FUNZIONI ESPONENZIALI
|
|
|
- Virginia Bosco
- 9 anni fa
- Visualizzazioni
Transcript
1 FUNZIONE ESPONENZIALE E FUNZIONE LOGARITMICA CRESCITA DI UNA POPOLAZIONE BATTERICA DISEQUAZIONI ESPONENZIALI E LOGARITMICHE SIMMETRIE E GRAFICI DEDUCIBILI Angela Donatiello
2 FUNZIONI ESPONENZIALI Crescita di una popolazione batterica Se prendiamo in esame un microrganismo, che si riproduce per scissione binaria, e lo facciamo crescere in un sistema chiuso il numero della popolazione batterica che esso produrrà varierà nel tempo secondo cinque principali fasi: Fase di latenza: in questa fase il numero di microrganismi rimane pressoché costante. Questo perché il microrganismo deve adattarsi al tipo di terreno in cui è stato inoculato e ciò può durare anche diverse ore. Fase esponenziale: il microrganismo si divide in maniera esponenziale con velocità di crescita costante, raddoppiando la loro popolazione a intervalli regolari. Fase di transizione: la velocità di crescita comincia a rallentare. Fase stazionaria: non vi è un aumento netto della popolazione microbica perché vi è equilibrio tra divisione e morte cellulare. Ciò succede per un nutriente che scarseggia, per l'accumulo di sostanze tossiche, per il ph divenuto troppo basso, e per densità della popolazione. Fase di morte: la popolazione microbica diminuisce con un andamento logaritmo come è avvenuto per la fase esponenziale. Angela Donatiello 2
3 Analizziamo la fase esponenziale: Per semplicità assumiamo che tutte le duplicazioni avvengano nello stesso istante. Sia N k la numerosità della generazione k esima, allora la numerosità della generazione (k -) esima sarà N k-. Che relazione intercorre tra le numerosità di due generazioni successive? N k = 2 N k- Se indico con N 0 la numerosità della prima generazione (k = 0), allora si avrà N = 2 N 0 N 2 = 2 N = 4 N 0 = 2 2 N 0 N 3 = 2 N 2 = 8 N 0 = 2 3 N 0 and so on In genere: k Nk = N0 2 Tale relazione non va confusa con una funzione potenza, in quanto nelle funzioni potenza la variabile indipendente è alla base e non all esponente. Angela Donatiello 3
4 Una funzione del tipo y = f () = a con a > 0 e a si definisce funzione esponenziale. a > Dominio: R Codominio:] 0,+ [ Funzione monotona crescente in senso stretto y > 0 R Andamento agli estremi del dominio: lim a = + + lim a = 0 y = 3 Angela Donatiello 4
5 y = 2 y = 3 y = 4 OSSERVAZIONE La funzione cresce tanto più rapidamente quanto maggiore è la base. La funzione passa sempre per il punto (0,) Angela Donatiello 5
6 0 < a < Dominio: R Codominio:] 0,+ [ Funzione monotona decrescente in senso stretto y > 0 R Andamento agli estremi del dominio: lim a = 0 lim a = + + y = 3 Angela Donatiello 6
7 y y = 2 = 3 y = 4 OSSERVAZIONE La funzione decrescente tanto più rapidamente quanto più piccola è la base Passa sempre per il punto (0,) Angela Donatiello 7
8 Base naturale: y = e e è un numero trascendente definito come limite di una successione e = lim + n + n n e= Angela Donatiello 8
9 Decadimento radioattivo Modello di Malthus DEF. Si definisce logaritmo in base a di b l esponente da dare alla base a per avere come risultato b. y y = loga = a Poiché a 0 = allora log a = 0, quindi la funzione logaritmica interseca l asse delle ascisse nel punto (,0) Angela Donatiello 9
10 Una funzione del tipo y funzione logaritmica. FUNZIONE LOGARITMICA = f () = log con a > 0 e a si definisce a a > Dominio: ] 0,+ [ Codominio: R Funzione monotona crescente in senso stretto y > 0 con > y < 0 con 0 < < Andamento agli estremi del dominio: lim 0 + log a = lim + log a = + y = log2 Angela Donatiello 0
