Liceo Scientifico Severi Salerno
|
|
|
- Iolanda Calabrese
- 7 anni fa
- Visualizzazioni
Transcript
1 Liceo Scientifico Severi Salerno VERIFICA SCRITTA MATEMATICA Docente: Pappalardo Vincenzo Data: 20/10/2018 Classe: IV D 1. Risolvere le seguenti equazioni e disequazioni esponenziali: 3 2 x 5 4 x 1 = 20 Si risolve utilizzando i logaritmi e le loro proprietà. Facciamo il logaritmo di entrambi i membri: log(3 2x 5 4x 1 ) = log20 log3 2x + log5 4x 1 = log20 2xlog3+ (4x 1)log5 = log20 2xlog3+ 4xlog5 log5 = log20 x(2log3+ 4log5) = log20 + log5 x = log20 + log5 2log3+ 4log5 = log100 2(log3+ 2log5) = 2 2log75 = 1 log75 5 4x x 51 x x 1 x 1 +5 = 0 1 2x 5
2 5 1+ x +5 1 x = x x 1 5 x = 0
3 e x+1 e x e 5x 1 0 (5 3x 5 2x )(e 1/x e 2 ) 0
4 2 30 x/ x Risolvere le seguenti equazioni e disequazioni logaritmiche: log4x log(x + 2) = log(3x 2) log x Campo di esistenza dell equazione: Applichiamo le proprietà dei logartitmi: 4x > 0 x + 2 > 0 x > 2 3x 2 > 3 C.E. = 2 3 ;+ x > 0 log4x + log x = log(3x 2) + log(x + 2) log x(4x) = log (3x 2)(x + 2) x(4x) = (3x 2)(x + 2) x 2 4x + 4 = 0 x 1 = x 2 = 2 La soluzione x=2 va accettata in quanto apaprtiene al C.E.
5 1+ log x log x 1 log x log x = 11 2 [ log 2 (x 1) ] 2 2 log 2 (x 1) 3 = 0 [ log 2 (x 1) ] 2 2 log 2 (x 1) 3 = 0 CE "" x 1> 0 CE : x >1 oppure """ CE : ] 1;+ [ [ log 2 (x 1) ] 2 2log 2 (x 1) 3 = 0 definizione logaritmo log 2 (x 1) = 1 """" x 1= 2 incognita ausiliaria log 2 (x 1)=t """""" t 2 2t 3 = 0 """" x = soluzione soluzione eq. 2 grado """" t 1 = 1; t 2 = 3 log 2 (x 1) = 3 definizione logaritmo """" x 1= 3 soluzione """" x = 9 Entrambe le soluzioni sono accettabili perchè soddisfano il CE log 2 x + 3 x >1
6 ln 2 x + ln x 2 < 0 Campo di esistenza: x > 0 Introducendo l incognita ausiliaria: t = ln x l equazione diventa: t 2 + t 2 < 0 2 < t <1 Quindi la soluzione è: 2 < t <1 2 < ln x <1 e 2 < x < e ln 2 x 3ln x 4 < 0
7 log 2 (e 2x e x ) >1 3. Risolvere graficamente le seguenti equazioni: 1 x+2 2 = ln(x +1) soluzione: x 0,2
8 ln(x + 6) x = 0 soluzione: x 1-2,5; x 2 2,1 4. Trovare dominio e codominio delle seguenti funzioni e stabilire se sono invertibili: y =1 e x2 Dominio: D = R = ;+ Codominio: e x2 =1 y x 2 = ln(1 y) x = ± ln(1 y) 1 y > 0 ln(1 y) 0 y <1 y <1 1 y 1 y 0 y 0 C = ;0 La funzione non è iniettiva (guardare l espressione della x in funzione della y), quindi non è biunivoca e pertanto non è inveretibile nel suo dominio.
