N. 7 Esercizio. Funzione da studiare: log( 3).. Dominio: dobbiamo richiedere che il denominatore non si annulli e che il logaritmo sia ben definito. Quindi le condizioni

Dettagli

Analisi Matematica 2

Analisi Matematica 2 Analisi Matematica 2 Differenziabilità per funzioni di due variabili Differenziabilità per funzioni di due variabili CCS Ingegneria Meccanica e Ingegneria Chimica 1 / 26 Differenziabilitá Data la funzione

Dettagli

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2

Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2 Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, gntgli@unife.it Esercizi 8: Studio di funzioni Studio

Dettagli

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1

Matematica. Corso integrato di. per le scienze naturali ed applicate. Materiale integrativo. Paolo Baiti 1 Lorenzo Freddi 1 Corso integrato di Matematica per le scienze naturali ed applicate Materiale integrativo Paolo Baiti 1 Lorenzo Freddi 1 1 Dipartimento di Matematica e Informatica, Università di Udine, via delle Scienze

Dettagli

LIMITI - ESERCIZI SVOLTI

LIMITI - ESERCIZI SVOLTI LIMITI - ESERCIZI SVOLTI ) Verificare mediante la definizione di ite che a) 3 5) = b) = + ) c) 3n n + n+ = + d) 3+ = 3. ) Calcolare utilizzando i teoremi sull algebra dei iti a) 3 + ) b) + c) 0 + d) ±

Dettagli

Analisi II, a.a Soluzioni 3

Analisi II, a.a Soluzioni 3 Analisi II, a.a. 2017-2018 Soluzioni 3 1) Consideriamo la funzione F : R 2 R 2 definita come F (x, y) = (x 2 + y 2, x 2 y 2 ). (i) Calcolare la matrice Jacobiana DF e determinare in quali punti F è localmente

Dettagli

Capitolo 1 ANALISI COMPLESSA

Capitolo 1 ANALISI COMPLESSA Capitolo 1 ANALISI COMPLESSA 1 1.2 Funzioni Complesse Una funzione complessa di variabile complessa f : E C, E C è un applicazione ce associa un numero complesso f(z) ad ogni z E, con E sottoinsieme del

Dettagli

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x).

Esercizi svolti. g(x) = sono una l inversa dell altra. Utilizzare la rappresentazione grafica di f e f 1 per risolvere l equazione f(x) = g(x). Esercizi svolti. Discutendo graficamente la disequazione > 3 +, verificare che l insieme delle soluzioni è un intervallo e trovarne gli estremi.. Descrivere in forma elementare l insieme { R : + > }. 3.

Dettagli

Analisi Matematica 1 Soluzioni prova scritta n. 1

Analisi Matematica 1 Soluzioni prova scritta n. 1 Analisi Matematica Soluzioni prova scritta n Corso di laurea in Matematica, aa 008-009 5 giugno 009 Sia a n la successione definita per ricorrenza: a n+ 3 a n a 3 n, a 3 a n+ 3 a n a 3 n, a 3 a n+ 3 a

Dettagli

IL CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI

IL CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI IL CALCOLO DIFFERENZIALE PER FUNZIONI DI PIÙ VARIABILI 218-19 CLAUDIO BONANNO Richiamiamo le definizioni e le prime principali proprietà delle funzioni differenziabili di più variabili e a valori vettoriali

Dettagli

2. Derivate e differenziabilità

2. Derivate e differenziabilità 2. Derivate e differenziabilità Davide Catania davide.catania@unibs.it Esercitazioni di Analisi Matematica 2 A.A. 2016/17 Derivate parziali Derivate direzionali Differenziabilità Data f (x,y), la derivata

Dettagli

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso.

1.3. Se esistono i limiti sinistro e destro della funzione in un punto, allora esiste anche il limite della funzione nel punto stesso. Esercitazione 8 Novembre 018 1. Stabilire quali delle seguenti affermazioni sono vere e quali false. 1.1. Se una funzione f(x) è definita in un intervallo aperto (a, b), ha senso chiedersi se esistono

Dettagli

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica

Università degli Studi di Palermo Facoltà di Economia. Dipartimento di Scienze Economiche, Aziendali e Statistiche. Appunti del corso di Matematica Università degli Studi di Palermo Facoltà di Economia Dipartimento di Scienze Economiche, Aziendali e Statistiche Appunti del corso di Matematica 09 - Derivate II Limiti di forme indetermate e derivate