11 0 < a < Dominio: ] 0,+ [ Codominio: R Funzione monotona decrescente in senso stretto y > 0 con 0 < < y < 0 con > Andamento agli estremi del dominio: lim + lim 0 + log log a a = = + Angela Donatiello
12 y = y = log log 3 2 y = log2 y = log e y = log3 Angela Donatiello 2
13 y = a y = log a Sono l una l inversa dell altra Pertanto componendole si ottiene: a log a = loga a = Angela Donatiello 3
14 ,y > 0 e a > 0 PROPRIETA DEI LOGARITMI loga ( y) = loga + loga y loga = loga loga y y b loga = bloga log a = loga = loga logaritmo del reciproco log b log b c a = proprietà del cambiamento di base log a c 2 Le funzioni y = ln( + 6) e y = ln( 2) + ln( + 3) sono uguali? Angela Donatiello 4
15 2 2 = 5 EQUAZIONI E DISEQUAZIONI ESPONENZIALI = ( ) = 2 a > la funzione è crescente in senso stretto < a < 2 Pertanto a 2 a a b a < b > b > log e < log b 0 < a < la funzione è decrescente in senso stretto Pertanto a 2 < 2 a a a b a < b > > b < log e > log b = 2025 a a Angela Donatiello 5
16 Angela Donatiello 6 ESEMPI < < > > < + >
17 EQUAZIONI E DISEQUAZIONI LOGARITMICHE a > la funzione è crescente in senso stretto < 2 loga < loga 2 0 < a < la funzione è decrescente in senso stretto > < 2 loga loga 2 3 log 2 2 < 2 4 log (3 5) < log (2 ) (4 + ) 2 log ln( 4 + ) > ln(2 ) + ln(5 ) Angela Donatiello 7
18 Funzioni razionali fratte DOMINI N() y = D() 0 D() Funzioni radice di indice pari y = A() A() 0 Funzioni logaritmiche y = log [A()] A () > 0 a ESEMPI 2 y = ln( 9) y log2( + = 2 4 2) < 0 0 y = 4 log 2 2 Angela Donatiello 8
19 ALCUNE TRASFORMAZIONI GEOMETRICHE SIMMETRIE Angela Donatiello 9
20 y = f() (funzione in blu) y = f( - ) simmetria rispetto all asse y (in rosso) y = - f() simmetria rispetto all asse (in verde) Angela Donatiello 20
21 GRAFICI DEDUCIBILI f () y = f () = f () f () f () Coincide con la funzione stessa dove essa è positiva, mentre costruisco la simmetrica rispetto all asse solo nei tratti in cui la funzione è negativa. < 0 0 y = f ( ) = f () f ( ) 0 < 0 Coincide con la funzione dove la variabile è positiva, mentre va tracciata la sua simmetrica rispetto all asse y solo nel tratto in cui è negativa. Angela Donatiello 2
22 GRAFICI DEDUCIBILI y = ln( 3) Angela Donatiello 22
23 GRAFICI IN SCALA LOGARITMICA I riferimenti in scala logaritmica sono riferimenti in cui in ascissa pongo una scala lineare classica, mentre in ordinata, anziché la funzione y = f(), verrà riportato il log(f()). Sono utili per realizzare grafici di andamenti esponenziali. Tali andamenti saranno visualizzati tramite una retta. Un fenomeno descritto da un andamento esponenziale sarà rappresentato da una retta y = lnf () = lnc + a y = c Se un fenomeno è descritto da una funzione lineare y = a+b in scala logaritmica, esso avrà andamento esponenziale f () = e a e b e a Angela Donatiello 23
24 Angela Donatiello 24
25 EQUAZIONI E DISEQUAZIONI RISOLUBILI CON CONFRONTO GRAFICO e + = 0 Non risolubile algebricamente y y = e = Angela Donatiello 25
26 e + > e > 0 y y y 2 = = > e y 2 Vera per > 0 dove Valuta: log > 0 log + > 0 Angela Donatiello 26
UNITÀ DIDATTICA 2 LE FUNZIONI
UNITÀ DIDATTICA LE FUNZIONI. Le funzioni Definizione. Siano A e B due sottoinsiemi non vuoti di R. Si chiama funzione di A in B una qualsiasi legge che fa corrispondere a ogni elemento A uno ed un solo
Esercizi sulle equazioni logaritmiche
Esercizi sulle equazioni logaritmiche Per definizione il logaritmo in base a di un numero positivo x, con a > 0 e a 1, è l esponente che occorre dare alla base a per ottenere il numero x. In simboli log
Definizione: Dato un sottoinsieme non vuoti di. Si chiama funzione identica o identità di in sé la funzione tale che.
