Diminuzione della dimensione caratteristica dei dispositivi elettronici negli anni (dati reali ed estrapolati) G. Martines 2

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Diminuzione della dimensione caratteristica dei dispositivi elettronici negli anni (dati reali ed estrapolati) G. Martines 2"

Transcript

1 G. Martines 1

2 Diminuzione della dimensione caratteristica dei dispositivi elettronici negli anni (dati reali ed estrapolati) G. Martines 2

3 Variazione della densità die circuiti di memoria Variazione della complessità dei microprocessori G. Martines 3

4 G. Martines 4

5 G. Martines 5

6 Parametri quadripolari e modelli circuitali equivalenti segnale + V 1 I 1 Lineare Tempo invariante Senza generatori indipendenti I 2 + V 2 carico G. Martines 6

7 Parametri quadripolari e modelli circuitali equivalenti segnale + V 1 I 1 Lineare Tempo invariante Senza generatori indipendenti I 2 + V 2 carico G. Martines 7

8 Matrice di impedenza a circuito aperto Variabili indipendenti: I1 e I2 (le due correnti); simbolo matriciale Z. Per il teorema di sovrapposizione degli effetti le equazioni si possono porre nella forma I parametri hanno tutti le dimensioni di impedenza (V/I). Infatti dalle equazioni del modello risulta per definizione: Z 11 V V 1 2 ( s) = Z11( s) I1( s) + Z12( s) I 2( s) ( s) = Z ( s) I ( s) + Z ( s) I ( s) V1 V1 V2 = Z12 = Z21 = Z22 = I I I 1 I = 0 2 I = 0 1 I = 0 2 I = Il modello circuitale equivalente è quello di figura dove compaiono solo impedenze e generatori di tensione controllati in corrente collegati nella forma di Thevenin V I 2 G. Martines 8

9 Parametri ibridi Variabili indipendenti: la corrente della porta 1 e la tensione della porta 2, cioè I1 e V2 e la matrice si indica con la lettera H. Per il teorema di sovrapposizione degli effetti le equazioni del modello quadripolare si possono porre nella forma V = h I + h V I = h I + h V I parametri ibridi hanno dimensioni diverse. Infatti dalle equazioni del modello risulta per definizione: h 11 V1 V1 I2 = h12 = h21 = h22 = I V I 1 V = 0 2 I = 0 1 V = 0 2 I = modello circuitale equivalente che è quello di figura. h 11 I V h 21 I 1 h 12 V 2 h 22 G. Martines 9

10 Tabella conversione parametri quadripolari dove X = x 11 x 22 x 12 x 21 G. Martines 10

11 un esempio: conversione impedenza - ammettenza G. Martines 11

12 L'amplificatore come doppio bipolo G. Martines 12

13 Modello equivalente di un amplificatore di tensione (unidirezionale) Esempio di amplificatore di tensione con stadi in cascata G. Martines 13

14 Tolleranza costruttiva Le serie dei valori nominali G. Martines 14

15 tolleranza % % Nominale G. Martines 15

16 Standard JEDEC per i simboli letterali e le abbreviazioni G. Martines 16

17 Standard JEDEC per i simboli letterali e le abbreviazioni Primo simbolo (unico) indica la grandezza fisica (tensione, corrente, resistenza, capacità, induttanza, tempo e temperatura) con l'eccezione delle tensioni di breakdown (BV). Pedici o apici modificano il simbolo in modo da renderne univoco il significato. In questa categoria rientrano rms, max, dc e avg. Altre informazioni vanno aggiunte in parentesi, ma non come pedice o indice (ad esempio real, sat, etc ) Minuscolo Valori istantanei SIMBOLO Parametri quadripolari interni al dispositivo Maiuscolo Valori RMS, massimi o medi (DC) parametri quadripolari esterni al dispositivo PEDICI Valore istantaneo, RMS o efficace della sola componente variabile Parametri a piccolo segnale Valore istantaneo totale, massimo e medio (DC) Parametri statici o a largo segnale G. Martines 17

18 Il disegno dei circuiti elettronici G. Martines 18

19 Regole e suggerimenti per il disegno di un circuito le connessioni (nodi) vanno indicate con un cerchietto annerito. Se tale indicazione manca, significa che i conduttori si incrociano senza connessione elettrica è opportuno che quattro conduttori non si uniscano in un punto. usare gli stessi simboli per lo stesso dispositivo o per la stessa funzione conduttori e componenti devono essere allineati e disposti orizzontalmente o verticalmente le etichette per i terminali di un dispositivo devono essere posti esternamente al simbolo mentre le etichette dei segnali devono essere posto all'interno del simbolo tutti i componenti devono essere individuati dal valore o dal tipo o da un riferimento unico i segnali normalmente si propagano da sinistra verso destra i generatori (DC) positivi dovrebbero trovarsi in alto e quelli negativi in basso e di conseguenza un transistore npn dovrebbe avere l'emettitore in basso mentre un pnp dovrebbe averlo rivolto verso l'alto. Normalmente si evita di connettere e disegnare i generatori (VCC) lasciare spazio fra i simboli e le connessioni (nodi) usare simboli standard senza inventarne di nuovi (soprattutto per i blocchi funzionali) usare piccoli rettangoli, cerchi o ovali per indicare le connessioni esterne al circuito (l'ingresso e l'uscita ad esempio) sottintendere le connessioni ai generatori per i circuiti integrati G. Martines 19