Dettagli

Istituzioni di Matematiche Modulo A (ST)

Istituzioni di Matematiche Modulo A (ST) Istituzioni di Matematiche Modulo A (ST V II foglio di esercizi ESERCIZIO. Nei seguenti sistemi lineari, discutere l insieme delle soluzioni al variare del parametro t, o dei parametri t e τ, in R. 5 x

Dettagli

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende

Limite. Se D non è limitato si può fare il limite di f(x) per x che tende Appunti sul corso di Complementi di Matematica,mod.Analisi, prof. B.Bacchelli - a.a. 200/20. 05 - Limiti continuità: Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3., 3.2. - Esercizi 3., 3.2.

Dettagli

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1

Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Analisi Matematica IV modulo Soluzioni prova scritta preliminare n. 1 Corso di laurea in Matematica, a.a. 2005-2006 27 aprile 2006 1. Disegnare approssimativamente nel piano (x, y) l insieme x 4 6xy 2

Dettagli

2. Calcolare l area della regione Ω contenuta nel primo quadrante, delimitata dalle seguenti curve. : y = x 2 + x γ 2 : y = x 2 γ 3 : y = 1 x 2.

2. Calcolare l area della regione Ω contenuta nel primo quadrante, delimitata dalle seguenti curve. : y = x 2 + x γ 2 : y = x 2 γ 3 : y = 1 x 2. Politecnico di Milano Ingegneria Industriale Analisi e Geometria Esercizi sul calcolo integrale. Calcolare l area della regione Ω contenuta nel primo quadrante, deitata dalle seguenti curve γ : y + γ :

Dettagli

Analisi Matematica II Corso di Ingegneria Biomedica Compito A del f(x, y) = x 2 + y 2

Analisi Matematica II Corso di Ingegneria Biomedica Compito A del f(x, y) = x 2 + y 2 Analisi Matematica II Corso di Ingegneria Biomedica Compito A del -7- - È obbligatorio consegnare tutti i fogli, anche quelli della brutta. - Le risposte senza giustificazione sono considerate nulle. Esercizio.

Dettagli

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria

Politecnico di Milano Corso di Analisi e Geometria 1. Federico Lastaria Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@poi.it Limiti di derivate. Punti angolosi e di cuspide. Ottobre 2012 Indice 1 Limiti della derivata e punti di non

Dettagli

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione

ANALISI MATEMATICA 1 Area dell Ingegneria dell Informazione ANALISI MATEMATICA Area dell Ingegneria dell Informazione Appello del.. TEMA Esercizio. Sia f) = + 3) log + 3), D =] 3, + [. i) Determinare i iti di f agli estremi di D e gli eventuali asintoti; studiarne

Dettagli

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013

Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 17/10/2013 Istituto Superiore XXV aprile Pontedera - Prof Francesco Daddi Soluzioni verifica di Matematica 5 a E Liceo Scientifico - 7/0/03 Esercizio Si consideri la funzione e x+ se x < f(x) = 0 se x = x x x se

Dettagli

19 LIMITI FONDAMENTALI - II

19 LIMITI FONDAMENTALI - II 19 LIMITI FONDAMENTALI - II 3. Il ite che permette il calcolo di forme indeterminate in cui sono presenti funzioni logaritmiche è: log1 + = 1. La dimostrazione di questo ite si ha subito dal ite Esempio.

Dettagli

d f dx (x 0), (D f )(x 0 ), cui corrispondono vari modi di indicare la funzione derivata:

d f dx (x 0), (D f )(x 0 ), cui corrispondono vari modi di indicare la funzione derivata: Derivate Di solito, considereremo funzioni f : A R, dove A e un intervallo, o un unione di intervalli non ridotti a un punto. Indicato con B l insieme dei punti nei quali f e derivabile 1 si a una funzione

Dettagli

Analisi Matematica II. Esercizi per le vacanze pasquali

Analisi Matematica II. Esercizi per le vacanze pasquali Analisi Matematica II Esercizi per le vacanze pasquali Corso di laurea in Ingegneria Meccanica. A.A. 2008-2009. Esercizio 1. Stabilire se la funzione reale f di due variabili reali, definita come sin(

Dettagli

Funzioni implicite e teorema del Dini

Funzioni implicite e teorema del Dini Funzioni implicite e teorema del Dini Il succo dell argomento può essere presentato così. Sia f una funzione a valori reali, definita in un aperto G del piano euclideo R 2 e sufficientemente buona; consideriamo