Esercitazioni di Analisi Matematica Prof.ssa Chiara Broggi Materiale disponibile su www.istitutodefilippi.it/claro Lezione 2: Funzioni reali e loro proprietà Definizione: Siano e due sottoinsiemi non vuoti
VERIFICA DI MATEMATICA Simulazione La funzione esponenziale e logaritmica - Soluzioni
Problema 1 a) c y f 1 : log 4 VERIFICA DI MATEMATICA Simulazione La funzione esponenziale e logaritmica - Soluzioni 1 log 1 4 0 4 1 Dominio: D ; 4 4 0 4 4 Intersezioni: 0 imp y 0 log 4 0 4 1 A ;0 Segno:
1.3. Logaritmi ed esponenziali
1.3. Logaritmi ed esponenziali 1. Rappresentazione sugli assi cartesiani 2. Relazione 3. Definizione di funzione 4. La funzione esponenziale 5. Il logaritmo 6. La funzione logaritma 1-3 1 Rappresentazione
FUNZIONI E INSIEMI DI DEFINIZIONE
FUNZIONI E INSIEMI DI DEFINIZIONE In matematica, una funzione f da X in Y consiste in: ) un insieme X detto insieme di definizione I.d.D. (o dominio) di f 2) un insieme Y detto codominio di f 3) una legge
ESERCITAZIONE: ESPONENZIALI E LOGARITMI
ESERCITAZIONE: ESPONENZIALI E LOGARITMI e-mail: [email protected] web: www.dm.unipi.it/ tommei Esercizio 1 In una coltura batterica, il numero di batteri triplica ogni ora. Se all inizio dell osservazione
Unità Didattica N 2 Le funzioni
Unità Didattica N Le funzioni 1 Unità Didattica N Le funzioni 05) Definizione di applicazione o funzione o mappa. 06) Classificazione delle funzioni numeriche 07) Estremi di una funzione, funzioni limitate.
Esercizi. 1. Disegnare il grafico qualitativo della seguente funzione:
Esercizi. Disegnare il grafico qualitativo della seguente funzione: f(x) = x 2 per x 0 x per x > 0 e determinarne gli eventuali punti di massimo e minimo assoluti e relativi nell intervallo (,4]. Esercizi
Studio di funzione. Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2
Studio di funzione Copyright c 2009 Pasquale Terrecuso Tutti i diritti sono riservati. E vietata la riproduzione, anche parziale, senza il consenso dell autore. Funzioni elementari 2 Studio di funzione
LOGARITMI. log = = con >0, 1; >0 = >0, 1, >0. log =1 >0, 1. notebookitalia.altervista.org
LOGARITMI Sia un numero reale positivo ed un numero reale, positivo, diverso da 1; si dice logaritmo di in base il valore da attribuire come esponente alla base per ottenere una potenza uguale all argomento.
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III
SYLLABUS DI MATEMATICA Liceo Linguistico Classe III LE EQUAZIONI DI SECONDO GRADO Le equazioni di secondo grado e la loro risoluzione. La formula ridotta. Equazioni pure, spurie e monomie. Le relazioni
Le funzioni reali di una variabile reale
Le funzioni reali di una variabile reale Prof. Giovanni Ianne DEFINIZIONE DI FUNZIONE REALE DI UNA VARIABILE REALE Dati due insiemi non vuoti A, B R, una funzione f da A in B è una relazione fra A e B
FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale
FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al più un elemento in Y. X Y Def. L insieme Y è detto codominio
FUNZIONI. y Y. Def. L insieme Y è detto codominio di f. Es. Siano X = R, Y = R e f : x y = 1 x associo il suo inverso). (ad un numero reale
FUNZIONI Siano X e Y due insiemi. Def. Una funzione f definita in X a valori in Y è una corrispondenza (una legge) che associa ad ogni elemento X al piú un elemento in Y. X Y Def. L insieme Y è detto codominio
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 2005/2006
Esercitazioni di ISTITUZIONI di MATEMATICA 1 Facoltà di Architettura Anno Accademico 005/006 Antonella Ballabene SOLUZIONI -14 marzo 006- SCHEMA per lo STUDIO di FUNZIONI 1. Dominio della funzione f)..
