Operazioni differenziali sui campi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Operazioni differenziali sui campi"

Transcript

1 Operaioni differeniali sui campi ono operaioni di derivaione delle componenti del campo. giscono su campi e definiscono nuovi campi. Gradiente Divergena Rotore Laplaciano iccome le componenti sono funioni di più variabili, avremo derivate pariali G. Pugliese 1

2 Gradiente di un campo Φ i Φ j Φ Φ Il gradiente di un campo scalare e` un campo vettoriale MPIO V # (,, ) % V $ In coordinate cartesiane: i V j V & ( V ' In coordinate POLRI: (r,ϑ ) V r u r 1 r V ϑ u ϑ G. Pugliese

3 Divergena di un campo vettoriale G. Pugliese 3 In coordinate cartesiane: Formalmente si può considerare come il prodotto scalare tra l operatore gradiente e il campo vettoriale: ` un campo scalare ( ) j i j i

4 Rotaione di un campo vettoriale G. Pugliese 4 In coordinate cartesiane: Formalmente si può considerare come il prodotto vettoriale tra l operatore gradiente e il campo vettoriale: è un campo vettoriale j i ( ) j i j i j i

5 Laplaciano di un campo G. Pugliese 5 In coordinate cartesiane: Il laplaciano di un campo scalare è un campo scalare È la divergena del gradiente: Formalmente: Può agire anche su una qualunque componente di un campo vettoriale: Φ Φ Φ ΔΦ Δ j i j i Δ

6 Operaioni integrali sui campi Circuitaione: integrale lungo una linea (1-dim) dl C C Flusso: integrale su una superficie (-dim) nd d Integrale nello spaio (di volume): 3-dim Φ dv V V Φ G. Pugliese 6

7 Teoremi integrali sistono due teoremi che coinvolgono integrali multipli degli operatori differeniali: Teorema della divergena Teorema di toes G. Pugliese 7

8 Teorema della divergena Lega il flusso di un campo vettorale all integrale di volume della divergena del campo stesso (Flusso di un campo vettoriale attraverso una superficie chiusa) (Integrale della divergena del campo nello spaio interno alla superficie) d V dv V G. Pugliese 8

9 Teorema di toes Lega la circuitaione di un campo vettoriale al flusso della rotaione del campo stesso (Circuitaione di un campo vettoriale lungo una linea chiusa) (Flusso della rotaione del campo attraverso una qualunque superficie che poggia su tale linea) C dl da C G. Pugliese 9

10 Teorema di Gauss in forma Locale Il teorema di Gauss : in forma integrale lega il flusso del campo attraverso una superficie chiusa alle sorgenti del campo interne. In forma differeniale costituisce una relaione locale che lega le derivate del campo in un punto con le densità di carica ρ in quel punto. ʹ u u dd ʹ dd ( ʹ dd ) dd dd attraverso ʹ Bʹ Cʹ Dʹ attraverso BCD ddd viluppo in serie al primo termine essendo d piccolo G. Pugliese 10

11 Teorema di Gauss in forma Locale dτ ddd d d Φ ) ( 0 ε 0 τ ρ ε d dq d Φ ε 0 ρ ρ ε 0 Formulaione locale della L. di Gauss G. Pugliese

12 Teorema della divergena d Φ dτ (1) dφ dτ La divergena del campo in P è pari al rapporto tra il flusso attraverso la superficie di un parallelepipedo infinitesimo centrato in P ed il suo volume (vale per qualunque campo vettoriale) d dτ Φ () Φ d τ dτ Il flusso del campo attraverso una superficie chiusa è pari alla divergena del campo stesso esteso al volume racchiuso da (T. della divergena) G. Pugliese 1

13 ρ ε 0 e ρ 0 Campi solenoidali 0 Il campo si dice solenoidale. Le linee di fora del campo non originano da alcun punto. e 0 Le linee di fora di si originano da un punto, ossia dalla sorgente del campo. La legge di Gauss in forma locale stabilisce quali sono i punti dello spaio dove è o meno solenoidale e, quindi, l assena o meno di sorgenti del campo elettrico in quei punti. G. Pugliese 13

14 Il rotore del campo elettrostatico d l 0 dl C d 0 il campo elettrostatico è irrotaionale Teorema di toes: Componenti cartesiane: u u u Il rotore è un operatore vettoriale che associa a un vettore un altro vettore le cui componenti sono date dalle differene tra le derivate pariali delle componenti del vettore rispetto ai tre assi, combinate a due a due G. Pugliese 14

15 Il rotore del campo elettrostatico % ' & ( * % u ) ' & ( * % u ) ' & ( * u ) Questa proprietà del campo elettrostatico può essere dedotta considerando che il campo è conservativo pertanto esiste una funione scalare V che soddisfa la relaione: V % ' & V V V ( * % u V ) V ( ' * % u V & ) V ( ' * u 0 & ) 0 G. Pugliese 15

16 Divergena-rotore-gradiente GU UPRFICI uperficie che delimita il volume τ UPRFICI Linea C che delimita la superficie C d d l τ dτ u d Teorema della divergena u Teorema di toes % ( ' * % u & ) ( ' * % u & ) ( ' * u & ) u Punti che limitano una inea f ΔV dl i V V i V j V G. Pugliese 16

