La retta proiettiva appunti del corso di Geometria 1, prof. Cristina Turrini

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "La retta proiettiva appunti del corso di Geometria 1, prof. Cristina Turrini"

Transcript

1 come insieme quoziente come ampliamento della retta affine appunti del corso di Geometria 1, prof. anno acc. 2008/2009

2 come insieme quoziente come ampliamento della retta affine index 1 come insieme quoziente 2 come ampliamento della retta affine 3 4

3 come insieme quoziente come ampliamento della retta affine La relazione di equivalenza Consideriamo il piano R 2, con coordinate (x 0, x 1 ), e poniamo X = R 2 \ {0, 0}. Introduciamo in X la seguente relazione di equivalenza: Dati (x 0, x 1 ), (y 0, y 1 ) X (x 0, x 1 ) (y 0, y 1 ) (sono equivalenti), se λ (R \ {0}) tale che sia (y 0, y 1 ) = λ(x 0, x 1 ), ovvero y 0 = λx 0 e y 1 = λx 1. Quindi, ad esempio, (1, 3) (1/5, 3/5). Esercizio: verificare che è una relazione di equivalenza

4 come insieme quoziente come ampliamento della retta affine L insieme quoziente Se x 0 0, (x 0, x 1 ) (y 0, y 1 ) vuol dire x 1 /x 0 = y 1 /y 0. Se x 0 = 0, (0, x 1 ) (0, y 1 ) x 1, y 1 0. Dunque la relazione identifica tra loro tutti i punti (diversi dall origine) che appartengono ad una stessa retta per l origine. Sia (x 0, x 1 ) X; si denota con [(x 0, x 1 )], o anche con (x 0 : x 1 ), la classe di equivalenza di (x 0, x 1 ), pertanto [(x 0, x 1 )] = (x 0 : x 1 ) = {(y 0, y 1 ) (y 0, y 1 ) (x 0, x 1 )}. L insieme quoziente, ovvero l insieme delle classi di equivalenza, X/ = {(x 0 : x 1 )} rappresenta il fascio di rette per l origine (ciascuna privata dell origine).

5 come insieme quoziente come ampliamento della retta affine X/ viene detto retta proiettiva e indicato con P 1. Sia l una retta per l origine e sia (x 0 : x 1 ) = l \(0, 0). Se (a 0, a 1 ) l \(0, 0), (a 0, a 1 ) viene detta una coppia di coordinate omogenee di l. Le coordinate omogenee non sono mai contemporaneamente nulle e sono definite a meno di un fattore di proporzionalità λ (R \ {0}). (a 0 : a 1 ) viene detto punto di P 1. P 1 fascio di rette per (0, 0)

6 come insieme quoziente come ampliamento della retta affine index 1 come insieme quoziente 2 come ampliamento della retta affine 3 4

7 come insieme quoziente come ampliamento della retta affine Coordinate nel fascio di rette Fissiamo la retta r di equazione x 0 = 1. l (0, 0) (diversa dall asse x 1 ), l taglia la retta r nel punto di coordinate (1, a 1 /a 0 ). L asse x 1 ha coordinate omogenee (0, 1). Si è così definita una corrispondenza biunivoca fascio \ { asse x 1 } r l (1, a 1 /a 0 ) ovvero P 1 \ {(0, 1)} A 1 (a 0 : a 1 ) a 1 /a 0 (1 : a) a (a 0, a 1 ) coordinate omogenee, a coordinata affine

8 come insieme quoziente come ampliamento della retta affine P 1 come quoziente e come ampliamento Quando la retta l del fascio "tende" all asse x 1, il punto (a 0 : a 1 ) "tende" a (0 : 1) e il rapporto a 1 /a 0 = P 1 "=" A 1 { }. (R 2 \ {(0, 0)})/ P 1 = A 1 { } La corrispondenza biunivoca P 1 \ {(0, 1)} A 1 (a 0 : a 1 ) a 1 /a 0 si estende a una corrispondenza biunivoca P 1 A 1 { } a 1 /a 0 se a 0 0 (a 0 : a 1 ) se a 0 = 0 che si inverte così a (1 : a), se a, e (0 : 1).

9 come insieme quoziente come ampliamento della retta affine Modello topologico di P 1 Un modello intuitivo di P 1 è la circonferenza. γ circonferenza Per proiezione da N si instaura una corrispondenza biunivoca γ \ {N} r = A 1 P < NP > r che si può estendere a una corrispondenza biunivoca γ P 1 ponendo N Punti che si "avvicinano" a N, si proiettano su punti che "vanno all infinito"

10 come insieme quoziente come ampliamento della retta affine index 1 come insieme quoziente 2 come ampliamento della retta affine 3 4

11 come insieme quoziente come ampliamento della retta affine Affinità Considerato P 1 = A 1 { }, un affinità α : A 1 A 1 di equazione α(x) = ax + b, a 0, può essere interpretata come trasformazione α : P 1 P 1 ponendo α( ) = e α(x) = α(x), altrove. Ponendo x = x 1 /x 0, α(x) = x = x 1 /x 0, α si può anche esprimere in coordinate omogenee così: x 1 = a x x 0 1 x 0 + b = ax 1+bx 0 x 0, cioè { ρx 0 = x 0 ρx 1 = ax con ρ bx 0 In altri termini si ha α(x 0 : x 1 ) = (x 0 : ax 1 + bx 0 ) e tale scrittura è valida non solo per i punti di A 1, ma anche per il punto = (0 : 1), infatti α(0 : 1) = (0 : a) = (0 : 1), cioè α( ) =.

12 come insieme quoziente come ampliamento della retta affine Le affinità così estese sono casi particolari di trasformazioni dette proiettività(o omografie). Una proiettività di P 1 in sè è una trasformazione ω : P 1 P 1 che, in coordinate omogeneee, si esprime nella forma { ρx 0 = a 00 x 0 + a 01 x 1 ρx 1 = a 10x 0 + a 11 x 1 ove ω((x 0 : x 1 )) = (x 0 : x 1 ), a 00, a 01 a 10 a 11 R e con la condizione a 00 a 11 a 01 a La condizione a 00 a 11 a 01 a 10 0 si scrive anche a 00 a 01 a 10 a 0 e 11 garantisce l invertibità della corrispondenza (si veda dopo). In coordinate affini x = x 1 /x 0 e x = x 1 /x 0, ω si esprime nella forma x = a 10+a 11 x a 00 +a 01 x, con a 00 a 01 a 10 a 11 0.