1. Funzioni reali di una variabile reale
Di cosa parleremo In questo capitolo introduttivo ci occuperemo di funzioni reali di una variabile reale; precisamente, daremo dei criteri per la determinazione del campo di esistenza delle varie tipologie
Studio di funzione. numeri.altervista.org
Studio di funzione 1. Determinazione del campo di esistenza CONDIZIONE DI ESISTENZA intera: FUNZIONE RAZIONALE se è del tipo f(x)=p(x) dove P(x) e' un polinomio nella variabile x --------------------------------------------------------------------
FUNZIONE LOGARITMO. =log,, >0, 1 : 0,+ log
FUNZIONE LOGARITMO =log,,>0, 1 : 0,+ log a è la base della funzione logaritmo ed è una costante positiva fissata e diversa da 1 x è l argomento della funzione logaritmo e varia nel dominio Funzione logaritmo
y = è una relazione tra due variabili, che ad ogni valore della
LE FUNZIONI DEFIINIIZIIONE Una funzione f () = è una relazione tra due variabili, che ad ogni valore della VARIABILE INDIPENDENTE associa AL PIU (al massimo) un valore della VARIABILE DIPENDENTE E UNA
GRAFICI DEDUCIBILI DA QUELLI DELLE FUNZIONI NOTE. Il grafico della funzione. Appunti di Matematica xoomer.virgilio.
GRAFICI DEDUCIBILI DA QUELLI DELLE FUNZIONI NOTE Funzione opposta y = Il grafico della funzione funzione f( x ). f( x ) si ottiene simmetrizzando rispetto all asse x, il grafico della f( x ) Appunti di
Programma svolto a.s. 2017/2018 Classe 1H Materia: Matematica Docente: De Rossi Francesco
Classe 1H Materia: Matematica Docente: De Rossi Francesco - Matematica multimediale. bianco Vol 1 Autori: M. Bergamini, G. Barozzi Casa Editrice: Zanichelli codice ISBN 978888334671 Capitolo 1 Insiemi
Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler
Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Crescente Decrescente Crescente Estremi di una funzione f ( ) f ( c) per ogni in [a, b]. f ( ) f ( d) per ogni
Le Funzioni. Modulo Esponenziali Logaritmiche. Prof.ssa Maddalena Dominijanni
Le Funzioni Modulo Esponenziali Logaritmiche Definizione di modulo o valore assoluto Se x è un generico numero reale, il suo modulo o valore assoluto è: x = x se x 0 -x se x
Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1
Prof. Milizia, Liceo Scientifico di Mesagne (BR) 1 CAPITOLO 8. LE FUNZIONI. 1. Generalità sulle funzioni.. Le rappresentazioni di una funzione. 3. Le funzioni reali di variabile reale. 4. L espressione
Introduzione. Test d ingresso
Indice Introduzione Test d ingresso v vii 1 Insiemi e numeri 1 1.1 Insiemi... 1 1.2 Operazionicongliinsiemi... 3 1.3 Insieminumerici,operazioni... 7 1.4 Potenze... 11 1.5 Intervalli... 12 1.6 Valoreassolutoedistanza...
Scale Logaritmiche. Matematica con Elementi di Statistica, Anna Torre a.a
Scale Logaritmiche SCALA LOGARITMICA: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti
Esercitazione 2 - Soluzioni
Esercitazione - Soluzioni Francesco Davì ottobre 0 Esercizio (a) Si deve avere + x 0 x, che è verificato x R, in quanto il valore del modulo di un espressione non è mai negativo. L espressione al numeratore
+... + a n. a 0 x n + a 1 x n 1. b 0 x m + b 1 x m 1. +... + b m 0. Funzioni reali di variabile reale. Definizione classica. Funzioni razionali
Funzioni reali di variabile reale Una reale di variabile reale è una funzione nella quale il dominio d è un sottoinsieme di r e il condominio c è anch esso un sottoinsieme di r. F:r r Definizione classica.