Dettagli

4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 4. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso rappresenta l evoluzione di un fenomeno al passare del tempo. Se siamo interessati a sapere con che rapidità il fenomeno si evolve

Dettagli

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero

f(x) = 1 x 2 Per determinare il dominio di f(x) dobbiamo imporre che il determinante sia diverso da zero . Data la funzione approssimarne il grafico. f() = 2 Per determinare il dominio di f() dobbiamo imporre che il determinante sia diverso da zero 2 0 = 2 = ± perciò il dominio ` D = R \ {, } =], [ ], [ ],

Dettagli

Analisi Matematica 3 - Soluzioni Tutorato 2

Analisi Matematica 3 - Soluzioni Tutorato 2 Analisi Matematica 3 - Soluzioni Tutorato 2 Università degli Studi Roma Tre - Dipartimento di Matematica Docente: Luca Biasco Tutori: Patrizio Caddeo, Jacopo Tenan 31 ottobre 2017 1. Sia f : R n R una

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE.

3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. 3. CALCOLO DIFFERENZIALE PER FUNZIONI DI UNA VARIABILE REALE. Molto spesso y = f(x) rappresenta l evoluzione di un fenomeno al passare del tempo x.se siamo interessati a sapere con che rapidità il fenomeno

Dettagli

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4

1 Polinomio di Taylor 1. 2 Formula di Taylor 2. 3 Alcuni sviluppi notevoli 2. 4 Uso della formula di Taylor nel calcolo dei limiti 4 1 POLINOMIO DI TAYLOR 1 Formula di Taylor Indice 1 Polinomio di Taylor 1 Formula di Taylor 3 Alcuni sviluppi notevoli 4 Uso della formula di Taylor nel calcolo dei iti 4 5 Soluzioni degli esercizi 6 La

Dettagli

1. Calcolo Differenziale per funzioni di una variabile

1. Calcolo Differenziale per funzioni di una variabile 1. Calcolo Differenziale per funzioni di una variabile 1.1 Definizione di Derivata e prime proprietà Definizione 1.1 Sia f :]a, b[ R, x 0 ]a, b[. Allora esiste δ > 0 : x 0 + ]a, b[, 0 < < δ. Se esiste

Dettagli

Analisi Matematica 2. Continuità, derivabilità e differenziabilità

Analisi Matematica 2. Continuità, derivabilità e differenziabilità Docente: E. G. Casini Università degli Studi dell Insubria DIPATIMENTO DI SCIENZA E ALTA TECNOLOGIA Corso di Studio in Matematica e Fisica Analisi Matematica ichiami di Teoria ed Esercizi con Svolgimento

Dettagli

Esercitazione n 2. 1 dx = lim e x + e x ω. t dt t=ex = [arctan t]eω 1 = arctan(e ω ) arctan 1. (1 + x) dx = ε ε.

Esercitazione n 2. 1 dx = lim e x + e x ω. t dt t=ex = [arctan t]eω 1 = arctan(e ω ) arctan 1. (1 + x) dx = ε ε. Esercitazione n Integrali impropri Esercizio : Calcolare d. e +e Sol.: Dalla definizione di integrale improprio Allora e + e Dunque e + e ω e e ω e + d e + e t + dt t=e = arctan t]eω = arctane ω arctan

Dettagli

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del (x, y) = (0, 0) y 2 e x 2 +y 2 dx dy

Analisi Matematica II Corso di Ingegneria Gestionale Compito A del (x, y) = (0, 0) y 2 e x 2 +y 2 dx dy Analisi Matematica II Corso di Ingegneria Gestionale Compito A del --8 - È obbligatorio consegnare tutti i fogli, anche la brutta e il testo - Le risposte senza giustificazione sono considerate nulle Esercizio

Dettagli

1 Ampliamento del piano e coordinate omogenee

1 Ampliamento del piano e coordinate omogenee 1 Ampliamento del piano e coordinate omogenee Vogliamo dare una idea, senza molte pretese, dei concetti che stanno alla base di alcuni calcoli svolti nella classificazione delle coniche. Supponiamo di

Dettagli

Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio Soluzioni

Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio Soluzioni Esame di Complementi di Matematica (STC) e Parziale di Matematica II (SMat). 3 Maggio 2006. Soluzioni In questo documento sono contenuti gli svolgimenti del tema d esame del 05/06/2006. Alcuni esercizi

Dettagli

Calcolo integrale. Regole di integrazione

Calcolo integrale. Regole di integrazione Calcolo integrale Linearità dell integrale Integrazione per parti Integrazione per sostituzione Integrazione di funzioni razionali 2 2006 Politecnico di Torino Proprietà Siano e funzioni integrabili su

Dettagli

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di.