17 F q IL campo elettrostatico Fora elettrostatica lettrostatico : è un campo in cui le cariche che lo generano sono fisse e costanti e che un eventuale carica di prova è fissa o si muove sena perturbare la distribuione delle cariche sorgenti. dl 0 0 IL CMPO LTTROTTICO È CONRVTIVO nd f ΔV dl i q ε int 0 V ρ(,, ) ε 0 Teorema di Gauss Poteniale LTTROTTICO G. Pugliese 17

Esercitazione 1. Francesca Apollonio Dipartimento Ingegneria Elettronica

Esercitazione 1. Francesca Apollonio Dipartimento Ingegneria Elettronica Esercitaione rancesca Apollonio ipartimento Ingegneria Elettronica E-mail: apollonio@die.uniroma.it apollonio@die.uniroma.it Concetto di campo Campo: Regione dello spaio in cui è definita una grandea fisica

Dettagli

Prodotto Scalare e Prodotto Vettore I

Prodotto Scalare e Prodotto Vettore I Prodotto Scalare e Prodotto Vettore I Prodotto Scalare: pplicaione che va dallo spaio prodotto R 3 R 3 in R tale che: 3 B B B, = j = 1 j j Norma di un Vettore: pplicaione che va dallo spaio dei vettori

Dettagli

Gradiente, divergenza e rotore

Gradiente, divergenza e rotore Gradiente, divergenza e rotore Gradiente di una funzione scalare della posizione Sia f(x,y,z) una funzione scalare continua e derivabile delle coordinate costruiamo in ogni punto dello spazio un vettore

Dettagli

CAPITOLO 3 LA LEGGE DI GAUSS

CAPITOLO 3 LA LEGGE DI GAUSS CAPITOLO 3 LA LEGGE DI GAUSS Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Premesse TEOREMA DI GAUSS Formulazione equivalente alla legge di Coulomb Trae vantaggio dalle situazioni nelle

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/2012)

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/2012) ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_3d (ultima modifica 01/10/01) Soluioni di problemi elettrostatici I problemi elettrostatici riguardano lo studio degli effetti delle cariche

Dettagli

Premesse matematiche. 2.1 Gradiente

Premesse matematiche. 2.1 Gradiente Premesse matematiche 2.1 Gradiente ia f(x, y, z) : R 3 una funzione scalare delle coordinate spaziali (x, y, z). L ampiezza della funzione f(x, y, z) dipende dal punto di osservazione e risulta in genere

Dettagli

Operatori vettoriali su R ³

Operatori vettoriali su R ³ Operatori vettoriali su R ³ Sui campi scalari e vettoriali tridimensionali è possibile definire degli operatori vettoriali che giocano un ruolo importantissimo anche per le applicazioni nel campo fisico

Dettagli

Corrente di spostamento ed equazioni di Maxwell. Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche

Corrente di spostamento ed equazioni di Maxwell. Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche Corrente di spostamento ed equazioni di Maxwell Corrente di spostamento Modifica della legge di Ampere Equazioni di Maxwell Onde elettromagnetiche Corrente di spostamento La legge di Ampere e` inconsistente

Dettagli

Elettromagnetismo Formulazione differenziale

Elettromagnetismo Formulazione differenziale Elettromagnetismo Formulazione differenziale 1. Legge di Gauss 2. Legge di Ampere 3. Equazioni di Maxwell statiche V - 0 Legge di Gauss Campo elettrico Carica contenuta all interno della superficie A Flusso

Dettagli

S.Barbarino - Appunti di Fisica II. Cap. 1. Il campo elettrostatico nel vuoto: I Legge sperimentale di Coulomb e definizione di campo elettrico

S.Barbarino - Appunti di Fisica II. Cap. 1. Il campo elettrostatico nel vuoto: I Legge sperimentale di Coulomb e definizione di campo elettrico Barbarino - Appunti di Fisica II Cap 1 Il campo elettrostatico nel vuoto: I 11 - Legge sperimentale di Coulomb e definiione di campo elettrico Tutte le leggi dell elettrostatica possono essere dedotte

Dettagli

(x) = F 1 x 1. (x)+ F 2. cioè è la traccia (cioè la somma degli elementi della diagonale principale) della matrice jacobiana J F (x).

(x) = F 1 x 1. (x)+ F 2. cioè è la traccia (cioè la somma degli elementi della diagonale principale) della matrice jacobiana J F (x). Teorema della divergenza Richiami di teoria Operatori divergenza e di Laplace R n un insieme aperto, x = (x 1, x 2,..., x n ). Divergenza Consideriamo un campo vettoriale F : R n R n differenziabile in

Dettagli

I CAMPI VETTORIALI Antonio Meloni (Per gli studenti di Introduzione alla Fisica della Terra Solida di Roma Tre, AA 05/06)

I CAMPI VETTORIALI Antonio Meloni (Per gli studenti di Introduzione alla Fisica della Terra Solida di Roma Tre, AA 05/06) e engono I CMPI VTTORILI ntonio Meloni Per gli studenti di Introduione alla Fisica della Terra olida di Roma Tre, 05/06 1 Introduione In questa nota engono introdotti i campi ettoriali al solo scopo di

Dettagli

Lezioni L3.a. 5. Teorema dei Campi Conservativi; 7. Teorema di Stokes; 9. Rot E=0. FISICA GENERALE II, Cassino A.A

Lezioni L3.a. 5. Teorema dei Campi Conservativi; 7. Teorema di Stokes; 9. Rot E=0. FISICA GENERALE II, Cassino A.A Lezioni L3.a 1. Flusso attraverso una superficie;. Scalari, Pseudoscalari, Vettori e Pseudovettori; 3. Campi Scalari e Campi Vettoriali ed operatori; 4. Gradiente, Divergenza, Rotore, Laplaciano; 5. Teorema

Dettagli

vettore spostamento infinitesimo: ds dr dxi + dyj + dzk

vettore spostamento infinitesimo: ds dr dxi + dyj + dzk Appendice A A.1 - istemi di coordinate. 1) Coordinate cartesiane. Il sistema di riferimento è costituito da tre assi perpendicolari uscenti da una comune origine O ed orientati positivamente verso l esterno.