20 G. Martines 20

21 G. Martines 21

22 G. Martines 22

23 Procedura per il Problem solving 1. definire il problema il più chiaramente possibile 2. elencare informazioni e dati noti 3. definire le incognite del problema 4. elencare le assunzioni che si decide di fare 5. sviluppare una soluzione da un gruppo di possibili alternative 6. analizzare la soluzione trovata 7. verificare le prestazioni ottenute 8. valutare pregi e difetti della soluzione adottata 9. simulare con il calcolatore la soluzione adottata per verificare se le prestazioni sono quelle previste. G. Martines 23

24 Funzione di trasferimento nel dominio di Laplace Funzione di trasferimento del primo ordine G. Martines 24 ( ) ( ) ( ) s V s V s T i o ( ) ( ) ( ) = n i m i m P s Z s A s T ( ) b s b s b a s a s a s T n n n n m m m m = ( ) P s a a s s T +ω + = 0 1

25 G. Martines 25

26 Passa basso (LP) ( ) H H H s K s K s a s T ω ω ω ω + = + = + = ( ) H H H K K j T ω ω ω ω ω ω << + = per 2 2 G. Martines 26

27 Passa basso (LP) G. Martines 27

28 T T ( s) Passa alto (HP) a s Ks = s + ω s + ω = 1 Kω L ( jω ) = K per ω >> ω L 2 ω 2 + ω L L G. Martines 28

29 Passa alto (HP) G. Martines 29

30

31 Passa banda a banda larga

32 Passa banda a banda stretta Funzione di trasferimento del secondo ordine con poli complessi coniugati G. Martines 32

33 Stop banda (reiezione di banda) Passa tutto: G. Martines 33

34 Amplificatore con quattro poli reali e distinti G. Martines 34

35 Amplificatore di tensione Ovviamente se è verificata la condizione: Per il guadagno di corrente: G. Martines 35

36 Amplificatori con stadi in cascata A 1 A 2 A 3 G. Martines 36

37 Cacscata di N stadi uguali G. Martines 37

38 Amplificatori con reazione negativa β in cui i blocchi A e β sono unidirezionali e si definisce: guadagno ad anello aperto la quantità: A x o xi fattore di reazione la quantità: β x f xo segnale di errore il segnale xi = xs x f dove x f prende il nome di segnale di reazione (feedback) xo A guadagno ad anello chiuso la quantità: Af = xs 1+ A β in cui la quantità -Aβ prende il nome di guadagno di anello mentre la quantità 1+Aβ prende il nome di tasso di reazione. G. Martines 38

39 Risposta in frequenza ad anello chiuso NOTA: A Aβ = ovvero in db 1 β Aβ db = A db 1 β per ω < ω H Aβ > 1 e A v (jω) = 1/β per ω > ω H Aβ < 1 e A v (jω) = ω T /ω per ω = ω H Aβ = 1 db G. Martines 39

40

41 Teorema di Miller "considerata una rete comunque complessa con N nodi distinti, supposto che fra due qualunque di questi nodi (N1 ed N2) sia connessa una ammettenza Y e che inoltre sia noto il rapporto K fra le tensioni di questi nodi (tensioni rispetto al nodo di massa N0) è possibile ottenere una rete equivalente a quella considerata sostituendo la ammettenza Y con due ammettenze Y 1 Y ( 1 K ) e Y2 Y ( 1 1 K ) connesse fra i rispettivi nodi e massa". con K V 2 V1 La dimostrazione si basa sulla definizione di rete equivalente basata sulla eguaglianza delle equazioni ai nodi delle due reti. La corrente I1 che Y assorbe dal nodo 1 può porsi nella forma:

42 I1 = Y ( V1 V2 ) = YV1(1 V2 V1 ) = YV1(1 K) analogamente per la corrente assorbita dal nodo 2 si ha: I = Y V V ) = YV (1 V V ) = YV (1 1 ) 2 ( K e quindi perché le equazioni ai nodi non cambino nelle due reti basterà che sia Y V = I e Y V = I 1 da cui risulta appunto: Y1 = Y ( 1 K) ey2 = Y (1 1 K) ovviamente in termini di impedenza si avrebbe: Z K Z1 = e Z 2 = Z (1 K) K 1 Nota: dalla dimostrazione risulta evidente che la rete equivalente derivante dall applicazione del teorema di Miller è valida solo per le condizioni in cui è stato determinato K.

43 Ovviamente esiste anche il duale del teorema di Miller che permette di sostituire una impedenza Z posta fra un nodo e massa con due impedenze poste nelle maglie che contengono questo ramo. I Secondo il duale del teorema di Miller, le due reti sono equivalenti se Z = Z(1 K ) e Z2 = Z(1 1 K I ) con K I = I 2 I 1 1 I NOTA: Questi due teoremi risultano molto utili nella soluzione di reti con topologie a π e a T Permettono di determinare qualitativamente gli effetti di impedenze o ammettenze fra le porte di un quadripolo ed in particolare di un amplificatore.