Appunti di Matematica 5 - Derivate - Derivate. Considero una funzione e sia e definita in un intorno completo di. Derivate Definizione di derivata di f(x) in x D o f Considero una funzione e sia e definita in un intorno completo di. Consideriamo il rapporto (detto rapporto incrementale ) È evidente che il rapporto

Dettagli

Analisi Matematica A e B Soluzioni Prova scritta n. 3

Analisi Matematica A e B Soluzioni Prova scritta n. 3 Analisi Matematica A e B Soluzioni Prova scritta n. Corso di laurea in Fisica, 207-208 9 luglio 208. Si consideri per α =, 2, 5, 8 la seguente funzione funzione F α : R\{0} R F α () = sin t dt. t α 6 Dire

Dettagli

DERIVATE SUCCESSIVE E MATRICE HESSIANA

DERIVATE SUCCESSIVE E MATRICE HESSIANA FUNZIONI DI DUE VARIABILI 1 DERIVATE SUCCESSIVE E MATRICE HESSIANA Derivate parziali seconde e matrice hessiana. Sviluppo di Taylor del secondo ordine. Punti stazionari. Punti di massimo o minimo (locale

Dettagli

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T

ANALISI MATEMATICA I, Compito scritto del 5/07/2016 Corso di Laurea in Matematica. COGNOME e NOME... MATR T ANALISI MATEMATICA I, Compito scritto del 5/7/6 Corso di Laurea in Matematica COGNOME e NOME... MATR... 3 4 T Nelle risposte devono essere riportati anche i conti principali e le motivazioni principali.

Dettagli

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA

ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA ANALISI MATEMATICA I MODULO, I e II MODULO, II MODULO CORSO DI LAUREA IN INFORMATICA Prova scritta del 6 giugno 2004: soluzioni ESERCIZIO - Data la funzione f) 3 2 4 + 27 + 9 2 ) /3 4 + 27, + 9 si chiede

Dettagli

Limiti di funzione - svolgimenti

Limiti di funzione - svolgimenti Limiti di funzione - svolgimenti Useremo la notazione f f g per 0 0 g =. Inoltre ricordiamo la definizione di o piccolo: f f = og f è o piccolo di g per 0 0 g =0. Dalla definizione abbiamo subito: og+og

Dettagli

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i.

Soluzioni. 1. Calcolare la parte reale e immaginaria del numero complesso. z = i i. 3 (2 + i) = i i = i. 20 Roberto Tauraso - Analisi 2 Soluzioni 1. Calcolare la parte reale e immaginaria del numero complesso R. z = i + 3 2 i. z = i + 3 2 i 2 i = 6 5 + ( 1 + 3 5 3 (2 + i) = i + 2 4 + 1 ) i = 6 5 + 8 5 i.

Dettagli

Alcuni esercizi: funzioni di due variabili e superfici

Alcuni esercizi: funzioni di due variabili e superfici ANALISI MATEMATICA T- (C.d.L. Ing. per l ambiente e il territorio) - COMPL. DI ANALISI MATEMATICA (A-K) (C.d.L. Ing. Civile) A.A.008-009 - Prof. G.Cupini Alcuni esercizi: funzioni di due variabili e superfici

Dettagli

Analisi Matematica III

Analisi Matematica III Università di Pisa - Corso di Laurea in Ingegneria Civile dell ambiente e territorio Analisi Matematica III Pisa, 7 gennaio 00 (Cognome) (Nome) (Numero di matricola) Esercizio Si consideri la successione

Dettagli

Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 26/01/2007

Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 26/01/2007 Corso di Laurea in Scienze Biologiche Prova scritta di Matematica del 6/0/007 COGNOME NOME MATRICOLA 3 sin( ) e 3 + ) Determinare ( cos()) Possibile svolgimento Il ite proposto si presenta nella forma

Dettagli

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012

ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi: lezione 2 novembre 2011 Studio di funzioni Studiare le seguenti funzioni FINO alla derivata prima,

Dettagli

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9.