Dettagli

ELETTROSTATICA. D = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di materiale: = ε E, (3)

ELETTROSTATICA. D = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di materiale: = ε E, (3) ELETTROSTATICA Si parla di elettrostatica quando, in ogni punto dello spazio ed in ogni istante risultano nulle tutte le derivate temporali che compaiono nelle equazioni generali dell elettromagnetismo,

Dettagli

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica

Prof. R. Capone Esercitazioni di Matematica IV Corso di studi in Matematica Forme differeniali lineari in tre variabili Sia Ω R 3 un insieme aperto e siano, B, C: Ω R funioni continue in Ω. Consideriamo la forma differeniale ω in Ω ω = (, y, )d + B(, y, )dy + C(, y, )d Si dice

Dettagli

FAM. Serie 33: Soluzioni. Esercizio 1 Momento meccanico su una spira: motore elettrico. Esercizio 2 Campo magnetico dipolare (difficile) C.

FAM. Serie 33: Soluzioni. Esercizio 1 Momento meccanico su una spira: motore elettrico. Esercizio 2 Campo magnetico dipolare (difficile) C. Serie 33: Soluioni FAM C. Ferrari Eserciio 1 Momento meccanico su una spira: motore elettrico 1. α F α = 0, ma non si tratta di una situaione di equilibrio! 2. Se l rappresenta il lato della spira M tot

Dettagli

Argomento 1. Lezione 1 Lezione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica

Argomento 1. Lezione 1 Lezione 2. Francesca Apollonio Dipartimento Ingegneria Elettronica rgoento 1 Leione 1 Leione 2 Franceca pollonio Dipartiento Ingegneria lettronica -ail: Capo elettrotatico Generato da cariche che non variano nel tepo Legge di Coulob r 1 F 2 4πε Qq [N] r q Q La fora di

Dettagli

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_2b (ultima modifica 30/09/2015)

ELETTROMAGNETISMO APPLICATO ALL'INGEGNERIA ELETTRICA ED ENERGETICA_2b (ultima modifica 30/09/2015) ELETTROMGNETISMO PPLICTO LL'INGEGNERI ELETTRIC ED ENERGETIC_2b (ultima modifica 30/09/2015) M. Usai ELETTROMGNETISMO PPLICTO LL'INGEGNERI ELETTRIC ED ENERGETIC 27 L integrale S d s è un integrale superficiale

Dettagli

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss

Cap 3- Legge di Gauss. 3.1-Concetto di flusso Flusso del campo elettrico. Cap 3- Legge di Gauss Cap 3- Legge di Gauss Cap 3- Legge di Gauss Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi è una simmetria

Dettagli

Meccanica. 3. Elementi di Analisi Vettoriale. Domenico Galli. Dipartimento di Fisica e Astronomia.

Meccanica. 3. Elementi di Analisi Vettoriale.  Domenico Galli. Dipartimento di Fisica e Astronomia. Meccanica 3. Elementi di Analisi Vettoriale http://campus.cib.unibo.it/246981/ Domenico Galli Dipartimento di Fisica e Astronomia 5 maggio 2017 Traccia 1. Vettori Variabili 2. Derivate e Integrali 3. Derivate

Dettagli

Si definisce un operatore vettoriale (nabla) in coordinate cartesiane nella maniera seguente:

Si definisce un operatore vettoriale (nabla) in coordinate cartesiane nella maniera seguente: APPENDICE A.1 Operatori differeniali e relativi teoremi Si definisce un operatore vettoriale (nabla) in coordinate cartesiane nella maniera seguente: xˆ yˆ ˆ. x y E possibile provare che tale operatore

Dettagli

Definizione di Flusso

Definizione di Flusso Definizione di Flusso Il flusso aumenta se il campo elettrico aumenta!! Δφ E ΔA EΔAcosθ E Il flusso è la quantità di materia che passa attraverso una superficie nell unità di tempo. Se si parla di campo

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 6 18.10.2017 Divergenza e teorema della divergenza Forma differenziale della Legge di Gauss Energia del campo elettrostatico

Dettagli

APPENDICE B Ausili matematici

APPENDICE B Ausili matematici APPENDICE B Ausili matematici B Sistemi di coordinate In molteplici circostane non risulta efficace l impiego dei sistemi di coordinate cartesiani sia nel piano che nello spaio Ciò accade in particolare

Dettagli

5a_EAIEE_CAMPI MAGNETICI STATICI (ultima modifica 24/10/2017) Campi magnetici statici

5a_EAIEE_CAMPI MAGNETICI STATICI (ultima modifica 24/10/2017) Campi magnetici statici 5a_EAIEE_CAMPI MAGNETICI TATICI (ultima modifica 24/10/2017) Campi magnetici statici Premessa Per studiare i Campi Magnetici è utile fare le analogie con i modelli matematici studiati del Campo Elettrostatico.