Parametri quadripolari e modelli circuitali equivalenti

Parametri quadripolari e modelli circuitali equivalenti G. Martines 1 G. Martines 3 G. Martines 4 Parametri quadripolari e modelli circuitali equivalenti segnale + V 1 I 1 Lineare Tempo invariante Senza generatori indipendenti I 2 + V 2 carico G. Martines

Dettagli

Doppi Bipoli. Corsi di. Elettrotecnica e. Teoria dei Circuiti. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia Facoltà di Ingegneria

Doppi Bipoli. Corsi di. Elettrotecnica e. Teoria dei Circuiti. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia Facoltà di Ingegneria Università degli Studi di Pavia Facoltà di Ingegneria Corsi di Corso di Elettrotecnica e Teoria dei Circuiti Teoria dei Circuiti Doppi Bipoli Che cos è? E un dispositivo con due porte di scambio della

Dettagli

Rappresentazione doppi bipoli. Lezione 18 2

Rappresentazione doppi bipoli. Lezione 18 2 Lezione 8 Rappresentazione doppi bipoli Lezione 8 2 Introduzione Lezione 8 3 Cosa c è nell Unità 5 In questa sezione si affronteranno Introduzione alle rappresentazioni dei doppi bipoli Le sei rappresentazioni

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 1)

Esercizi sulle reti elettriche in corrente alternata (parte 1) Esercizi sulle reti elettriche in corrente alternata (parte ) Esercizio : alcolare l andamento nel tempo delle correnti i, i 2 e i 3 del circuito in figura e verificare il bilancio delle potenze attive

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria Esercizio. Determinare la costante di tempo del circuito di figura per k =.5 Ω,.5 Ω, Ω. τ = ms,.5 ms, 6 ms. Ω Ω.5 Ω i [A] k i [V] mh V Il circuito contiene un

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Si analizzi l amplificatore mostrato in figura, determinando: 1. il valore del guadagno di tensione a frequenze intermedie; 2. le frequenze di taglio

Dettagli

Doppi bipoli. Corso di Elettrotecnica. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica

Doppi bipoli. Corso di Elettrotecnica. Corso di. Teoria dei Circuiti. Università degli Studi di Pavia. Dipartimento di Ingegneria Elettrica Università degli Studi di Pavia Facoltà di Ingegneria Corso di Corso di Elettrotecnica Teoria dei Circuiti Doppi bipoli Che cos è? E un dispositivo con due porte di scambio della potenza elettrica (Porta

Dettagli

Il TRANSISTOR. Il primo transistor della storia

Il TRANSISTOR. Il primo transistor della storia Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

Corso di Principi di ingegneria elettrica I

Corso di Principi di ingegneria elettrica I Anno Accad. 2008/2009, II anno: Corso di Laurea in Ingegneria Elettrica Nuovo Ordinamento Corso di Principi di ingegneria elettrica I (prof. G. Rubinacci) Diario delle Lezioni Materiale didattico di riferimento:

Dettagli

4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α

4 Luglio 2012 Esame di Teoria dei Circuiti V 1 V 2. I R1 = 1 R 1 + R 2 (1 α) + R 3 V 1. I 2 = I R3 = 1 α 1 + β I R1 = V α Esame di Teoria dei Circuiti 4 Luglio 202 () Esercizio I R R I R3 R 3 I 2 V αi R V 4 I 4 βi R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 0 Ω R R 3 kω, 5 kω,, α /2, β 2, V

Dettagli

Esercizi sui circuiti in fase transitoria

Esercizi sui circuiti in fase transitoria Esercizi sui circuiti in fase transitoria v 5 mh 6 Ω Ω µf Ω Esercizio. alcolare la tensione v un i- stante dopo la chiusura dell interruttore T (t =). Si supponga che il circuito sia in regime stazionario

Dettagli

Amplificatori Differenziali

Amplificatori Differenziali Amplificatori Differenziali nei simboli non si esplicitano gli alimentatori DC, cioè Normalmente i circuiti che realizzano l amplificatore differenziale e operazionale non contengono un nodo elettricamente

Dettagli

. Applicando la KT al percorso chiuso evidenziato si ricava v v v v4 n Applicando la KC al nodo si ricava: i i i4 i n i i : n i v v v v 4 : n i 4 v v i i.7 Dalla relazione tra le correnti del trasformatore

Dettagli

Dalle alle Docente: Dalle alle Docente:

Dalle alle Docente: Dalle alle Docente: 2 1 Corso di recupero di EETTROTECNICA Docente: prof. ing. Guido AA Mer 2-ott-13 Mar 1-ott-13 un 1 a SETTIMANA Ven 4-ott-13 Gio 3-ott-13 30-set-13 Richiami sugli operatori vettoriali gradiente, rotore

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I prova in itinere 1 Novembre 008 SOLUZIONE - 1 - D1. (punti 8 ) Rispondere alle seguenti domande: punto per ogni risposta corretta, - 0.5 per ogni risposta

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO

ISTITUTO TECNICO INDUSTRIALE STATALE G. MARCONI Via Milano n PONTEDERA (PI) ANNO SCOLASTICO 2005/2006 CORSO SPERIMENTALE LICEO TECNICO ISTITUTO TECNICO INDUSTRIALE STATALE "G. MARCONI" Via Milano n. 2-56025 PONTEDERA (PI) 0587 53566/55390 - Fax: 0587 57411 - : iti@marconipontedera.it - Sito WEB: www.marconipontedera.it ANNO SCOLASTICO

Dettagli

Elettronica Amplificatore operazionale ideale; retroazione; stabilità

Elettronica Amplificatore operazionale ideale; retroazione; stabilità Elettronica Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Amplificatore operazionale

Dettagli

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione)

Esame di Teoria dei Circuiti 25 Febbraio 2011 (Soluzione) Esame di Teoria dei Circuiti 25 Febbraio 20 Soluzione) Esercizio I I R R I R2 R 2 V 3 I 3 V V 2 αi R βi R2 V I Con riferimento al circuito di figura si assumano i seguenti valori: R = kω, R 2 = kω, = 2

Dettagli

Reti elettriche: definizioni

Reti elettriche: definizioni TEORIA DEI CIRCUITI Reti elettriche: definizioni La teoria dei circuiti è basata sul concetto di modello. Si analizza un sistema fisico complesso in termini di interconnessione di elementi idealizzati.