13 come insieme quoziente come ampliamento della retta affine La definizione è ben posta Si noti che la definizione data di proiettività è ben posta, ovvero passa ai quozienti : P 1 = R 2 \ {0.0} P 1 = R 2 \ {0.0}. In altri termini si ha ω(λx 0 : λx 1 ) = ω(x 0 : x 1 ) Infatti ω(x 0 : x 1 ) = (a 00 x 0 + a 01 x 1 : a 10 x 0 + a 11 x 1 ) e ω(λx 0 : λx 1 ) = (a 00 λx 0 + a 01 λx 1 : a 10 λx 0 + a 11 λx 1 ) = (λ(a 00 x 0 + a 01 x 1 ) : λ(a 10 x 0 + a 11 x 1 )) = (a 00 x 0 + a 01 x 1 : a 10 x 0 + a 11 x 1 ) = ω(x 0 : x 1 ) Non avrebbe alcun senso invece, ad esempio, considerare una corrispondenza η : P 1 P 1 definita da η(x 0 : x 1 ) = (x 0 : x 1 + 1), dal momento che si avrebbe η(1 : 1) = (1 : 2) e η(2 : 2) = (2 : 3), con (1 : 1) = (2 : 2), ma (1 : 2) (2 : 3).

14 come insieme quoziente come ampliamento della retta affine inversa { Per semplicità di scrittura poniamo ρx 0 = hx 0 + kx 1 ρx 1 = lx con h k 0 + mx 1 l m 0, ovvero x = l+mx h+kx, o, kxx mx + hx l = 0. Se fosse h l m k = 0, si avrebbe la proporzione h : l = k : m, e quindi ad esempio h = λl, k = λm e x = l+mx λl+λmx = l+mx λ(l+mx) = 1/λ = costante. L applicazione pertanto non sarebbe biunivoca. La condizione h l m k 0, permette di invertire ω e l inversa ω 1 di ω è definita da ω 1 : x (la verifica è lasciata per esercizio). l hx m + kx

15 come insieme quoziente come ampliamento della retta affine Caratterizzazione delle affinità Si consideri la proiettività ω : P 1 P 1, che, in coordinate affini, si esprime nella forma x = l+mx h+kx, con h l m k 0. L immagine, tramite ω del punto all infinito P 1 è ω( ) = m/k, infatti in coordinate omogenee si ha ω(x 0 : x 1 ) = (hx 0 + kx 1 : lx 0 + mx 1 ), e quindi ω(0 : 1) = (k : m). Viceversa, il punto di P 1 che viene trasformato in è h/k, cioè ω( h/k) =, infatti ω(k : h) = (hk kh : lk mh) = (0 : 1). Una proiettività è una affinità se e solo se trasforma in (la verifica è lasciata per esercizio).

16 come insieme quoziente come ampliamento della retta affine L inversione Un esempio di proiettività che non è un affinità { è l inversione, ovvero ρx la trasformazione definita da x = 1/x, ossia 0 = x 1 ρx 1 = x. 0 Ogni proiettività può essere ottenuta componendo un numero finito di affinità e inversioni. Ad esempio, se k 0, componendo, nell ordine, l affinità x = h + kx, con l inversione x = 1/x e con l affinità x = m k + lk mh k x, si ottiene la proiettività x = l+mx h+kx.

17 come insieme quoziente come ampliamento della retta affine Birapporto Dati quattro punti A, B, C e D di P 1, distinti a due a due, se sono tutti punti al finito (cioè se A, B, C, D A 1 ), si dice birapporto di A, B, C, D (in quest ordine) il rapporto tra i rapporti semplici (ABC) e (ABD) ovvero il numero reale (ABCD) = (ABC) (ABD) = AC BC AD BD (c 1 a 0 a 1 c 0 ) (d 1 b 0 b 1 d 0 ) (d 1 a 0 a 1 d 0 ) (c 1 b 0 b 1 c 0 ) = AC BD AD BC = (c a)(d b) (d a)(c b) =, ove a, b, c, d e (a 0, a 1 ), (b 0, b 1 ), (c 0, c 1 ), (d 0, d 1 ) denotano rispettivamente le coordinate affini e le coordinate omogenee dei punti A, B, C, D. La definizione così data si estende anche al caso in cui uno dei punti è.

18 come insieme quoziente come ampliamento della retta affine e birapporto Le proiettività conservano il birapporto delle quaterne di punti allineati, ovvero per una proiettività si ha (ω(a)ω(b)ω(c)ω(d)) = (ABCD). Per provarlo basta fare la verifica per le affinità (per cui è ovvio, dal momento che le affinità conservano i rapporti semplici) e per l inversione (esercizio). Esempio Se i quattro punti A, B, C e D sono "equidistanziati", allora (ABCD) = 4/3. (ABCD) = AC/BC AD/BD = 2/1 3/2 = 4/3

19 come insieme quoziente come ampliamento della retta affine e birapporto In realtà l asserzione secondo cui le proiettività conservano il birapporto delle quaterne di punti allineati può anche essere invertita, ovvero le proprietà di conservare il birapporto caratterizza le proiettività. In altri termini si ha: una trasformazione della retta proiettiva in sè è una proiettività se e solo se conserva i birapporti. Inoltre, dati sulla retta tre punti distinti A, B e C ed altri tre punti distinti A, B e C esiste un unica proiettività che muta rispettivamente A, B e C in A, B e C e l equazione di tale proiettività può essere ottenuta così: (ABCX) = (A B C X ).

20 come insieme quoziente come ampliamento della retta affine index 1 come insieme quoziente 2 come ampliamento della retta affine 3 4

21 come insieme quoziente come ampliamento della retta affine Sono equidistanti? Possiamo stabilire se nella realtà i birilli qui fotografati sono disposti a intervalli regolari lungo una retta? Per rispondere dobbiamo fare una digressione.