Dettagli

Ingegneria dei Sistemi Elettrici_4

Ingegneria dei Sistemi Elettrici_4 Ingegneria dei Sistemi lettrici_4 CMPO DI CORRNT Si definisce campo di corrente la regione dello spazio nella quale ha sede una distribuzione continua di corrente elettrica. sso è stazionario, se le grandezze

Dettagli

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo

Dipolo Elettrico: due cariche (puntiformi) +q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo Il Dipolo Elettrico Dipolo Elettrico: due cariche (puntiformi) q e q (stesso modulo, segno opposto) a distanza a. Momento di Dipolo, P: Vettore di modulo qa che va da qq a q Dato un punto P molto distante

Dettagli

1) ELETTROSTATICA NEL VUOTO riassunto Gauss

1) ELETTROSTATICA NEL VUOTO riassunto Gauss 1) ELETTROSTATICA NEL VUOTO riassunto Gauss - flusso di un vettore attraverso una superficie: ϕ(v) 6 = 8 v n9 ds 6 - teorema di Gauss: ϕ(e) 6 = 8 E n9 ds =??FG q? 6 ε =>?@AB I utile solo se per motivi

Dettagli

Definizione di Flusso

Definizione di Flusso Definizione di Flusso Il flusso aumenta se il campo elettrico aumenta!! Δφ E ΔA EΔAcosθ E Il flusso è la quantità di materia che passa attraverso una superficie nell unità di tempo. Se si parla di campo

Dettagli

Elettromagnetismo. Campo elettrico come gradiente del potenziale. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano

Elettromagnetismo. Campo elettrico come gradiente del potenziale. Lezione n Prof. Francesco Ragusa Università degli Studi di Milano Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 4 12.10.2017 Campo elettrico come gradiente del potenziale Anno Accademico 2017/2018 Il campo elettrico come gradiente

Dettagli

2 CORRENTE ELETTRICA STAZIONARIA (teoria)

2 CORRENTE ELETTRICA STAZIONARIA (teoria) 2 CORRENTE ELETTRIC STZIONRI (teoria) 1 La corrente elettrica Particelle cariche in movimento danno origine ad una flusso di corrente elettrica. Esistono diverso tipi di corrente elettrica: Corrente di

Dettagli

Dispense dei corsi di Idrodinamica (prof.ssa Giovanna Vittori) e Meccanica dei Fluidi (prof. Paolo Blondeaux)

Dispense dei corsi di Idrodinamica (prof.ssa Giovanna Vittori) e Meccanica dei Fluidi (prof. Paolo Blondeaux) Dispense dei corsi di Idrodinamica (prof.ssa Giovanna Vittori e Meccanica dei Fluidi (prof. Paolo Blondeaux Dipartimento di Ingegneria ivile, himica e Ambientale Universitá di Genova a.a. 2013-2014 apitolo

Dettagli

7. Integrazione delle funzioni di più variabili (II)

7. Integrazione delle funzioni di più variabili (II) 7. Integraione delle funioni di più variabili (II) http://eulero.ing.unibo.it/~baroi/scam/scam-tr.7b.pdf 7.5 Area del parallelogramma costruito su due vettori. Volume del parallelepipedo costruito su tre

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 21 16.3.2018 Sorgenti del campo magnetico Divergenza e rotore del campo magnetico Applicazioni della legge di Ampère

Dettagli

Integrali di superficie

Integrali di superficie Integrali di superficie Hynek Kovarik Università di Brescia Analisi Matematica 2 Hynek Kovarik (Università di Brescia) Integrali curvilinei Analisi Matematica 2 1 / 27 Superfici in forma parametrica Procediamo

Dettagli

E, B. ρ, J Figura 2.1

E, B. ρ, J Figura 2.1 EQUAZIONI DI MAXWELL La forza di Lorentz esprime la forza che agisce sulle cariche in moto in un campo elettromagnetico. Questa forza determina, attraverso la legge di Newton, la posizione e la velocità

Dettagli

Flusso, divergenza e rotore. Mauro Saita. Versione provvisoria. Giugno

Flusso, divergenza e rotore. Mauro Saita. Versione provvisoria. Giugno Flusso, divergenza e rotore. Esercizi maurosaita@tiscalinet.it ersione provvisoria. Giugno 216. 1 Indice 1 Teorema della divergenza (di Gauss). 2 1.1 Flusso di un campo di forze attraverso un cubo di dimensioni

Dettagli

ELETTROSTATICA. ' = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di legame materiale:

ELETTROSTATICA. ' = ρ (2) a cui possono essere associate, in caso di mezzo isotropo e lineare, le equazioni di legame materiale: ELETTROSTATICA Si parla di elettrostatica quando, in ogni punto dello spazio ed in ogni istante risultano nulle tutte le derivate temporali che compaiono nelle equazioni generali dell elettromagnetismo,

Dettagli

1) ELETTROSTATICA NEL VUOTO

1) ELETTROSTATICA NEL VUOTO 1) ELETTROSTATICA NEL VUOTO la lezione precedente consideriamo il lavoro che una carica q deve compiere per muoversi lungo una linea g da A a B sotto l azione della forza coulombiana generata da una carica