Dettagli

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a

5. Amplificatori. Corso di Fondamenti di Elettronica Fausto Fantini a.a 5. Amplificatori Corso di Fondamenti di Elettronica Fausto Fantini a.a. 2010-2011 Amplificazione Amplificare un segnale significa produrre un segnale in uscita (output) con la stessa forma d onda del segnale

Dettagli

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo Esercitazione 3 Biagio Provinzano Aprile 005 Esercizio I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo V A, β = 00, V BE = 0.7V in zona attiva ed infine Cπ = C µ =0pF.

Dettagli

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione)

Esame di Teoria dei Circuiti 15 Gennaio 2015 (Soluzione) Esame di eoria dei Circuiti 15 ennaio 2015 (Soluzione) Esercizio 1 I 1 R 2 I R2 R 4 αi R2 βi R3 + V 3 I 3 R 1 V 2 I 4 I R3 Con riferimento al circuito di figura si assumano ( i seguenti ) valori: 3/2 3/2

Dettagli

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti

Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Elettronica Stella e triangolo; generatori controllati; generatore equivalente; sovrapposizione degli effetti Valentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it

Dettagli

A Laurea in Fisica - Anno Accademico

A Laurea in Fisica - Anno Accademico A Laurea in Fisica - Anno Accademico 2018-2019 30 ottobre 2018 Primo esonero del Lab di Seg. e Sistemi Nome : ognome : Matricola : anale/prof : Gruppo Lab.: iportate su questo foglio le risposte numeriche

Dettagli

. Il modulo è I R = = A. La potenza media è 1 VR 2

. Il modulo è I R = = A. La potenza media è 1 VR 2 0.4 La corrente nel resistore vale 0. l modulo è A. La potenza media è P 0 W 0.7 l circuito simbolico è mostrato di seguito. La potenza viene dissipata solo nel resistore. 0, 4 - La corrente è 4 4 0, 0,

Dettagli

Modello ibrido del transistor

Modello ibrido del transistor Modello ibrido del transistor Da Wikipedia, l'enciclopedia libera. Per un transistor a giunzione bipolare si può usare il modello a parametri ibridi qualora sia necessario l'uso a basse frequenze. Modello

Dettagli

Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/ Appello 09 Febbraio 2012

Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/ Appello 09 Febbraio 2012 Fondamenti di Elettronica Ing. AUTOMATICA e INFORMATICA - AA 2010/2011 3 Appello 09 Febbraio 2012 Indicare chiaramente la domanda a cui si sta rispondendo. Ad esempio 1a) Esercizio 1. R 1 = 20 kω, R 2

Dettagli

Teoria dei circuiti reazionati

Teoria dei circuiti reazionati Teoria dei circuiti reazionati Differenze tra lo schema di reazione ideale e il circuito con retroazione: Ogni blocco dello schema a blocchi ha una direzione e un trasferimento che non dipende dai blocchi

Dettagli

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CE: AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CS: G. Martines 1 ANALISI IN CONTINUA Circuito di polarizzazione a quattro resistenze. NOTE: I parametri del modello a piccolo

Dettagli

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione)

Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esame di Teoria dei Circuiti 16 Dicembre 2014 (Soluzione) Esercizio 1 3 3 γv 5 r 1 2 2 4 V 5 3 V 1 β 4 4 1 5 V 2 α 3 4 Con riferimento al circuito di figura si assumano i seguenti valori: 1 = 2 = 3 = 3

Dettagli

ESERCIZIO Punto di riposo, R 1,R 2. Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha

ESERCIZIO Punto di riposo, R 1,R 2. Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha 1/16 ESERCIZIO 1 1.1 - Punto di riposo, R 1,R 2 Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha V CE1 = V R E I E1 I E2 ) V 2R E I C = 12.0 V. 1) Nel punto di riposo si ha I B1

Dettagli

Sommario CAPITOLO 1 CAPITOLO 2. iii. Le grandezze elettriche... 1. I componenti circuitali... 29

Sommario CAPITOLO 1 CAPITOLO 2. iii. Le grandezze elettriche... 1. I componenti circuitali... 29 Sommario CAPITOLO 1 Le grandezze elettriche............................... 1 1-1 Progetto proposto Regolatore di flusso............................ 2 1-2 I primordi delle scienze elettriche.................................