22 come insieme quoziente come ampliamento della retta affine Prospettività La definizione di proiettività di una retta in sè si estende in modo ovvio a proittività tra rette distinte. Esempi significativi di proiettività tra rette (complanari) sono le prospettività. Dati nel piano due rette r ed r ed un punto V fuori da esse, si può definire un applicazione da P 1 = r { } a P 1 = r { }, per proiezione da V, come in figura. Il punto di intersezione di r con la parallela a r mandata da V viene trasformato nel punto improprio di r. Il punto improprio di r viene trasformato nel punto di intersezione di r con la parallela a r per V.

23 come insieme quoziente come ampliamento della retta affine Un esempio di prospettività Le prospettività sono proiettività. Verifichiamo questa asserzione su un esempio. Supponiamo che le rette r ed r siano rispettivamente l asse delle ordinate e l asse delle ascisse, e che il centro di proiezione sia il punto V ( 1, 1). La prospettività di centro V associa al punto P (0, t) il punto P (t, 0), tale che sia t = t 1 t La prospettività è pertanto la proiettività di equazione x = x 1 x. Si potrebbe dimostrare che una qualsiasi proiettività può essere ottenuta come composizione di prospettività.

24 come insieme quoziente come ampliamento della retta affine Quattro punti allineati La corrispondenza che sussiste tra i quattro punti allineati A, B, C, D e le loro immagini A, B, C, D sul quadro è la prospettività di centro V. Abbiamo già visto che, se i quattro punti sono equidistanziati, il birapporto (ABCD) è 4/3. Quindi anche il birapporto (A B C D ) deve essere 4/3 (il birapporto è un invariante proiettivo). Il nostro occhio è abituato a riconoscere immagini di oggetti disposti in modo regolare, cioè a "calcolare birapporti".

La retta proiettiva appunti del corso di Geometria 1, prof. Cristina Turrini. anno acc. 2007/2008

La retta proiettiva appunti del corso di Geometria 1, prof. Cristina Turrini. anno acc. 2007/2008 appunti del corso di Geometria 1, prof. anno acc. 2007/2008 La relazione di equivalenza Consideriamo il piano R 2, con coordinate (x 0, x 1 ) e poniamo X = R 2 \ {0, 0}. Introduciamo in X la seguente relazione

Dettagli

Il piano proiettivo appunti del corso di Geometria 1, prof. Cristina Turrini. anno acc. 2008/2009

Il piano proiettivo appunti del corso di Geometria 1, prof. Cristina Turrini. anno acc. 2008/2009 appunti del corso di Geometria 1, prof. anno acc. 2008/2009 Alcune "asimmetrie" del piano affine Nel piano affine A 2, si hanno le seguenti proprietà di incidenza. 1 P, Q A 2, con P e Q, punti distinti

Dettagli

Università degli Studi di Milano Corso di laurea in Matematica e in Matematica per le applicazioni. Geometria I

Università degli Studi di Milano Corso di laurea in Matematica e in Matematica per le applicazioni. Geometria I Università degli Studi di Milano Corso di laurea in Matematica e in Matematica per le applicazioni Geometria I appunti del corso tenuto dalla profssa Cristina Turrini anno accademico 2004/05 2 Questi appunti

Dettagli

Esercizi geometria analitica nel piano. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nel piano. Corso di Laurea in Informatica A.A. Docente: Andrea Loi. Correzione Esercizi geometria analitica nel piano Corso di Laurea in Informatica A.A. Docente: Andrea Loi Correzione 1. Scrivere le equazioni parametriche delle rette r e s di equazioni cartesiane r : 2x y + = 0

Dettagli

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k

P z. OP x, OP y, OP z sono le proiezioni ortogonali di v sugli assi x, y, z, per cui: OP x = ( v i) i. k j. P x. OP z = ( v k) k Richiami di calcolo vettoriale Consideriamo il vettore libero v = OP. Siano P x, P y, P z le proiezioni ortogonali di P sui tre assi cartesiani. v è la diagonale del parallelepipedo costruito su OP x,

Dettagli

Coordinate cartesiane e coordinate omogenee

Coordinate cartesiane e coordinate omogenee Coordinate cartesiane e coordinate omogenee Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Ad ogni punto P del piano possiamo associare le coordinate cartesiane (x, y),

Dettagli

Lezione 5 Geometria Analitica 1

Lezione 5 Geometria Analitica 1 Lezione 5 Geometria Analitica 1 Donato A Ciampa In questa lezione richiameremo alcune nozioni della geometria analitica, quali le trasformazioni del piano in se stesso e le varie equazioni relative alla

Dettagli

Capitolo 2. Cenni di geometria analitica nel piano

Capitolo 2. Cenni di geometria analitica nel piano Capitolo Cenni di geometria analitica nel piano 1 Il piano cartesiano Il piano cartesiano è una rappresentazione grafica del prodotto cartesiano R = R R La rappresentazione grafica è possibile se si crea

Dettagli

Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche

Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche Didattica della Matematica 1 e Didattica della Matematica e della Fisica - classi A047 e A049 Trasformazioni geometriche anno acc. 2013/2014 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi

Dettagli

TRASFORMAZIONI GEOMETRICHE

TRASFORMAZIONI GEOMETRICHE TRASFORMAZIONI GEOMETRICHE Def. Una trasformazione geometrica T tra i punti di un piano è una corrispondenza biunivoca che ad ogni punto P del piano associa uno e un solo punto P' appartenente al piano

Dettagli

Omologia e CABRI. Chiameremo piano proiettivo il piano euclideo completato con i punti della retta all infinito.

Omologia e CABRI. Chiameremo piano proiettivo il piano euclideo completato con i punti della retta all infinito. Omologia e CABRI Definizioni Chiameremo piano proiettivo il piano euclideo completato con i punti della retta all infinito. I punti all infinito del piano proiettivo si dicono punti impropri, la retta

Dettagli

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante.

Geometria 3 A.A Esercizi. Irriducibilità di polinomi di più variabili. Discriminante. Geometria 3 A.A. 2016 2017 Esercizi Irriducibilità di polinomi di più variabili. Discriminante. Risultante. Si dimostri che il polinomio f(x, y) = x 2 y +x 5 +1 è irriducibile in C[x, y]. Sia K un campo.