Dettagli

5,&+,$0, 68*/,23(5$725,9(7725,$/,

5,&+,$0, 68*/,23(5$725,9(7725,$/, 5,&+,$0, 8*/,23(5$725,9(7725,$/, Gradiente E un operatore differenziale del primo ordine che si applica ad una generica grandezza scalare ϕ, e genera un vettore secondo la seguente definizione: ϕ ϕ Q =

Dettagli

la prima formula di Ampere-Laplace riproduce i risultati sperimentali, di corrente continua,

la prima formula di Ampere-Laplace riproduce i risultati sperimentali, di corrente continua, Legge di conservazione della carica elettrica la prima formula di Ampere-Laplace riproduce i risultati sperimentali, ad es. la legge di Biot Savart, ma l elemento infinitesimo isolato di corrente continua,

Dettagli

6.4 j Flessione retta Stato di tensione. e ricavando s u dalla relazione precedente si ha: = pr s

6.4 j Flessione retta Stato di tensione. e ricavando s u dalla relazione precedente si ha: = pr s 6ttI_NUNZIANTE_1 /6/11 17:59 Pagina 455 6.4 j Flessione retta j 455 e ricavando s u dalla relaione precedente si ha: d pr s θ s che è anche nota come formula di ariotte per i tubi in parete sottile. In

Dettagli

ELETTROMAGNETISMO APPLICATO LL'INGEGNERIA ELETTRICA ED ENERGETICA_4A (ultima modifica 16/10/2012) CAMPO DI CORRENTE

ELETTROMAGNETISMO APPLICATO LL'INGEGNERIA ELETTRICA ED ENERGETICA_4A (ultima modifica 16/10/2012) CAMPO DI CORRENTE LTTROMGNTISMO PPLICTO LL'INGGNRI LTTRIC D NRGTIC_4 (ultima modifica 6/0/0) CMPO DI CORRNT Si definisce campo di corrente la regione dello spazio nella quale ha sede una distribuzione continua di corrente

Dettagli

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 )

Esercizi. f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) Esercizi 1. Determinare le derivate parziali di f(x, y, z) = exp(xz) + zy sin(xyz) + cos(xy 3 ) 2. Scrivere l equazione del piano tangente e della retta normale al grafico ln(xy) + cos(x + y) nel punto

Dettagli

Operatore applicato a prodotti

Operatore applicato a prodotti Operatore applicato a prodotti Con l'operatore «Nabla" ( ) abbiamo definito tre operazioni applicandolo Ad una funzione scalare per costruire un vettore: gradiente φ Ad una funzione vettoriale per costruire

Dettagli

Anna Pandolfi Analisi Strutturale e Termica 4.1

Anna Pandolfi Analisi Strutturale e Termica 4.1 Statica e Cinematica Ammissibili Deformazioni e sforzi sono detti virtuali (non necessariamente veri) quando sono rispettosi di determinate condizioni. Corpo in equilibrio nella configurazione deformata

Dettagli

Funzioni di più variabili a valori vettoriali n t m

Funzioni di più variabili a valori vettoriali n t m Funzioni di più variabili a valori vettoriali n t m Definizione f(x 1, x 2,...x n )=[f 1 (x 1, x 2,...x n ), f 2 (x 1, x 2,...x n ),...f m (x 1, x 2,...x n )] Funzione definita n d m Dove: n = dominio

Dettagli

Gradiente, Divergenza, Rotore. Plinio Gatto

Gradiente, Divergenza, Rotore. Plinio Gatto Gradiente, Divergenza, Rotore Plinio Gatto 06 maggio 2006 Indice generale Licenza... 3 Introduzione...4 Gradiente... 5 Gradiente di temperatura... 5 Proprietà del campo Coulombiano... 6 Osservazioni sul

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 10 2.11.2016 Equazione di Poisson Metodo delle cariche immagine Anno Accademico 2016/2017 Equazione di Poisson Tramite

Dettagli

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione

POTENZIALE V T O R I ELETTRICO g. bonomi fisica sperimentale (mecc., elettrom.) Introduzione Introduzione Mentre era su una piattaforma panoramica questa ragazza si accorse che i suoi capelli le si rizzavano in testa. Suo fratello, divertito, le scattò questa foto. Cinque minuti dopo un fulmine

Dettagli

4 CAMPI VARIABILI NEL TEMPO - EQUAZIONI DI MAXWELL

4 CAMPI VARIABILI NEL TEMPO - EQUAZIONI DI MAXWELL 4 CAMPI VARIABILI NEL TEMPO - EQUAZIONI DI MAXWELL 1 modello Campi stazionari equazione costitutiva H J CAMPO ELETTROSTATICO E 0 D D E E 0 J 0 CAMPO DI CORRENTE STAZIONARIO CAMPO MAGNETOSTATICO B 0 E J

Dettagli

Esercizi di Analisi Matematica L-B

Esercizi di Analisi Matematica L-B Esercii di Analisi Matematica L-B Marco Alessandrini Gennaio-Maro 7 Indice Funioni di più variabili reali. Calcolo differeniale........................................... Ricerca di massimi e minimi.......................................