9 y = 4 + e x 1 Dominio: D = R = ;+ Codominio: e x 1 = y 4 x 1= ln( y 4) x =1+ ln( y 4) y 4 > 0 C = 4;+ La funzione è biunivoca e quindi invertibile. La funzione inversa è: y =1+ ln(x 4) y =1+ ln(3x) Dominio: 3x > 0 D = 0;+ Codominio: ln3x = y 1 3x = e y 1 x = e y 1 3 C = R = ;+ La funzione è biunivoca e quindi invertibile. La funzione inversa è: y = e x a) Disegna la funzione y=4 x+a +b, sapendo che passa per il punto P(1/2;31) e che la retta di equazione y=2x+5 la interseca nel suo punto di ascissa -1; b) determina l inversa. a = 2; b = 1 y = 4 x+2 1 Soluzione La funzione y = 4 x+2 1 è biunivoca e quindi ammette inversa : y = f 1 (x) = log 4 (x +1) 2
10 6. Studiare le seguenti funzioni: x 2 y = " log 1 x % $ ' # & x 2 y = e x 1 ln 2 (x 1) ln(x 1)
11 y = e 1 x 2 x 2e x 1 7. Durante una spedizione archeologica, viene rinvenuto un frammento di ossa di una tigre dai denti a sciabola. Le analisi rilevano una presenza di carbonio-14 uguale al 20% di quello presente in un organismo vivente. Il tempo di dimezzamento del carbonio-14 è di 5730 anni. Stima l età del reperto. La legge del decadimento è: N (t) = N 0 e t/τ dove : τ = T 1/2 ln 2 Soluzione La vita media del 14 C è data dalla seguente relazione: τ = T 1/2 ln2 = 1, , 693 = 2, s dove : T 1/2 = 5730 anni =1, s Utilizzando la legge del decadimento radioattivo: N(t) = N 0 e t/τ e tenendo presente che il 14 C è uguale al 20% di quello presente in un organismo vivente, si ottiene: 0, 2N 0 = N 0 e t = τ ln0, 2 = 2, ( 1, 609) = 4, s anni t/τ da cui
ESERCITAZIONE: ESPONENZIALI E LOGARITMI
ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: [email protected] web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione
Verica di Matematica (recupero) su equazioni e disequazioni esponenziali e logaritmiche [COMPITO 1]
Verica di Matematica (recupero) su equazioni e disequazioni esponenziali e logaritmiche [COMPITO 1] 1. Risolvere la seguente equazione esponenziale: 10 2 2x 9 2 x 1 = 0. 2. Risolvere la seguente equazione
Scale Logaritmiche. Matematica con Elementi di Statistica, Anna Torre a.a
Scale Logaritmiche SCALA LOGARITMICA: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti
Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)
Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5
Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)
Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5
Disequazioni esponenziali e logaritmiche
Disequazioni esponenziali e logaritmiche Saranno descritte alcune principali tipologie di disequazioni esponenziali e logaritmiche, riportando un esempio per ciascuna di esse. Daniela Favaretto Università
Verica di Matematica su equazioni e disequazioni esponenziali e logaritmiche [COMPITO 1]
Verica di Matematica su equazioni e disequazioni esponenziali e logaritmiche [COMPITO ]. Risolvere le seguenti equazioni esponenziali: (a) 3 x = 3 x ; (b) e x 0e x + = 0; (c) x x 40 = 0.. Risolvere le
MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A
MATEMATICA GENERALE Prova d esame del 4 giugno 2013 - FILA A Nome e cognome Matricola I Parte OBBLIGATORIA (quesiti preliminari: 1 punto ciascuno). Riportare le soluzioni su questo foglio, mostrando i
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
Equazione esponenziale a x = b con 0<a<1 oppure a>1; x R; b>0
Equazione esponenziale a x = b con 00 Proprietà delle potenze: a n. b n = ( a. b ) n a n : b n = ( a : b ) n a n. a m = a n+m a n : a m = a n-m ( a n ) m = a n a n/m n a = a -n/m
Esercizi sulle equazioni logaritmiche
Esercizi sulle equazioni logaritmiche Per definizione il logaritmo in base a di un numero positivo x, con a > 0 e a 1, è l esponente che occorre dare alla base a per ottenere il numero x. In simboli log
Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler)
Esponenziali e logaritmi (M.Simonetta Bernabei & Horst Thaler) La funzione esponenziale f con base a é definita da f(x) = a x dove a > 0, a 1, e x é un numero reale. Ad esempio, f(x) = 3 x e g(x) = 0.5
RICHIAMI di MATEMATICA ESERCIZI: equazioni e disequazioni esponenziali e logaritmiche
RICHIAMI di MATEMATICA ESERCIZI: equazioni e disequazioni esponenziali e logaritmiche Linguaggio e notazioni: a x esponenziale di base a, a > 0, e di esponente x R. log a x logaritmo in base a, a > 0 e
FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log
FUNZIONE LOGARITMO =log,,>0, 1 : 0,+ log a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo
Matematica. Funzioni. Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica
Matematica Funzioni Autore: prof. Pappalardo Vincenzo docente di Matematica e Fisica Le Funzioni e loro caratteristiche Introduzione L analisi di diversi fenomeni della natura o la risoluzione di problemi
Potenze, esponenziali e logaritmi 1 / 34
Potenze, esponenziali e logaritmi / 34 Grafico della funzione x 2 e x 2 / 34 y f(x)=x 2 y=x f (x)= x x Le funzioni potenza 3 / 34 Più in generale, si può considerare, per n N, n>0, n pari, la funzione
Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 21 Novembre Logaritmi e Proprietà
Esercitazioni di Matematica Generale A.A. 016/017 Pietro Pastore Lezione del 1 Novembre 016 Logaritmi e Proprietà Quando scriviamo log a b = c che leggiamo logaritmo in base a di b uguale a c, c è l esponente
ESPONENZIALI E LOGARITMI
Dispensa di Matematica per la classe 4. C Anno scolastico 07-08 ESPONENZIALI E LOGARITMI Nome e Cognome: POTENZE a b si legge A ELEVATO A BI : a è la base, b è l esponente, l operazione è l elevamento
Esercizi di Elementi di Matematica Corso di laurea in Farmacia
Esercizi di Elementi di Matematica Corso di laurea in Farmacia dott.ssa Marilena Ligabò November 24, 2015 1 Esercizi sulla notazione scientifica Esercizio 1.1. Eseguire il seguente calcolo utilizzando
Liceo Einstein Milano. Verifica di matematica 10 ottobre 2018
Liceo Einstein Milano 3G 10 ottobre 2018 1) Risolvi i seguenti sistemi: 2) A) Nel trapezio rettangolo ABCD la base maggiore AB e la base minore CD misurano rispettivamente 15 e 12 e l altezza AD misura
Esponenziali e logaritmi. Esercizi. Mauro Saita. Versione provvisoria. Febbraio 2014
Esponenziali e logaritmi. Esercizi. Mauro Saita. e-mail [email protected] Versione provvisoria. Febbraio 2014 Indice 1 Esercizi 2 1.1 Test n.1........................................ 2 1.2 Test
Chi non risolve esercizi non impara la matematica.
.7 esercizi 5.7 esercizi Chi non risolve esercizi non impara la matematica. La relazione f: { studenti del Versari-Macrelli } { classi del Versari-Macrelli } «lo studente è iscritto alla classe» è una
VERIFICA DI MATEMATICA Simulazione La funzione esponenziale e logaritmica - Soluzioni
Problema 1 a) c y f 1 : log 4 VERIFICA DI MATEMATICA Simulazione La funzione esponenziale e logaritmica - Soluzioni 1 log 1 4 0 4 1 Dominio: D ; 4 4 0 4 4 Intersezioni: 0 imp y 0 log 4 0 4 1 A ;0 Segno:
Esercitazione di Matematica Argomento: esponenziali e logaritmi
Esercitazione di Matematica Argomento: esponenziali e logaritmi Risolvere le seguenti equazioni esponenziali e logaritmiche:. x = 4;. ( ) x+ ( = 3. 00 x 0 4x+ = 0; 4. 3 4 x > 9x ;. e x = ;. 7 x = 0(x+)
Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica
Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali
Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n
Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x
ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE. Le FUNZIONI RAZIONALI INTERE (i polinomi) hanno come insieme di definizione R.
ESERCIZI SUL DOMINIO DI UNA FUNZIONE A UNA VARIABILE REALE PREMESSA Ai fini dello studio di una funzione la prima operazione da compiere è quella di determinare il suo dominio, ovvero l' insieme valori
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE
ESERCITAZIONE 9 : FUNZIONI QUADRATICHE e-mail: [email protected] web: www.dm.unipi.it/ tommei Ricevimento: Martedi 16-18 Dipartimento di Matematica, piano terra, studio 126 4 Dicembre 2012 L espressione
Anno 3. Equazioni esponenziali e logaritmiche
Anno 3 Equazioni esponenziali e logaritmiche 1 Introduzione Lo scopo delle pagine che seguono è quello di passare in rassegna le strategie risolutive per le equazioni esponenziali e logaritmiche. Al termine
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012
ESERCIZI DI METODI MATEMATICI PER L ECONOMIA FACOLTÀ DI ECONOMIA DI FERRARA A.A. 2011/2012 1. Esercizi 3 1. Studiare la seguente funzione FINO alla derivata prima, con tracciamento di grafico ed indicazione
Coordinate cartesiane nel piano
Coordinate cartesiane nel piano O = (0, 0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi
1.3. Logaritmi ed esponenziali
1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione
Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2
Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, [email protected] Esercizi 8: Studio di funzioni Studio
EQUAZIONI E DISEQUAZIONI LOGARITMICHE. Prof.ssa Maddalena Dominijanni
EQUAZIONI E DISEQUAZIONI LOGARITMICHE Definizione e proprietà dei logaritmi Il logaritmo in base a, con a > 0 e a, del numero b è l esponente da attribuire alla base a per ottenere il numero b. x x log
ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio.