Dettagli

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u.

Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Fissiamo nel piano un sistema di riferimento cartesiano ortogonale O, x, y, u. Definizione Una conica è il luogo dei punti, propri o impropri, reali o immaginari, che con le loro coordinate omogenee (x,

Dettagli

Le bigezioni tra due rette proiettive definite come quella precedente tra r e r si dicono prospettività.

Le bigezioni tra due rette proiettive definite come quella precedente tra r e r si dicono prospettività. 1. SPAZI PROIETTIVI 1.1. La retta proiettiva. Consideriamo nel piano due rette incidenti r e r, ed un punto Q esterno ad esse. Possiamo associare al generico punto P di r il punto P ottenuto come intersezione

Dettagli

SULLE PROPOSIZIONI 138 E 139 DEL LIBRO VII DELLA COLLEZIONE MATEMATICA DI PAPPO

SULLE PROPOSIZIONI 138 E 139 DEL LIBRO VII DELLA COLLEZIONE MATEMATICA DI PAPPO SULLE PROPOSIZIONI 138 E 139 DEL LIBRO VII DELLA COLLEZIONE MATEMATICA DI PAPPO di Nazario Magnarelli [L.S. G.B. Grassi, Latina] Vogliamo esporre una dimostrazione del noto teorema di Pappo contenuto nelle

Dettagli

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica Didattica della Matematica per il triennio Geometria sintetica e geometria analitica anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica

Dettagli

LA PARABOLA E LA SUA EQUAZIONE

LA PARABOLA E LA SUA EQUAZIONE LA PARABOLA E LA SUA EQUAZIONE Prof. Giovanni Ianne CHE COS È LA PARABOLA DEFINIZIONE Parabola Scegliamo sul piano un punto F e una retta d. Possiamo tracciare sul piano i punti equidistanti da F e da

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 4 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 4 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 4 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 5.2, 5.3

Dettagli

GEOMETRIA 1 Corso di Geometria 1 (prima parte)

GEOMETRIA 1 Corso di Geometria 1 (prima parte) GEOMETRIA 1 Corso di Geometria 1 (prima parte) Maria Dedò e Cristina Turrini 2011/2012 Maria Dedò e Cristina Turrini (2011/2012) GEOMETRIA 1 1 / 109 index Vettori 1 Vettori 2 Retta, piano e spazio affini

Dettagli

Esercitazioni di Geometria A: spazi proiettivi

Esercitazioni di Geometria A: spazi proiettivi Esercitazioni di Geometria A: spazi proiettivi 30-31 marzo 016 Esercizio 1 Esercizio dell appello (del corso di Geometria II) di luglio 015. Soluzione dell esercizio 1 Si vedano le soluzioni in rete sulla

Dettagli

22 Novembre Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non

22 Novembre Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non Primo esonero di GEOMETRIA 3 - C. L. Matematica 22 Novembre 2013 1. Sia T α : RP 1 RP 1 la trasformazione proiettiva determinata dalla matrice non singolare ( ) α 2. 1 0 (a) Si determini, al variare del

Dettagli

Geometria analitica: rette e piani

Geometria analitica: rette e piani Geometria analitica: rette e piani Equazioni del piano Intersezioni di piani. Rette nello spazio Fasci di piani e rette Intersezioni fra piani e rette Piani e rette ortogonali Piani di forma parametrica

Dettagli

Esercizi Riepilogativi Svolti Esercizio 1: Si consideri R 3 come spazio cartesiano, con riferimento cartesiano standard (O; x

Esercizi Riepilogativi Svolti Esercizio 1: Si consideri R 3 come spazio cartesiano, con riferimento cartesiano standard (O; x Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) - a.a. 00/0 I Semestre Docente: Prof. F. Flamini Esercizi Riepilogativi Svolti

Dettagli

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA

Geometria Anali-ca. DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA Geometria Anali-ca DOCENTE: Vincenzo Pappalardo MATERIA: Matematica LA PARABOLA INTRODUZIONE La parabola fa parte di un insieme di curve (circonferenza, ellisse, iperbole) chiamate coniche, perché si possono

Dettagli

Trasformazioni geometriche del piano. 3 marzo 2013

Trasformazioni geometriche del piano. 3 marzo 2013 Trasformazioni geometriche del piano 3 marzo 2013 1 Indice 1 Trasformazioni geometriche del piano 3 1.1 Affinità............................... 4 1.2 Isometrie.............................. 8 1.2.1 Simmetrie..........................

Dettagli

1.1 Coordinate sulla retta e nel piano; rette nel piano

1.1 Coordinate sulla retta e nel piano; rette nel piano 1 Sistemi lineari 11 Coordinate sulla retta e nel piano; rette nel piano Coordinate sulla retta Scelti su una retta un primo punto O (origine) ed un diverso secondo punto U (unita ), l identificazione

Dettagli

1 Geometria analitica nel piano

1 Geometria analitica nel piano Lezioni di Geometria a.a. 2007-2008 cdl SIE prof. C. Franchetti 1 Geometria analitica nel piano 1.1 Distanza di due punti Siano P 1 = (x 1, y 1 ), P 2 = (x 2, y 2 ) due punti del piano, se d(p 1, P 2 )

Dettagli

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni

Corso di Geometria BIAR, BSIR Esercizi 8: soluzioni Corso di Geometria 2010-11 BIAR, BSIR Esercizi 8: soluzioni Esercizio 1. a) Disegnare la retta r di equazione cartesiana x 2y 4 = 0. b) Determinare l equazione cartesiana della retta r 1 passante per P

Dettagli

= 0. X 1 Y 1. r Q(q) [1, q] r [0, 1]

= 0. X 1 Y 1. r Q(q) [1, q] r [0, 1] 146 5 Complementi Complementi Più che complementi, i paragrafi successivi sono lo studio diretto degli spazi proiettivi in dimensione bassa, che può essere affrontato anche indipendentemente dal capitolo