Dettagli

Fisica Generale III con Laboratorio

Fisica Generale III con Laboratorio Fisica Generale III con Laboratorio Campi elettrici e magnetici nella materia Leione 5 Diamagnetismo e Paramagnetismo Teorema di Larmor - I 1) Moto di precessione Grandea vettoriale generica, funione del

Dettagli

METODI MATEMATICI PER LA FISICA

METODI MATEMATICI PER LA FISICA Si svolgano cortesemente i seguenti esercii. METODI MATEMATICI PER LA FISICA PROVA SCRITTA - 30 APRILE 05 ESERCIZIO (PUNTEGGIO: 4/30) Si studi il comportamento dell integrale in valore principale al variare

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 23 20.3.2018 Applicazioni della legge di Ampère Potenziale Vettore Anno Accademico 2017/2018 Filo di raggio a percorso

Dettagli

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Soluzione Compito di isica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Esercizio 1 1) Scriviamo le equazioni del moto della sfera sul piano inclinato. Le forze agenti sono il peso

Dettagli

Applicazioni del Teorema di Gauss

Applicazioni del Teorema di Gauss Applicazioni del Teorema di Gauss Simone Alghisi Liceo Scientifico Luzzago Ottobre 2011 Simone Alghisi Liceo Scientifico Luzzago Applicazioni del Teorema di Gauss Ottobre 2011 1 / 8 Definizione Dato un

Dettagli

Analisi II. Analisi 22/6/2010. Corsi di Laurea in Ingegneria dell Informazione e Ingegneria Informatica

Analisi II. Analisi 22/6/2010. Corsi di Laurea in Ingegneria dell Informazione e Ingegneria Informatica iare la convergena della serie: kk!a k k 1 (fila 1), Analisi II k a k k 1 (fila ), /6/1 Analisi II efficienti a k definiti da: Analisi Matematica/6/1 II - Anno Accademico 9-1 Corsi di Laurea in Ingegneria

Dettagli

Formulario Elettromagnetismo

Formulario Elettromagnetismo Formulario Elettromagnetismo. Elettrostatica Legge di Coulomb: F = q q 2 u 4 0 r 2 Forza elettrostatica tra due cariche puntiformi; ε 0 = costante dielettrica del vuoto; q = cariche (in C); r = distanza

Dettagli

CAMPI VETTORIALI (Note)

CAMPI VETTORIALI (Note) CAMPI VETTORIALI (Note) Sia v(x,y,z) il vettore che definisce la grandezza fisica del campo: il problema che ci si pone è di caratterizzare il campo vettoriale sia in termini locali, cioè validi punto

Dettagli

Esercizio 1.1. Trovare il volume V della figura racchiusa tra il piano z = 8x + 6y e il rettangolo R = [0, 1] [0, 2]. (8x + 6y) dx dy. x=1. 4x 2.

Esercizio 1.1. Trovare il volume V della figura racchiusa tra il piano z = 8x + 6y e il rettangolo R = [0, 1] [0, 2]. (8x + 6y) dx dy. x=1. 4x 2. Esercizi maurosaita@tiscalinet.it Versione provvisoria. Giugno 6. Indice Integrali doppi. isposte....................................... 6 Integrali doppi generalizzati 6. isposte.......................................

Dettagli

Corso di FISICA II Prof. Umberto del Pennino

Corso di FISICA II Prof. Umberto del Pennino Contenuti del Corso: Elettricità Magnetismo Ottica Corso di FISICA II Prof. Umberto del Pennino Elettromagnetismo Testo: Mazzoldi, Nigro, Voci:" Elementi di Fisica: Elettromagnetismo e Onde EdiSES Operatori

Dettagli

5f_EAIEE CAMPI VARIABILI NEL TEMPO

5f_EAIEE CAMPI VARIABILI NEL TEMPO 5f_AI CAMPI VARIABILI NL TMPO (ultima modifica 3//7) Campi variabili nel tempo e quazioni di Maxwell Il modello elettrostatico è stato definito con il vettore intensità del campo elettrico, e il vettore

Dettagli

Esercizi di elettrostatica (prima parte)

Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica: forza di coulomb, campo elettrico. 1. Date tre cariche elettriche puntiformi identiche ( Q ) poste ai vertici di un triangolo equilatero

Dettagli

Esercizi di elettrostatica (prima parte)

Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica (prima parte) Esercizi di elettrostatica: forza di coulomb, campo elettrico. 1. Date tre cariche elettriche puntiformi identiche ( Q ) poste ai vertici di un triangolo equilatero

Dettagli

Primo Parziale Fisica Generale T-B

Primo Parziale Fisica Generale T-B Primo Parziale Fisica Generale T-B (CdL Ingegneria Civile e Informatica [A-K]) Prof. M. Sioli 23/11/2012 Soluzioni Compito B Esercizi Ex. 1 Tre cariche puntiformi sono disposte ai vertici di un uadrato

Dettagli

Calcolo 2B - Analisi III dicembre 2004

Calcolo 2B - Analisi III dicembre 2004 Calcolo 2B - Analisi III dicembre 2. Verificare esplicitamente il teorema di Stokes in R 2 : dω = ω per la -forma: nella regione piana data da: ω = x 2 + y 2 dx = x, y x 2 + y 2 ª x, y y 2x 2ª 2. Considerato

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 8 25.10.2017 Equazioni di Poisson e di Laplace Coordinate curvilinee Soluzioni dell'equazione di Laplace Metodo di separazione

Dettagli

Corso di Laurea in Fisica Unipi G.M.P. Appunti di Fisica _I Primo semestre. Forze conservative