Dettagli

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una

Il blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una l blocco amplificatore realizza la funzione di elevare il livello (di tensione o corrente) del segnale (in tensione o corrente) in uscita da una sorgente. Nel caso, come riportato in figura, il segnale

Dettagli

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria

Corso di Elettrotecnica 1 - Cod N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria Schede di Elettrotecnica Corso di Elettrotecnica - Cod. 900 N Diploma Universitario Teledidattico in Ingegneria Informatica ed Automatica Polo Tecnologico di Alessandria A cura di Luca FEAIS Scheda N 6

Dettagli

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che ESERCIZIO Su un transistor BJT pnp caratterizzato da N E = 0 8 cm 3 N B = 0 6 cm 3 N C = 0 5 cm 3 A = mm 2 vengono effettuate le seguenti misure: Tensione V CB negativa, emettitore aperto: I C = 0nA Tensione

Dettagli

AMPLIFICATORE DIFFERENZIALE

AMPLIFICATORE DIFFERENZIALE AMPLIFICATORE DIFFERENZIALE Per amplificatore differenziale si intende un circuito in grado di amplificare la differenza tra due segnali applicati in ingresso. Gli ingressi sono due: un primo ingresso

Dettagli

Paragrafo 7.2.3: Potenza trifase

Paragrafo 7.2.3: Potenza trifase Paragrafo 7.2.3: Potenza trifase Problema 7.1 Ampiezza della tensione di fase di un sistema trifase bilanciato, 220 V efficace. L espressione di ciascuna fase in entrambe le coordinate rettangolari e polari.

Dettagli

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità

Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Elettronica I Amplificatore operazionale ideale; retroazione; stabilità Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Ingegneria Registro delle Lezioni dell insegnamento di: Introduzione ai Circuiti Corso di Laurea in Ingegneria dell'automazione Corso di Laurea in

Dettagli

Esercizi sulle reti elettriche in corrente alternata (parte 2)

Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizi sulle reti elettriche in corrente alternata (parte 2) Esercizio 7: Verificare il bilancio delle potenze. Nota. l ramo costituito dal generatore di corrente in serie al resistore ha come caratteristica

Dettagli

Impedenze ed Ammettenze 1/5

Impedenze ed Ammettenze 1/5 Impedenze ed Ammettenze 1/5 V=Z I. Rappresentazione alternativa I=Y V Z ed Y sono numeri complessi Bipolo di impedenza Z = R+ j X Resistenza Reattanza Conduttanza 1 Y = = G+ jb Z Suscettanza Lezione 2

Dettagli

DOPPI BIPOLI Stefano Usai

DOPPI BIPOLI Stefano Usai DOPP BPOL Si definisce doppio bipolo una rete di resistori, comunque complessa, accessibile da due coppie di morsetti. Se per ogni coppia di morsetti si verifica che la corrente entrante da un morsetto

Dettagli

Tipi di amplificatori e loro parametri

Tipi di amplificatori e loro parametri Amplificatori e doppi bipoli Amplificatori e doppi bipoli Introduzione e richiami Simulatore PSPICE Amplificatori Operazionali e reazione negativa Amplificatori AC e differenziali Amplificatori Operazionali

Dettagli

Le lettere x, y, z rappresentano i segnali nei vari rami.

Le lettere x, y, z rappresentano i segnali nei vari rami. Regole per l elaborazione di schemi a blocchi Oltre alle tre fondamentali precedenti regole (cascata, parallelo, retroazione), ne esiste una serie ulteriore che consente di semplificare i sistemi complessi,

Dettagli

Insegnamento Introduzione ai circuiti. Argomento: Introduzione al corso e sua organizzazione. Note:

Insegnamento Introduzione ai circuiti. Argomento: Introduzione al corso e sua organizzazione. Note: data 20 settembre 2017 data 22 settembre 2017 data 27 settembre 2017 data 29 settembre 2017 Introduzione al corso e sua organizzazione didattica, sussidi didattici. Interazione elettromagnetica, sistemi

Dettagli

LEZIONI DI ELETTROTECNICA

LEZIONI DI ELETTROTECNICA LEZIONI DI ELETTROTECNICA Giovanni Miano Università di Napoli FEDERICO II ii LEZIONI DI ELETTROTECNICA Giovanni Miano Università di Napoli FEDERICO II Nate dalle dispense del Corso di Elettrotecnica, in

Dettagli

FILTRI in lavorazione. 1

FILTRI in lavorazione. 1 FILTRI 1 in lavorazione. Introduzione Cosa sono i filtri? C o II filtri sono dei quadripoli particolari, che presentano attenuazione differenziata in funzione della frequenza del segnale applicato in ingresso.

Dettagli

Y=X1-X2 + Y=X1-X2+X3. X2 a) b)

Y=X1-X2 + Y=X1-X2+X3. X2 a) b) PPSNTZIONI TTVSO GLI SCHMI LOCCHI...2 locco generico (sistema fisico)...2 Nodi sommatori (denominati anche nodi di confronto)...2 locchi connessi in cascata...3 sempi :...3 locchi connessi in parallelo...4

Dettagli

Esercizi aggiuntivi Unità A2

Esercizi aggiuntivi Unità A2 Esercizi aggiuntivi Unità A2 Esercizi svolti Esercizio 1 A2 ircuiti in corrente alternata monofase 1 Un circuito serie, con 60 Ω e 30 mh, è alimentato con tensione V 50 V e assorbe la corrente 0,4 A. alcolare:

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001

Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. 2000/2001 Esame del 12 gennaio 2001 Università degli Studi di Bergamo Facoltà di Ingegneria Corso di Elettrotecnica DUM A.A. / Esame del gennaio Soluzione a cura di: Bellini Matteo Es. n Data la rete in figura determinare tutte le correnti

Dettagli

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE

Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI SOLUZIONE Esame di FONDAMENTI DI AUTOMATICA (6 CFU) / CONTROLLI AUTOMATICI Prova scritta 8 settembre 2017 SOLUZIONE ESERCIZIO 1. Si consideri il seguente circuito elettrico passivo: Applicando le leggi di Kirchhoff