Dettagli

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1

Rette e piani nello spazio Federico Lastaria, Analisi e Geometria 1. Politecnico di Milano Corso di Analisi e Geometria 1 ette e piani nello spazio Federico Lastaria, Analisi e Geometria 1 Politecnico di Milano Corso di Analisi e Geometria 1 Federico Lastaria federico.lastaria@polimi.it ette e piani nello spazio. 9 Gennaio

Dettagli

Esercizî di Geometria

Esercizî di Geometria Esercizî di Geometria (Carlo Petronio Foglio del 27/4/2015 Esercizio 1 Determinare l espressione dell isometria di R 2 descritta: (a La riflessione σ rispetto alla retta l di equazione 3x 2 = 5; ( 3 (b

Dettagli

Esercizi Riepilogativi Svolti

Esercizi Riepilogativi Svolti Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA Edile-Architettura e dell Edilizia SPAZI EUCLIDEI. TRASFORMAZIONI. ORIENTAZIONI. FORMULE DI GEOMETRIA IN R. Docente:

Dettagli

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2

Formulario. Coordinate del punto medio M di un segmento di estremi A(x 1, y 1 ) e B(x 2, y 2 ): x1 + x y 2 Formulario Componenti di un vettore di estremi A(x 1, y 1 e B(x 2, y 2 B A = AB = (x2 x 1 i + (y 2 y 1 j Distanza tra due punti A(x 1, y 1 e B(x 2, y 2 : AB = (x 2 x 1 2 + (y 2 y 1 2 Coordinate del punto

Dettagli

Lezione 6 Richiami di Geometria Analitica

Lezione 6 Richiami di Geometria Analitica 1 Piano cartesiano Lezione 6 Richiami di Geometria Analitica Consideriamo nel piano due rette perpendicolari che si intersecano in un punto O Consideriamo ciascuna di queste rette come retta orientata

Dettagli

21. (cenni di) Geometria analitica del piano.

21. (cenni di) Geometria analitica del piano. . (cenni di) Geometria analitica del piano... Definizione. Sia π un piano e sia O un suo punto. Siano i e j due versori ortogonali tra loro e paralleli al piano π. Diremo che la terna ordinata (O, i, j)

Dettagli

ELEMENTI DI GEOMETRIA PROIETTIVA

ELEMENTI DI GEOMETRIA PROIETTIVA ELEMENTI DI GEOMETRIA PROIETTIVA SANSONETTO NICOLA 1. Introduzione Questi appunti delle Lezioni di una parte del modulo di Elementi di Geometria per il corso di Algebra Lineare con Elementi di Geometria

Dettagli

Istituzioni di Matematiche seconda parte

Istituzioni di Matematiche seconda parte Istituzioni di Matematiche seconda parte anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Istituzioni di Matematiche 1 / 31 index Proprietà elementari dei

Dettagli

Coordinate Cartesiane nel Piano

Coordinate Cartesiane nel Piano Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi

Dettagli

ELEMENTI DI GEOMETRIA PROIETTIVA

ELEMENTI DI GEOMETRIA PROIETTIVA ELEMENTI DI GEOMETRIA PROIETTIVA SANSONETTO NICOLA 1. Introduzione Questi appunti delle Lezioni di una parte del modulo di Elementi di Geometria per il corso di Algebra Lineare con Elementi di Geometria

Dettagli

LEZIONE 9. Figura 9.1.1

LEZIONE 9. Figura 9.1.1 LEZIONE 9 9.1. Equazioni cartesiane di piani. Abbiamo visto come rappresentare parametricamente un piano. Un altro interessante metodo di rappresentazione di un piano nello spazio è tramite la sua equazione

Dettagli

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni

Corso di Laurea in Matematica Geometria 2. Foglio di esercizi n. 2 a.a Soluzioni Corso di Laurea in Matematica Geometria 2 Foglio di esercizi n. 2 a.a. 2015-16 Soluzioni Gli esercizi sono presi dal libro di Manetti. Per svolgere questi esercizi, studiare con cura i paragrafi 3.5, 3.6,

Dettagli

Negli esercizi che seguono ci sono alcune cose da specificare:

Negli esercizi che seguono ci sono alcune cose da specificare: DISCLAIMER Negli esercizi che seguono ci sono alcune cose da specificare: ) voi dovete interpretare i simboli V e A (R) sempre come R. Questo oggetto sarà chiamato alle volte piano affine e alle volte

Dettagli

Stilwell, in The four pillars of geometry, nel cap. 5 dal titolo Prospettiva propone questo esercizio (pag. 91):

Stilwell, in The four pillars of geometry, nel cap. 5 dal titolo Prospettiva propone questo esercizio (pag. 91): 5. Il birapporto. Un adulto, anche se non esperto in disegno, quando voglia tracciare lo schizzo di un dado abbozza un solo quadrato, o al più due, per rappresentare una faccia verticale e quella opposta,

Dettagli

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry)

GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) GEOMETRIA ANALITICA NELLO SPAZIO (3D Geometry) SISTEMA DI RIFERIMENTO NELLO SPAZIO La geometria analitica dello spazio è molto simile alla geometria analitica del piano. Per questo motivo le formule sono

Dettagli

I teoremi della funzione inversa e della funzione implicita

I teoremi della funzione inversa e della funzione implicita I teoremi della funzione inversa e della funzione implicita Appunti per il corso di Analisi Matematica 4 G. Mauceri Indice 1 Il teorema della funzione inversa 1 Il teorema della funzione implicita 3 1

Dettagli

1 Rette e piani in R 3

1 Rette e piani in R 3 POLITECNICO DI MILANO. FACOLTÀ DI INGEGNERIA INDUSTRIALE. Analisi e Geometria 1. Sez. D - G. Docenti: Federico G. Lastaria, Mauro Saita, Nadir Zanchetta,. 1 1 Rette e piani in R 3 Una retta parametrizzata

Dettagli

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte

Politecnico di Torino Facoltà di Architettura. Raccolta di esercizi proposti nelle prove scritte Politecnico di Torino Facoltà di Architettura Raccolta di esercizi proposti nelle prove scritte relativi a: algebra lineare, vettori e geometria analitica Esercizio. Determinare, al variare del parametro

Dettagli

Algebra Lineare e Geometria, a.a. 2012/2013

Algebra Lineare e Geometria, a.a. 2012/2013 Diario delle esercitazioni e lezioni per il corso di Algebra Lineare e Geometria, a.a. 2012/2013 (solo la parte per Fisici e Matematici, non ci sono le lezioni del Modulo B) Lidia Stoppino Lezione 1 9

Dettagli

Note di geometria analitica nel piano

Note di geometria analitica nel piano Note di geometria analitica nel piano e-mail: maurosaita@tiscalinet.it Versione provvisoria. Novembre 2015. 1 Indice 1 Punti e vettori spiccati dall origine 3 1.1 Coordinate......................................