Corso di Laurea in Fisica Unipi G.M.P. Appunti di Fisica _I Primo semestre. Forze conservative ppunti di Fisica _I Primo semestre Novenmbre 20 Cap.3.v Sommario Fore conservative Il poteniale...2 Conservaione dell'energia...2 Il poteniale e la fora...3 Il poteniale nel campo gravitaionale costante...4

Dettagli

Corrente di spostamento ed equazioni di Maxwell

Corrente di spostamento ed equazioni di Maxwell Corrente di spostamento ed equazioni di Maxwell n Corrente di spostamento n Modifica della legge di Ampere n Equazioni di Maxwell n Onde elettromagnetiche Corrente di spostamento n La legge di Ampere e`

Dettagli

Appunti di Meccanica dei Fluidi M. Tregnaghi

Appunti di Meccanica dei Fluidi M. Tregnaghi M. regnaghi 0. CINEMAICA: ENSORE DELLE VELOCIÀ DI DEFORMAZIONE ENSORE DEVIAORE DEGLI SFORZI Il tensore degli sfori può essere scritto come la somma di un tensore sferico (caso idrostatico) e di un tensore

Dettagli

Risultati di ANALISI VETTORIALE

Risultati di ANALISI VETTORIALE Guida allo studio autonomo in ELETTROMAGNETISMO U Unità Risultati di ANALISI VETTORIALE Introduzione Hai già studiato gran parte della matematica necessaria per questo corso Comunque vale la pena di rivedere

Dettagli

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo

Risposta La curva r è regolare a tratti per via di quanto succede della sua rappresentazione parametrica nel punto t = 1: pur riuscendo ANALISI VETTORIALE OMPITO PER LE VAANZE DI FINE D ANNO Esercizio Sia r(t) la curva regolare a tratti x = t, y = t, t [, ] e x = t, y = t, t [, ]. alcolare la lunghezza di r, calcolare, dove esistono, i

Dettagli

1 Cap 3- Legge di Gauss Concetto di flusso Flusso del campo elettrico

1 Cap 3- Legge di Gauss Concetto di flusso Flusso del campo elettrico 3 3.1- FLUSSO DEL CAMPO ELETTRICO 1 Cap 3- Legge di Gauss Una formulazione equivalente alla legge di Coulomb è quella stabilita dal teorema di Gauss, che trae vantaggio dalle situazioni nelle quali vi

Dettagli

Simmetria rispetto ad un piano. Un campo vettoriale V rispetto ad un piano (per esempio il piano z =0)può presentare i due seguenti tipi di simmetria:

Simmetria rispetto ad un piano. Un campo vettoriale V rispetto ad un piano (per esempio il piano z =0)può presentare i due seguenti tipi di simmetria: CAMPI ELETTROMAGNETICI E CIRCUITI II - A.A. 2011-12 - MARCO BREAN 1 immetria rispetto ad un piano Un campo vettoriale rispetto ad un piano (per esempio il piano 0)può presentare i due seguenti tipi di

Dettagli

DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ

DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ 2/3 DISTRIBUZIONI SINGOLARI E "FUNZIONE" DELTA DI DIRAC 0/ DISTRIBUZIONI SINGOLARI E FUNZIONE DENSITÀ Consideriamo una distribuzione continua di una data quantità Q ad esempio la carica elettrica o la

Dettagli

CAPITOLO 7 SORGENTI DEL CAMPO MAGNETICO LEGGE DI AMPERE PROPRIETÀ MAGNETICHE DELLA MATERIA

CAPITOLO 7 SORGENTI DEL CAMPO MAGNETICO LEGGE DI AMPERE PROPRIETÀ MAGNETICHE DELLA MATERIA CAPITOLO 7 SORGENTI DEL CAMPO MAGNETICO LEGGE DI AMPERE PROPRIETÀ MAGNETICHE DELLA MATERIA Elisabetta Bissaldi (Politecnico di Bari) - A.A. 2017-2018 2 Campo magnetico prodotto da una corrente Si consideri

Dettagli

Elettrostatica nel vuoto

Elettrostatica nel vuoto Elettrostatica nel vuoto Come abbiamo visto nella parte di meccanica le forze sono o di contatto (attrito, pressione, forza elastica) o a distanza (gravitazione): osservazioni sperimentali hanno mostrato

Dettagli

Analisi Matematica III 16 Gennaio (x 1) 2 + y2

Analisi Matematica III 16 Gennaio (x 1) 2 + y2 Analisi Matematica III 6 Gennaio 7. ( punti) Calcolare il seguente integrale triplo ( e z + y(x ) + dove = {(x, y, z) R 3 : (x ) + y 4 + z }. y + (x ) + y 4 + z ) dxdz, Il dominio di integrazione è un

Dettagli

Divergenza. ato una superficie chiusa S che racchiude il volume V, lo dividiamo in due rti con la superficie D mostrata in figura

Divergenza. ato una superficie chiusa S che racchiude il volume V, lo dividiamo in due rti con la superficie D mostrata in figura Divergenza Deriva dal concetto di flusso attraverso una superficie di una proprietà fisica ed è stato introdotto nei corsi di elettromagnetismo elementare (Legge di Gauss per il campo elettrico). ato una