Riferimenti: R.Adams, Calcolo Differenziale 2. Capitoli 3.4, 3.9. Esercizi 3.4, 3.9. Appunti sul corso di Complementi di Matematica - mod Analisi prof. B.Baccelli 200/ 07 - Funzioni vettoriali, derivata della funzione composta, formula di Taylor. Riferimenti: R.Adams, Calcolo Differenziale

Dettagli

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013

ANALISI VETTORIALE COMPITO IN CLASSE DEL 8/11/2013 ANALISI VETTORIALE COMPITO IN CLASSE DEL 8//3 Premessa (Cfr. gli Appunti di Analisi Vettoriale / del Prof. Troianiello) Nello studio degli integrali impropri il primo approccio all utilizzo del criterio

Dettagli

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016)

Analisi Matematica 3/Analisi 4 - SOLUZIONI (20/01/2016) Corso di Laurea in Matematica Docente: Claudia Anedda Analisi Matematica 3/Analisi 4 - SOLUZIONI (//6) ) i) Dopo averla classificata, risolvere l equazione differenziale tẋ x = t cos(t), t >. ii) Scrivere

Dettagli

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim

DIFFERENZIAZIONE. Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim DIFFERENZIAZIONE 1 Regola della catena Sia f una funzione reale di variabile reale con dominio un intervallo. Se f è derivabile in un punto x 0, allora: f(x) f(x 0 ) lim = f (x 0 ). x x 0 x x 0 Questa

Dettagli

Analisi Matematica 3 - Soluzioni Tutorato 3

Analisi Matematica 3 - Soluzioni Tutorato 3 Analisi Matematica - Soluzioni Tutorato Università degli Studi Roma Tre - Dipartimento di Matematica Docente: Luca Biasco Tutori: Patrizio Caddeo, Jacopo Tenan novembre 017 1. Discutere la continuità e

Dettagli

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93

Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 Tracce di soluzioni di alcuni esercizi di matematica 1 - gruppo 76-93 5. Funzioni continue Soluzione dell Esercizio 76. Osserviamo che possiamo scrivere p() = n (a n + u()) e q() = m (b m + v()) con lim

Dettagli

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2

FUNZIONI DI DUE VARIABILI REALI. f(x, y) = ax + by + c. f(x, y) = x 2 + y 2 0.1 FUNZIONI DI DUE VARIABILI REALI Sia A R 2. Una applicazione f : A R si chiama funzione reale di due variabili reali ESEMPI: 1. La funzione affine di due variabili reali: 2. f(x, y) = ax + by + c f(x,

Dettagli

Esercizi svolti sui limiti

Esercizi svolti sui limiti Francesco Daddi - dicembre 9 Esercizi svolti sui iti Esercizio. Calcolare sin). Soluzione. Moltiplichiamo e dividiamo per : sin) = sin) = sin) a questo punto, ponendo y =, dato che otteniamo y siny y =

Dettagli

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica)

D Analisi Matematica 1 (Corso di Laurea in Informatica e Bioinformatica) COGNOME NOME Matr. D Firma dello studente Tempo: ore. Prima parte: test a risposta multipla. Una ed una sola delle 4 affermazioni è corretta. Indicatela con una croce. È consentita una sola correzione

Dettagli

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle:

1. Riconoscere la natura delle coniche rappresentate dalle seguenti equazioni e disegnarle: Università degli Studi della Basilicata Corsi di Laurea in Chimica / Scienze Geologiche Matematica II A. A. 204-205 (dott.ssa Vita Leonessa) Esercizi proposti n. 3: Funzioni a due variabili. Riconoscere

Dettagli

25 IL RAPPORTO INCREMENTALE - DERIVATE

25 IL RAPPORTO INCREMENTALE - DERIVATE 25 IL RAPPORTO INCREMENTALE - DERIVATE Definizione Sia f una funzione reale di variabile reale. Allora, dati x, y domf con x y, si definisce il rapporto incrementale di f tra x e y come P f (x, y = f(x

Dettagli

1. Funzioni implicite

1. Funzioni implicite 1. Funzioni implicite 1.1 Il caso scalare Sia X R 2 e sia f : X R. Una funzione y : (a, b) R si dice definita implicitamente dall equazione f(x, y) = 0 in (a, b) quando: 1. (x, y(x)) X x (a, b); 2. f(x,

Dettagli