Dettagli

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Edile ed Edile/Architettura. Geometria Proiettiva Docente F.

Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Edile ed Edile/Architettura. Geometria Proiettiva Docente F. Universita degli Studi di Roma Tor Vergata Facolta di Ingegneria Edile ed Edile/Architettura Geometria Proiettiva Docente F. Flamini CONICHE PROIETTIVE: Classificazione e forme canoniche proiettive Si

Dettagli

Per ciascuna quaterna di punti complanari, determinare un piano che li contiene.

Per ciascuna quaterna di punti complanari, determinare un piano che li contiene. Sapienza Università di Roma Corso di laurea in Ingegneria Energetica Geometria - A.A. 2016-2017 prof. Cigliola Foglio n.12 Geometria affine dello spazio Esercizio 1. Stabilire se i seguenti punti A, B,

Dettagli

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI

VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI Universita degli Studi di Roma - "Tor Vergata" - Facolta Ingegneria Esercizi GEOMETRIA (Edile-Architettura e dell Edilizia) PRODOTTO VETTORIALE E PRODOTTO MISTO. PIANI E RETTE DI R 3. FASCI E STELLE. FORMULE

Dettagli

Esercizi per Geometria II Geometria euclidea e proiettiva

Esercizi per Geometria II Geometria euclidea e proiettiva Esercizi per Geometria II Geometria euclidea e proiettiva Filippo F. Favale 10 aprile 01 Esercizio 1 Sia E 3 lo spazio euclideo tridimensionale dotato di un riferimento cartesiano ortonormale di coordinate

Dettagli

ESERCIZI DI RIPASSO, A.A

ESERCIZI DI RIPASSO, A.A ESERCIZI DI RIPASSO, A.A. 14-15 Per ogni risposta, segnare V se è vera, F se è falsa. Ogni test viene valutato 3 punti se vengono date tutte e sole le risposte corrette. Altrimenti, la valutazione è 0.

Dettagli

= x4 + y 4 + 2x 2 y 2 (x 2 + y 2 ) 2 = 1,

= x4 + y 4 + 2x 2 y 2 (x 2 + y 2 ) 2 = 1, Geometria I - Scritto #1-11-6-14 (15:-17:, U9-7) p1/6 Cognome: Nome: Matricola: Dare una dimostrazione esauriente di tu e le risposte, su un foglio a parte (scrivere nome e matricola su tu i i fogli consegnati)

Dettagli

Formulario di Geometria Analitica a.a

Formulario di Geometria Analitica a.a Formulario di Geometria Analitica a.a. 2006-2007 Dott. Simone Zuccher 23 dicembre 2006 Nota. Queste pagine potrebbero contenere degli errori: chi li trova è pregato di segnalarli all autore zuccher@sci.univr.it).

Dettagli

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi

Vi prego di segnalare ogni inesattezza o errore tipografico a Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi ESERCIZI DI GEOMETRIA 3 Vi prego di segnalare ogni inesattezza o errore tipografico a mll@unife.it Spazi metrici, spazi topologici, applicazioni continue ed omeomorfismi Esercizio 1. Sia (X, d) uno spazio

Dettagli

La circonferenza. Tutti i diritti sono riservati.

La circonferenza. Tutti i diritti sono riservati. La circonferenza Copyright c 008 Pasquale Terrecuso Tutti i diritti sono riservati. L equazione della circonferenza La circonferenza come luogo geometrico....................................... Questioni

Dettagli

2.1 Numeri naturali, interi relativi, razionali

2.1 Numeri naturali, interi relativi, razionali 2.1 Numeri naturali, interi relativi, razionali Definizione L insieme N = {0, 1, 2, 3,...} costituito dallo 0 e dai numeri interi positivi è l insieme dei numeri naturali. Se a, b 2 N, allora mentre non

Dettagli

[ ], classe. ( ) = 0 di grado n. [ ] di terne non nulle di. [ ] = x 1 x LE CONICHE DEL PIANO REALE

[ ], classe. ( ) = 0 di grado n. [ ] di terne non nulle di. [ ] = x 1 x LE CONICHE DEL PIANO REALE LE CONICHE DEL PIANO REALE 1. - IL PIANO PROIETTIVO REALE A) Coordinate omogenee Ad ogni punto P= x,y del piano R associamo una terna ordinata ( x 0, x 1, x ) non nulla in modo che: x = x 1 x 0 y = x x

Dettagli

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003

Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria II assegnati da dicembre 2000 a dicembre 2003 Dipartimento di Matematica Corso di laurea in Matematica Compiti di Geometria assegnati da dicembre 2000 a dicembre 2003 11/12/2000 n R 4 sono assegnati i punti A(3, 0, 1, 0), B(0, 0, 1, 0), C(2, 1, 0,

Dettagli

Punti nel piano cartesiano

Punti nel piano cartesiano Punti nel piano cartesiano In un piano consideriamo due rette perpendicolari che chiamiamo x e. Solitamente, disegniamo la retta x (ascisse) orizzontalmente e orientata da sinistra a destra, la retta e

Dettagli

Condizione di allineamento di tre punti

Condizione di allineamento di tre punti LA RETTA L equazione lineare in x e y L equazione: 0 con,,, e non contemporaneamente nulli, si dice equazione lineare nelle due variabili e. Ogni coppia ; tale che: 0 si dice soluzione dell equazione.