Dettagli

CALCOLO DI TENSIONI E CORRENTI IN UN CIRCUITO ELETTRICO. 1

CALCOLO DI TENSIONI E CORRENTI IN UN CIRCUITO ELETTRICO. 1 paolo carlizza (paolo.carlizza) CALCOLO DI TENSIONI E CORRENTI IN UN CIRCUITO ELETTRICO. 23 May 2013 Generalita' Delle volte capita di porci di fronte ad un circuito elettrico, formato da una rete di generatori

Dettagli

Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito

Elettronica I Bipoli lineari; legge di Ohm; caratteristica tensione-corrente; nodi e maglie di un circuito Elettronica Bipoli lineari; legge di Ohm; caratteristica tensionecorrente; nodi e maglie di un circuito alentino Liberali Dipartimento di Tecnologie dell nformazione Università di Milano, 603 Crema email:

Dettagli

1. Serie, parallelo e partitori. ES Calcolare la

1. Serie, parallelo e partitori. ES Calcolare la Maffucci: ircuiti in regime stazionario ver-00 Serie, parallelo e partitori S - alcolare la vista ai morsetti - e quella vista ai morsetti -D S alcolare la resistenza uivalente vista ai capi del generatore

Dettagli

Rappresentazione doppi bipoli

Rappresentazione doppi bipoli Rappresentazione doppi bipoli ntroduzione 3 Cosa c è nell Unità 5 n questa sezione si affronteranno introduzione alle rappresentazioni dei doppi bipoli le sei rappresentazioni classice tabella di trasformazione

Dettagli

Amplificatore Operazionale

Amplificatore Operazionale 4 Corso Telematici 01/02/2010 Scuola Telecomunicazioni FFAA 1 L amplificatore operazionale è un circuito integrato analogico (può essere realizzato integrando su stesso chip di silicio sia dispositivi

Dettagli

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame Prova n 1: Per il seguente circuito determinare: 1. R B1, R E tali che: I C = 0,5 ma; V E = 5 V; 2. Guadagno di tensione a piccolo segnale v out /v s alle medie frequenze; 3. Frequenza di taglio inferiore;

Dettagli

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ

9.8 Con la LKT si scrive l equazione seguente: di (1) dt La costante di tempo èτ 9.8 Con la LKT si scrive l equazione seguente: di L Ri cos( t) () dt La costante di tempo èτ L / R ms / 5s ; la soluzione della () è 5t i( t) Ke Acos(t θ ) () Sia A θ il fasore corrispondente alla risposta

Dettagli

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi

Esperimentazioni di Fisica 3. Appunti sugli. Amplificatori Differenziali. M De Vincenzi Esperimentazioni di Fisica 3 Appunti sugli. Amplificatori Differenziali M De Vincenzi 1 Introduzione L amplificatore differenziale è un componente elettronico che (idealmente) amplifica la differenza di

Dettagli

LA RISPOSTA ARMONICA DEI SISTEMI LINEARI (regime sinusoidale) S o (t)

LA RISPOSTA ARMONICA DEI SISTEMI LINEARI (regime sinusoidale) S o (t) ELETTRONICA E TELECOMUNICAZIONI CLASSE QUINTA A INF LA RISPOSTA ARMONICA DEI SISTEMI LINEARI (regime sinusoidale) S i (t) Sistema LINEARE S o (t) Quando si considerano i sistemi lineari, per essi è applicabile

Dettagli

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I

ELETTROTECNICA (10 CFU) CS INGEGNERIA MATEMATICA I ELETTOTECNICA (0 CFU) CS INGEGNEIA MATEMATICA I prova in itinere 20 Novembre 2009 SOLUZIONI - - D. (punti 4 ) ) Spiegare cosa si intende per DUALITA nello studio dei circuiti elettrici. 2) Scrivere per

Dettagli

Introduzione e richiami Simulatore PSPICE Tipi di amplificatori e loro parametri. Amplificatori Operazionali e reazione negativa

Introduzione e richiami Simulatore PSPICE Tipi di amplificatori e loro parametri. Amplificatori Operazionali e reazione negativa Amplificatori e doppi bipoli Amplificatori e doppi bipoli ntroduzione e richiami Simulatore PSPCE Tipi di amplificatori e loro parametri Amplificatori AC e differenziali Amplificatori Operazionali reali

Dettagli

SISTEMI SISTEMI DINAMO DATORE DI SET. B1y - Presentazione del gruppo di lezioni B. impostazione. progettazione

SISTEMI SISTEMI DINAMO DATORE DI SET. B1y - Presentazione del gruppo di lezioni B. impostazione. progettazione B1y - Presentazione del gruppo di lezioni B 1/9 - Dove siamo? A SISTEMI impostazione B componenti analogici D E componenti digitali F SISTEMI progettazione B1y - Presentazione del gruppo di lezioni B 2/9

Dettagli

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo

Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Elettronica I Leggi di Kirchhoff; risoluzione dei circuiti elettrici in continua; serie e parallelo Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 603 Crema email:

Dettagli

Circuiti con due generatori di tensione esercizio n. 3 metodo dei potenziali di nodo

Circuiti con due generatori di tensione esercizio n. 3 metodo dei potenziali di nodo alcolare le correnti che circolano nel circuito sotto riportato utilizzando il metodo dei potenziali di nodo, la potenza erogata (o eventualmente assorbita) dai generatori di tensione ed e quella assorbita