Dettagli

4. Calcolare il baricentro delle seguenti regioni del piano dotate di densità unitaria:

4. Calcolare il baricentro delle seguenti regioni del piano dotate di densità unitaria: INTEGRLI OPPI e TRIPLI Esercii risolti. Calcolare i seguenti integrali doppi: a b c d e f g h i j k y d dy,, y :, y }; d dy,, y :, y }; + y + y d dy,, y :, y }; y d dy,, y :, y }; y d dy,, y :, y + };

Dettagli

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n

Elettromagnetismo. Prof. Francesco Ragusa Università degli Studi di Milano. Lezione n Elettromagnetismo Prof. Francesco Ragusa Università degli Studi di Milano Lezione n. 7.1.17 Energia Elettrostatica. Conduttori. Conduttori in un campo elettrostatico Anno Accademico 17/18 Energia del campo

Dettagli

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2 Elettronica II Grandezze elettriche microscopiche (parte 1) Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Lezione 9 - Le equazioni indefinite di equilibrio

Lezione 9 - Le equazioni indefinite di equilibrio Leione 9 - Le equaioni indefinite di equilibrio [Ultimarevisione: revisione:11 11dicembre dicembre8] In questa leione si deducono le cosiddette equaioni indefinite dellequilibrio, e si dimostra limportante

Dettagli

Richiami di analisi vettoriale. Gradiente, divergenza, rotore Teoremi della divergenza e di Stokes Relazioni campi-sorgenti

Richiami di analisi vettoriale. Gradiente, divergenza, rotore Teoremi della divergenza e di Stokes Relazioni campi-sorgenti Richiami di analisi vettoriale Gradiente, divergenza, rotore Teoremi della divergenza e di Stokes Relazioni campi-sorgenti Derivate parziali - Gradiente = ( f) dx i i Esercizio Esempi Esempio C 1 b (1,1)

Dettagli

Geometria 3 primo semestre a.a

Geometria 3 primo semestre a.a Geometria 3 primo semestre a.a. 2014-2015 Esercizi Forme differenziali Ricordiamo alcune definizioni date a lezione. s-forma definite da Siano ω una k-forma e φ una ω = I a I dx I, φ = J b J dx J Definizione

Dettagli

= τ MOTO ROTOTRASLATORIO DI UN CORPO RIGIDO. Equazioni cardinali. Prima equazione cardinale:

= τ MOTO ROTOTRASLATORIO DI UN CORPO RIGIDO. Equazioni cardinali. Prima equazione cardinale: MOTO ROTOTRASLATORO D UN CORPO RGDO Equaioni cardinali Prima equaione cardinale: dv c M Fet Esprime il teorema del moto del centro di massa: il moto del centro di massa del corpo rigido è quello di un

Dettagli

Potenziale elettrostatico

Potenziale elettrostatico Doppio strato piano Potenziale elettrostatico Consideriamo il lavoro compiuto dalla forza elettrica quando una particella di prova di carica q viene spostata in un campo elettrico E. Possiamo definire

Dettagli

Il Corso di Fisica per Scienze Biologiche

Il Corso di Fisica per Scienze Biologiche Il Corso di Fisica per Scienze Biologiche Ø Prof. Attilio Santocchia Ø Ufficio presso il Dipartimento di Fisica (Quinto Piano) Tel. 075-585 708 Ø E-mail: attilio.santocchia@pg.infn.it Ø Web: http://www.fisica.unipg.it/~attilio.santocchia

Dettagli

Insegnamento di: METODI COMPUTAZIONALI PER L ELETTROMAGNETISMO APPLICATO a.a II sem. Prof. Cesare Mario Arturi Programma dettagliato

Insegnamento di: METODI COMPUTAZIONALI PER L ELETTROMAGNETISMO APPLICATO a.a II sem. Prof. Cesare Mario Arturi Programma dettagliato 16-06-2009 Programma dettagliato di METODI COMPUTAZIONALI PER L ELETTROMAGNETISMO APPLICATO_08_09.htm Insegnamento di: METODI COMPUTAZIONALI PER L ELETTROMAGNETISMO APPLICATO a.a. 2008-09 II sem. Prof.

Dettagli

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari

UNIVERSITÀ DI ROMA TOR VERGATA. Analisi Matematica II per Ingegneria Prof. C. Sinestrari UNIVERSITÀ DI ROMA TOR VERGATA Analisi Matematica II per Ingegneria Prof. C. Sinestrari Risposte (sintetiche) agli esercizi del 27.XI.217 1. (NB si ricorda che l equazione del piano passante per un punto

Dettagli

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11

Indice 3. Note di utilizzo 9. Ringraziamenti 10. Introduzione 11 Indice Indice 3 Note di utilizzo 9 Ringraziamenti 10 Introduzione 11 Capitolo 1 Grandezze fisiche e schematizzazione dei sistemi materiali 13 1.1 Grandezze fisiche ed operazione di misura 13 1.2 Riferimento

Dettagli

Capitolo II Idrostatica

Capitolo II Idrostatica Capitolo II Idrostatica II.1 Sforo E possibile distinguere due tipi di fore agenti sul corpo fluido: le fore di corpo e le fore di contatto. Le fore di corpo sono in grado di penetrare in tutte le parti

Dettagli

momento di dipolo magnetico medio di ogni molecola n

momento di dipolo magnetico medio di ogni molecola n Materiali agnetici: qualche analogia con i dielettrici Mo. di dipolo agnetico atoici/olecolari Effetto di capi applicati: agnetiaione del eo Riarrangiaento di correnti icroscopiche (elettroni legati) Classificaione:

Dettagli