Dettagli

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione

Esercizi geometria analitica nello spazio. Corso di Laurea in Informatica. Docente: Andrea Loi. Correzione Esercizi geometria analitica nello spazio Corso di Laurea in Informatica Docente: Andrea Loi Correzione 1. Denotiamo con P 1, P 13, P 3, P 1, P, P 3, P i simmetrici di un punto P rispetto ai piani coordinati

Dettagli

Geometria e Topologia I - 15 lug 2008 (14:30 - U1-02) 1/10. Cognome:... Nome:... Matricola:...

Geometria e Topologia I - 15 lug 2008 (14:30 - U1-02) 1/10. Cognome:... Nome:... Matricola:... Geometria e Topologia I - 5 lug 2008 (4:0 - U-02) /0 Cognome:................ Nome:................ Matricola:................ (Dare una dimostrazione esauriente di tutte le risposte.) () Si determinino

Dettagli

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3

Esercitazione di Geometria I 13 dicembre Esercizio 1. Esercizio 2. Esercizio 3 Esercitazione di Geometria I 13 dicembre 2008 a. Completa la seguente definizione: i vettori v 1, v 2,..., v n del K-spazio vettoriale V si dicono linearmente dipendenti se... b. Siano w 1, w 2, w 3 vettori

Dettagli

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 )

Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Testo 1: Lavoro individuale: leggi attentamente il testo e completa il testo che trovi al termine del stesso. (10 ) Lavoro di gruppo T1: discuti assieme ai tuoi compagni il significato di quanto hai letto

Dettagli

Geometria BAER Canale A-K Esercizi 11

Geometria BAER Canale A-K Esercizi 11 Geometria BAER 6-7 Canale A-K Esercizi Esercizio. Scrivere la matrice delle seguenti trasformazioni ortogonali del piano (a Proiezione ortogonale sulla retta x + y = (b Rotazione di π/4 seguita da riflessione

Dettagli

IL PIANO CARTESIANO E LA RETTA

IL PIANO CARTESIANO E LA RETTA IL PIANO CARTESIANO E LA RETTA ESERCIZI 1. Le coordinate di un punto su un piano 1 A Scrivi le coordinate dei punti indicati in figura. 1 B Scrivi le coordinate dei punti indicati in figura. Rappresenta

Dettagli

RELAZIONI e CORRISPONDENZE

RELAZIONI e CORRISPONDENZE RELAZIONI e CORRISPONDENZE Siano X e Y due insiemi non vuoti si chiama relazione tra X e Y un qualunque sottoinsieme del prodotto cartesiano: X x Y = {(x,y): x X, y Y} L insieme costituito dai primi (secondi)

Dettagli

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni

Corso di Geometria Meccanica, Elettrotecnica Esercizi 11: soluzioni Corso di Geometria 0- Meccanica Elettrotecnica Esercizi : soluzioni Esercizio Scrivere la matrice canonica di ciascuna delle seguenti trasformazioni lineari del piano: a) Rotazione di angolo π b) Rotazione

Dettagli

Fasci di rette nel piano affine

Fasci di rette nel piano affine Fasci di rette nel piano affine Definizione Data una retta r 0 di equazione a 0 x + b 0 y + c 0 = 0, si chiama fascio improprio di sostegno r 0 la totalità delle rette parallele a r 0, inclusa r 0. F r0

Dettagli

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X),

LEZIONE 12. Y = f(x) = f( x j,1 f(e j ) = x j,1 A j = AX = µ A (X), LEZIONE 1 1.1. Matrice di un applicazione lineare. Verifichiamo ora che ogni applicazione lineare f: R n R m è della forma µ A per un unica A R m,n. Definizione 1.1.1. Per ogni j 1,..., n indichiamo con

Dettagli

Soluzioni dello scritto di Geometria del 28 Maggio 2009

Soluzioni dello scritto di Geometria del 28 Maggio 2009 Soluzioni dello scritto di Geometria del 8 Maggio 9 1) Trovare le equazioni del sottospazio V(w, x, y, z) R 4 generato dalle quaterne c 1 = (,,, 1) e c = (, 1, 1, ). ) Trovare una base per OGNI autospazio

Dettagli

Circonferenze del piano

Circonferenze del piano Circonferenze del piano 1 novembre 1 Circonferenze del piano 1.1 Definizione Una circonferenza è il luogo dei punti equidistanti da un punto fisso, detto centro. La distanza di un qualunque punto della

Dettagli

Geometria Algebrica Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili.

Geometria Algebrica Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili. Geometria Algebrica 2009 2010 Esercizi Insiemi algebrici affini, Insiemi algebrici irriducibili. Negli esercizi si suppone, se non detto al contrario, che il campo k è algebraicamente chiuso. Sia V A n

Dettagli

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 2

Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria 2 Università degli Studi Roma Tre - Corso di Laurea in Matematica Tutorato di Geometria A.A. 9-1 - Docente: Prof. A. Verra Tutori: Dott.ssa Paola Stolfi e Annamaria Iezzi Soluzioni Tutorato numero 6 (1 Dicembre

Dettagli

SUPERFICI DI RIEMANN (sesta parte) anno acc. 2008/2009

SUPERFICI DI RIEMANN (sesta parte) anno acc. 2008/2009 (sesta parte) anno acc. 2008/2009 Genere analitico e genere topologico Sia X una superficie di Riemann compatta di genere analitica g 1 = g 1 (X) e genere topologico g = g(x). Vogliamo dimostrare che è

Dettagli

Esame scritto di Geometria 2

Esame scritto di Geometria 2 Esame scritto di Geometria Università degli Studi di Trento Corso di laurea in Matematica A.A. 013/014 Settembre 014 Esercizio 1 Sia P 3 lo spazio proiettivo reale tridimensionale dotato del riferimento

Dettagli

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica

Didattica della Matematica per il triennio Geometria sintetica e geometria analitica Didattica della Matematica per il triennio Geometria sintetica e geometria analitica anno acc. 2012/2013 Univ. degli Studi di Milano Cristina Turrini (Univ. degli Studi di Milano) Didattica della Matematica

Dettagli

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte.