Materia: Matematica. Docente : Varano Franco Antonio. Classe : 3 C Liceo Scientifico, opzione Scienze Applicate. ATTIVITA CONTENUTI PERIODO / DURATA LE ISOMETRIE. LE FUNZIONI. LA RETTA. Le isometrie, la
Programmazione disciplinare: Matematica 4 anno
Programmazione disciplinare: Matematica 4 anno CONTENUTI RISULTATI DI APPRENDIMENTO (Competenze) CONOSCENZE ABILITA TEMPI (settimane) Intervalli limitati e illimitati in R Saper riconoscere intervalli
1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: c) x + 1 d)x sin x.
Funzioni derivabili Esercizi svolti 1) Applicando la definizione di derivata, calcolare la derivata in x = 0 delle funzioni: a)2x 5 b) x 3 x 4 c) x + 1 d)x sin x. 2) Scrivere l equazione della retta tangente
SCALA QUADRATICA. Grafico di y(x) Grafico di y(x 2 ) y. X=x 2
SCALA QUADRATICA Grafico di y(x) y Grafico di y(x 2 ) y x X=x 2 1 SCALE NON LINEARI L utilizzo di scale non lineari permette di: Riconoscere le curve di tipo esponenziale o potenza Semplificare le curve
CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI
ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA
Calcolo letterale. 1. Quale delle seguenti affermazioni è vera?
Calcolo letterale 1. Quale delle seguenti affermazioni è vera? (a) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (b) m.c.m.(49a b 3 c, 4a 3 bc ) = 98a 3 b 3 c (XX) (c) m.c.m.(49a b 3 c, 4a 3 bc ) = 49a bc
Esercizi di Ricapitolazione
Esercizio 1. Sono dati 150g di una soluzione S 1 concentrata al 12%. (a) Determinare quanti grammi di soluto occorre aggiungere a S 1 per ottenere una nuova soluzione S 2 concentrata al 20%. (b) Determinare
Protocollo dei saperi imprescindibili Ordine di scuola: professionale
Protocollo dei saperi imprescindibili Ordine di scuola: professionale DISCIPLINA: MATEMATICA RESPONSABILE: CAGNESCHI F. - IMPERATORE D. CLASSE/INDIRIZZO: prima servizi commerciali calcolo numerico (N,
Esercitazioni di Matematica
Università degli Studi di Udine Anno Accademico 009/00 Facoltà di Agraria Corsi di Laurea in VIT e STAL Esercitazioni di Matematica novembre 009 Trovare le soluzioni della seguente disequazione: x + +
Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni
Precorso CLEF-CLEI, esercizi di preparazione al test finale con soluzioni ARITMETICA 1. Scomporre in fattori primi 2500 e 5600. Soluzione: Osserviamo che entrambi i numeri sono multipli di 100 = 2 2 5
3^C - Funzioni. Determina il campo di esistenza della funzione y= x x 3 x 5 0 x 5
3^C - Funzioni Determina il campo di esistenza della funzione y= x 5 2 2 x 3 x 5 0 x 5 { 2 x 3 0 x 3/2 CE : x 3 2 Determina il codominio della funzione y= x 2 6 x Parabola di vertice V 3,9 e concavità
Matematica I, Funzione inversa. Funzioni elementari (II).
Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale
FUNZIONI ESPONENZIALI
FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA CRESCITA DI UNA POPOLAZIONE BATTERICA DISEQUAZIONI ESPONENZIALI E LOGARITMICHE SIMMETRIE E GRAFICI DEDUCIBILI Angela Donatiello FUNZIONI ESPONENZIALI Crescita
LA FUNZIONE LOGARITMO
LA FUNZIONE LOGARITMO In una popolazione la cui numerosita varia con la legge N(t)=N(0)R t, con R=1+n-m, formata inizialmente da 10 5 individui, ad ogni generazione muore il 15% e il tasso di natalità
COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D. Fila A
Esercizio 1 Determinare il dominio della seguente funzione: COMPITO IN CLASSE DI MATEMATICA Funzioni di due variabili Classe 5ª D Fila A (a) f (, ln( + 4 Esercizio Calcolare le derivate parziali delle
PROGRAMMAZIONE DISCIPLINARE LICEO LINGUISTICO MATEMATICA
PROGRAMMAZIONE DISCIPLINARE PROGRAMMAZIONE DISCIPLINARE LICEO LINGUISTICO MATEMATICA CLASSE TERZA 1. 1. Competenze: le specifiche competenze di base disciplinari previste dalla Riforma (Linee Guida e/o
Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler
Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Crescente Decrescente Crescente Estremi di una funzione f ( ) f ( c) per ogni in [a, b]. f ( ) f ( d) per ogni
Coordinate Cartesiane nel Piano
Coordinate Cartesiane nel Piano O = (0,0) origine degli assi x ascissa, y ordinata sistemi monometrici: stessa unità di misura sui due assi x, y sistemi dimetrici: unità di misura diverse sui due assi
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..
1. FUNZIONI IN UNA VARIABILE
1. FUNZIONI IN UNA VARIABILE Definizione: Dati due insiemi A, B chiamiamo funzione da A in B ogni, f, applicazione (legge, corrispondenza) che associa ad ogni elemento di A uno ed uno solo elemento di
La funzione esponenziale
La funzione esponenziale Potenze con esponente reale La potenza a x è definita: x R se a > 0, x R + se a = 0, x Z se a < 0, Funzione esponenziale Si chiama funzione esponenziale ogni funzione del tipo:
Compiti delle vacanze di matematica CLASSE 4BS a.s. 2016/2017
Compiti delle vacanze di matematica CLASSE 4BS a.s. 016/017 - PER GLI STUDENTI CON ESAME A SETTEMBRE ( e consigliato a chi ha avuto difficoltà durante l anno scolastico) : Studiare gli argomenti affrontati
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni
DOMINIO di FUNZIONI. PREREQUISITI: v Grafici delle funzioni elementari. v Calcolo di EQUAZIONI e DISEQUAZIONI, intere, fratte e scomposte.
DOMINIO di FUNZIONI PREREQUISITI: v Grafici delle funzioni elementari. v Calcolo di EQUAZIONI e DISEQUAZIONI, intere, fratte e scomposte. Tutorial di Barberis Paola agg 2015 FUNZIONE v LA FUNZIONE E UNA
Determinare per quali valori del parametro a il seguente sistema ha soluzioni.
Determinare per quali valori del parametro a il seguente sistema ha soluzioni. x + y + z = 3 x + 2y z = 2 + a x + 3y 3z = 7 2) Determinare il valore massimo assunto dalla funzione: f(x, y) = xy2 x sul
Esercizi svolti. a 2 x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.
Esercizi svolti 1. Sia sin(x ) f(x) = x ( 1 + x 1 ) se x > 0 a x + 3 se x 0; determinare a in modo che f risulti continua nel suo dominio.. Scrivere l equazione della retta tangente nel punto di ascissa
Ripasso delle matematiche elementari: esercizi proposti
Ripasso delle matematiche elementari: esercizi proposti I Equazioni e disequazioni algebriche Esercizi sui polimoni.............................. Esercizi sulle equazioni di grado superiore al secondo............
CONTINUITÀ E DERIVABILITÀ Esercizi risolti
CONTINUITÀ E DERIVABILITÀ Esercizi risolti. Determinare [cos x] x kπ/ al variare di k in Z. Ove tale ite non esista, discutere l esistenza dei iti laterali. Identificare i punti di discontinuità della
PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 3
PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 0/0 CLASSI DISEQUAZIONI Risolvi le seguenti disequazioni numeriche intere. ) ) 9 ) ) 9 ( ) ) ) non esiste R non esiste R Risolvi le seguenti disequazioni
Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica
DISCIPLINA: MATEMATICA Protocollo dei saperi imprescindibili Ordine di scuola: tecnico della grafica RESPONSABILE: CAGNESCHI F. - IMPERATORE D. CLASSE/INDIRIZZO: prima tecnico della grafica calcolo numerico
Le proprietà che seguono valgono x, y > 0, a > 0 a 1, e b qualsiasi. Da queste si possono anche dedurre le seguenti uguaglianze log a 1 = 0
Corso di Potenziamento a.a. 009/00 I Logaritmi Fissiamo un numero a > 0, a. Dato un numero positivo t, l equazione a x = t ammette un unica soluzione x che si chiama logaritmo in base a di t e si scrive