Dettagli

Università degli Studi di Bergamo Facoltà di Ingegneria

Università degli Studi di Bergamo Facoltà di Ingegneria Università degli Studi di Bergamo Facoltà di Ingegneria Piatti Marina _ RISOLUZIONE TEMA D ESAME CORSO DI ELETTROTECNICA A.A. 1995/96 SCRITTO 26 SETTEMBRE 1996_ Esercizio n 1 Dato il circuito in figura,

Dettagli

università DEGLI STUDI DI NAPOLI FEDERICO II

università DEGLI STUDI DI NAPOLI FEDERICO II università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà o Scuola di INGEGNERIA Registro delle Lezioni del Corso di Introduzione ai Circuiti C.d.L. in Ingegneria dell'automazione e D.d.L. in Ingegneria informatica

Dettagli

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff

Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff Elettronica Bipoli lineari; nodi e maglie; legge di Ohm; leggi di Kirchhoff alentino Liberali Dipartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Bipoli lineari;

Dettagli

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati Elettronica per telecomunicazioni Contenuto dell unità A Informazioni logistiche e organizzative Applicazione di riferimento caratteristiche e tipologie di moduli Circuiti con operazionali reazionati amplificatori

Dettagli

Testi di riferimento

Testi di riferimento Testidiriferimento [1] Biorci G.: Fondamenti di elettrotecnica: circuiti. UTET, Torino, (1984) [2] Desoer A.C., Kuh E.S.: Fondamenti di teoria dei circuiti. Franco Angeli, Milano (1999) [3] Chua L. O.,

Dettagli

Capitolo VI. Risposta in frequenza

Capitolo VI. Risposta in frequenza Capitolo VI Risposta in frequenza Nel capitolo I è stata brevemente introdotta la risposta in frequenza di un amplificatore (o, meglio, di reti a singola costante di tempo). Si è anche accennato all effetto

Dettagli

Michele Scarpiniti. L'Amplificatore Operazionale

Michele Scarpiniti. L'Amplificatore Operazionale Michele Scarpiniti L'Amplificatore Operazionale MICHELE SCARPINITI L Amplificatore Operazionale Versione 1.0 Dipartimento DIET Università di Roma La Sapienza via Eudossiana 18, 00184 Roma L AMPLIFICATORE

Dettagli

Modello di Ebers-Moll del transistore bipolare a giunzione

Modello di Ebers-Moll del transistore bipolare a giunzione D Modello di Ebers-Moll del transistore bipolare a giunzione Un transistore bipolare è un dispositivo non lineare che può essere modellato facendo ricorso alle caratteristiche non lineari dei diodi. Il

Dettagli

Indice generale. Prefazione. Capitolo 1. Richiami di analisi dei circuiti 1. Capitolo 2. Analisi in frequenza e reti STC 39

Indice generale. Prefazione. Capitolo 1. Richiami di analisi dei circuiti 1. Capitolo 2. Analisi in frequenza e reti STC 39 Indice generale Prefazione xi Capitolo 1. Richiami di analisi dei circuiti 1 1.1. Bipoli lineari 1 1.1.1. Bipoli lineari passivi 2 1.1.2. Bipoli lineari attivi 5 1.2. Metodi di risoluzione delle reti 6

Dettagli

INGEGNERIA DELLE TELECOMUNICAZIONI

INGEGNERIA DELLE TELECOMUNICAZIONI INGEGNERIA DELLE TELECOMUNICAZIONI FONDAMENTI DI AUTOMATICA Prof. Marcello Farina TEMA D ESAME E SOLUZIONI 26 luglio 213 Anno Accademico 212/213 ESERCIZIO 1 Si consideri il sistema descritto dalla equazione

Dettagli

Testi di riferimento. Ó Springer-Verlag Italia 2016 M. de Magistris and G. Miano, Circuiti, DOI /

Testi di riferimento. Ó Springer-Verlag Italia 2016 M. de Magistris and G. Miano, Circuiti, DOI / Testi di riferimento [1] Biorci G.: Fondamenti di elettrotecnica: circuiti. UTET, Torino, (1984) [2] Desoer A.C., Kuh E.S.: Fondamenti di teoria dei circuiti. Franco Angeli, Milano (1999) [3] Chua L. O.,

Dettagli

Esercitazioni di Elettrotecnica

Esercitazioni di Elettrotecnica Esercitazioni di Elettrotecnica a cura dell Ing ntonio Maffucci Parte II: ircuiti in regime sinusoidale /3 Esercitazioni di Elettrotecnica /3 Maffucci ESEIZIONE N7: Fasori ed impedenze ESEIZIO 7 Esprimere

Dettagli

L Amplificatore Operazionale G. MARSELLA UNIVERSITÀ DEL SALENTO

L Amplificatore Operazionale G. MARSELLA UNIVERSITÀ DEL SALENTO L Amplificatore Operazionale G. MARSELLA UNIVERSITÀ DEL SALENTO ü INTRODUZIONE ü A.O INVERTENTE ü A.O NON INVERTENTE ü SLEW RATE ü A.O DIFFERENZIALE ü ESEMPI Introduzione L amplificatore operazionale (AO)

Dettagli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli

Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Appunti di Elettronica I Lezione 3 Risoluzione dei circuiti elettrici; serie e parallelo di bipoli Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema email:

Dettagli

IL TEOREMA DI THEVENIN

IL TEOREMA DI THEVENIN IL TEOREMA DI THEVENIN Il teorema di Thevenin si usa per trovare più agevolmente una grandezza (corrente o tensione) in una rete elettrica. Enunciato: una rete elettrica vista a una coppia qualsiasi di

Dettagli

ESERCIZIO Punto di riposo

ESERCIZIO Punto di riposo 1/8 ESERCIZIO 1 1.1 - Punto di riposo Selatensioned uscita ènulla, ènullaanchelacorrentenellaresistenza dicaricor L edunque le correnti di canale dei transistor sono uguali tra loro; pertanto, nell ipotesi

Dettagli

Elettronica applicata

Elettronica applicata 5. LA CONTOEAZONE Un sistema si dice con retroazione se una parte del segnale di uscita viene misurata, pesata e conrontata con il segnale applicato in ingresso. Se il segnale riportato in ingresso e in

Dettagli

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2

Elettronica II Modello per piccoli segnali del diodo a giunzione p. 2 Elettronica II Modello per piccoli segnali del diodo a giunzione Valentino Liberali ipartimento di Tecnologie dell Informazione Università di Milano, 2603 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Elettrotecnica Programma dettagliato del corso

Elettrotecnica Programma dettagliato del corso Elettrotecnica Programma dettagliato del corso Docente: Claudio Serpico Corso di Laurea in Ingegneria Elettronica Anno accademico 2001-2002 1 Richiami sulle leggi dell elettromagnetismo Le sorgenti del

Dettagli

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione)

Esame di Teoria dei Circuiti - 6 luglio 2009 (Soluzione) Esame di Teoria dei Circuiti - 6 luglio 009 Soluzione) Esercizio 1 C T V C T 1 Con riferimento al circuito di figura si assumano i seguenti valori: r 1kΩ, C 1µF 10 6 F, 4V, ma. Per t < t 0 0sec l interruttore

Dettagli

Risposta temporale: esempi

Risposta temporale: esempi ...4 Risposta temporale: esempi Esempio. Calcolare la risposta al gradino unitario del seguente sistema: x(t) = u(t) s + 5 (s + )(s + ) y(t) Il calcolo della trasformata del segnale di uscita è immediato:

Dettagli

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A

Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Laboratorio di Sistemi e Segnali AA 2017/18 Esonero 1, Soluzioni A Esercizio 1 (8 punti): A media frequenza possiamo approssimare il capacitore C E con un corto. L amplificazione pertanto è g m R C dove

Dettagli

Programmazione modulare a.s

Programmazione modulare a.s Programmazione modulare a.s. 2018-2019 Indirizzo: Trasporti e Logistica Classe: 4 A t Ore settimanali previste:3 (di cui 2 di laboratorio) Libro di testo: ELETTROTECNICA, ELETTRONICA e AUTOMAZIONE ed.

Dettagli

G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3

G. Rizzoni, Elettrotecnica - Principi e applicazioni Soluzioni ai problemi, Capitolo 3 CAPITOLO 3 Analisi delle reti resistive Paragrafi da 3.2 a 3.4: Analisi ai nodi e alle maglie Problema 3.1 Correnti di maglia: Correnti di lato in Fissa una direzione per la corrente in R 1 (ad esempio

Dettagli

Liberamente tratto da Prima Legge di Ohm

Liberamente tratto da  Prima Legge di Ohm Liberamente tratto da www.openfisica.com Prima Legge di Ohm Agli estremi di due componenti elettrici di un circuito (che si possono chiamare conduttore X ed Y) è applicata una differenza di potenziale

Dettagli

Circuiti con due generatori di tensione esercizio n. 5 metodo dei potenziali di nodo

Circuiti con due generatori di tensione esercizio n. 5 metodo dei potenziali di nodo ircuiti con due generatori di tensione esercizio n. alcolare le correnti che circolano nel circuito sotto riportato utilizzando il metodo dei potenziali di nodo, la potenza erogata (o eventualmente assorbita)

Dettagli

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II

UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II Mod. 1 UNIVERSITA DEGLI STUDI DI NAPOLI FEDERICO II REGISTRO DELLE LEZIONI Anno accademico 2016-2017 Insegnamento: Introduzione ai circuiti Prof. Massimiliano de Magistris DIPARTIMENTO di Ingegneria Elettrica

Dettagli

Proprietà dei sistemi ed operatori

Proprietà dei sistemi ed operatori Segnali e Sistemi Un segnale è una qualsiasi grandezza che evolve nel tempo. Sono funzioni che hanno come dominio il tempo e codominio l insieme di tutti i valori che può assumere la grandezza I sistemi

Dettagli

Circuiti Elettrici Lineari Introduzione

Circuiti Elettrici Lineari Introduzione Facoltà di Ingegneria Università degli studi di Pavia Corso di Laurea Triennale in Ingegneria Elettronica e Informatica Circuiti Elettrici Lineari Introduzione Circuiti Elettrici Lineari a.a. 2017/18 Prof.

Dettagli

Introduzione ai circuiti

Introduzione ai circuiti università DEGLI STUDI DI NAPOLI FEDERICO II Facoltà di Ingegneria Registro delle Lezioni dell insegnamento di Introduzione ai circuiti Corso di laurea in Ingegneria delle Telecomunicazioni Dettate dal

Dettagli