Un fascio di coniche è determinato da una qualsiasi coppia di sue coniche distinte. Piano proiettivo Conica: curva algebrica reale del II ordine. a 11 x 2 1 + 2a 12 x 1 x 2 + a 22 x 2 2 + 2a 13 x 1 x 3 + 2a 23 x 2 x 3 + a 33 x 2 3 = 0 x T A x = 0 Classificazione proiettiva delle coniche:

Dettagli

1 SIGNIFICATO DEL DETERMINANTE

1 SIGNIFICATO DEL DETERMINANTE UNIVERSITÀ DEGLI STUDI DI ROMA LA SAPIENZA - Facoltà di Farmacia e Medicina - Corso di Laurea in CTF 1 SIGNIFICATO DEL DETERMINANTE Consideriamo il seguente problema: trovare l area del parallelogramma

Dettagli

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1

Matematica. 2. Funzioni, equazioni e disequazioni lineari e quadratiche. Giuseppe Vittucci Marzetti 1 Matematica 2. e quadratiche Giuseppe Vittucci Marzetti 1 Corso di laurea in Scienze dell Organizzazione Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di Milano-Bicocca A.A. 2018-19

Dettagli

Schede di e-tutoring sulla geometria analitica

Schede di e-tutoring sulla geometria analitica Schede di e-tutoring sulla geometria analitica 9 aprile 2012 Una retta ha equazione esplicita y = mx + n e in questo caso dalla fisica sappiamo che m fornisce il grado di pendenza della retta e si chiama

Dettagli

Mauro Saita Gennaio Equazioni cartesiane di rette e equazioni parametriche di piani Esempi...

Mauro Saita   Gennaio Equazioni cartesiane di rette e equazioni parametriche di piani Esempi... ette e piani in ette e piani in. Esercizi e-mail: maurosaita@tiscalinet.it Gennaio 2016. Indice 1 Equazioni parametriche della retta 2 1.1 Esempi........................................ 2 2 Equazione cartesiana

Dettagli

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa.

Le trasformazioni geometriche nel piano cartesiano. x = ϕ(x', y') τ 1 : G(x', y') = 0. la sua inversa. τ : P P' oppure P'=τ(P) P immagine di P trasformato di P secondo τ se α è una figura geometrica α =τ(α) è la figura geometrica trasformata x' = f (x, y) τ : y' = g(x, y) espressione analitica della trasformazione

Dettagli

b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse

b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse Verifiche anno scolastico 2011 2012 1) Riferendoti alla figura ricava l equazione della retta t. a) A è il punto di t che ha ascissa - 1, ricava la sua ordinata. B è il punto di t che ha ordinata 3 ricava

Dettagli

Verifiche di matematica classe 3 C 2012/2013

Verifiche di matematica classe 3 C 2012/2013 Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico

Dettagli

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato;

RETTE E PIANI. ove h R. Determinare i valori di h per cui (1) r h e α sono incidenti ed, in tal caso, determinare l angolo ϑ h da essi formato; RETTE E PIANI Esercizi Esercizio 1. Nello spazio con riferimento cartesiano ortogonale Oxyz si considerino la retta r h ed il piano α rispettivamente di equazioni x = 1 + t r h : y = 1 t α : x + y + z

Dettagli

Esame scritto di Geometria 2

Esame scritto di Geometria 2 Esame scritto di Geometria 2 Università degli Studi di Trento Corso di Laurea in matematica A.A. 2012/2013 10 giugno 2013 Si svolgano i seguenti esercizi. Esercizio 1. Sia E 3 lo spazio euclideo reale

Dettagli

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili.

Geometria Algebrica A.A Esercizi. Insiemi algebrici affini, Insiemi algebrici irriducibili. Geometria Algebrica A.A. 2014 2015 Esercizi Insiemi algebrici affini, Insiemi algebrici irriducibili. Negli esercizi si suppone, se non scritto al contrario, che il campo k sia algebricamente chiuso di

Dettagli

Simmetria assiale. Siano a una retta e v = (l, m) un vettore in A 2 (R) (direzione di a non sia proporzionale a v).

Simmetria assiale. Siano a una retta e v = (l, m) un vettore in A 2 (R) (direzione di a non sia proporzionale a v). Simmetria assiale Siano a una retta e v = (l, m) un vettore in A 2 (R) (direzione di a non sia proporzionale a v). Definizione La simmetria assiale di asse a e direzione v è la funzione: σ a : { A2 (R)

Dettagli

C I R C O N F E R E N Z A...

C I R C O N F E R E N Z A... C I R C O N F E R E N Z A... ESERCITAZIONI SVOLTE 3 Equazione della circonferenza di noto centro C e raggio r... 3 Equazione della circonferenza di centro C passante per un punto A... 3 Equazione della

Dettagli

EQUAZIONE DELLA RETTA

EQUAZIONE DELLA RETTA EQUAZIONE DELLA RETTA EQUAZIONE DEGLI ASSI L equazione dell asse x è 0. L equazione dell asse y è 0. EQUAZIONE DELLE RETTE PARALLELE AGLI ASSI L equazione di una retta r parallela all asse x è cioè è uguale

Dettagli

Trasformazioni geometriche nel piano: dalle isometrie alle affinità

Trasformazioni geometriche nel piano: dalle isometrie alle affinità Trasformazioni geometriche nel piano: dalle isometrie alle affinità Le trasformazioni geometriche In generale una trasformazione geometrica è una corrispondenza biunivoca del piano in sé, ossia associa

Dettagli

22 Coniche proiettive

22 Coniche proiettive Geometria e Topologia I (U1-4) 2006-giu-06 95 22 Coniche proiettive (22.1) Definizione. Sia K[x 0, x 1,..., x n ] l anello dei polinomi nelle indeterminate (variabili) x 0, x 1,..., x n. Un polinomio di

Dettagli

18. I teoremi di Desargues sul quadrangolo. Prospettività.

18. I teoremi di Desargues sul quadrangolo. Prospettività. Geometria euclidea, affine e proiettiva anno acc. 27/8 Settimana dal 2 al 7 novembre 27 8. I teoremi di Desargues sul quadrangolo. Prospettività. Vedere [Testo] n. 4.2, 4., per gli argomenti della lezione

Dettagli