Proprietà delle funzioni. M.Simonetta Bernabei & Horst Thaler
Proprietà delle funzioni M.Simonetta Bernabei & Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente in (a, b) se f ( 1 ) f ( ) quando 1
Matematica I, Funzione inversa. Funzioni elementari (II).
Matematica I, 02.10.2012 Funzione inversa. Funzioni elementari (II). 1. Sia f : A B una funzione reale di variabile reale (A, B R); se f e biiettiva, allora la posizione f 1 (b) = unico elemento a A tale
Programma del corso di Matematica per Tecnologia della Produzione Animale
Programma del corso di Matematica per Tecnologia della Produzione Animale Anno Accademico 2016/2017 3 agosto 2016 Il corso ha come scopo l acquisizione di conoscenze di matematica di base. A partire dai
Esempi di funzione...
Funzioni Dati due insiemi non vuoti A e B, si chiama applicazione o funzione da A a B una relazione tra i due insiemi che a ogni elemento di A fa corrispondere uno e un solo elemento di B. A B Esempi di
PROGRAMMI DI MATEMATICA CLASSE 3 SEZIONE C
PROGRAMMI DI MATEMATICA CLASSE 3 SEZIONE C L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo grado. Il piano cartesiano. Distanza tra
LOGARITMI. Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA. L uguaglianza: a x = b
Corso di laurea: BIOLOGIA Tutor: Floris Marta; Max Artizzu PRECORSI DI MATEMATICA LOGARITMI L uguaglianza: a x = b nella quale a e b rappresentano due numeri reali noti ed x un incognita, è un equazione
Roberto Galimberti MATEMATICA
Docente Materia Classe Roberto Galimberti MATEMATICA 4L Programmazione Preventiva Anno Scolastico 2011-2012 Data 31/12/11 Obiettivi Cognitivi Minimi conoscere la definizione di circonferenza come luogo
Scale Logaritmiche. Matematica con Elementi di Statistica a.a. 2015/16
Scale Logaritmiche Scala Logaritmica: sull asse prescelto (ad esempio, l asse x) si rappresenta il punto di ascissa = 0 0 nella direzione positiva si rappresentano, a distanze uguali fra di loro, i punti
CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI
ISTITUTO D ISTRUZIONE SECONDARIA SUPERIORE I.T.C.G. L. EINAUDI LICEO SCIENTIFICO G. BRUNO CLASSE 1 SEZIONE A PROGRAMMA DI MATEMATICA DOCENTE ENRICO PILI ANNO SCOLASTICO 2016/2017 RICHIAMI DI ARITMETICA
RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI. Angela Donatiello 1
RICHIAMI SU RETTA, PARABOLA E DISEQUAZIONI Angela Donatiello 1 Una funzione del tipo f() = m + q, con m e q numeri reali, è una FUNZIONE LINEARE. Il numero q è detto INTERCETTA o ORDINATA ALL ORIGINE,
Geometria analitica di base (seconda parte)
SAPERE Al termine di questo capitolo, avrai appreso: il concetto di luogo geometrico la definizione di funzione quadratica l interpretazione geometrica di un particolare sistema di equazioni di secondo
ISTITUTO DI ISTRUZIONE SUPERIORE J.C. MAXWELL Data Pag. di PROGRAMMA SVOLTO. Docente : Varano Franco Antonio.
Materia: Matematica. Docente : Varano Franco Antonio. Classe : 3 C Liceo Scientifico, opzione Scienze Applicate. ATTIVITA CONTENUTI PERIODO / DURATA LE ISOMETRIE. LE FUNZIONI. LA RETTA. Le isometrie, la
Proprietà delle funzioni. M.Simonetta Bernabei, Horst Thaler
Proprietà delle funzioni M.Simonetta Bernabei, Horst Thaler Funzioni crescenti e decrescenti Una funzione f è crescente (non decrescente) in un intervallo I se f ( 1 ) < f ( ) (f ( 1 ) f ( )), quando 1
Istituto Tecnico Statale per il Turismo "Francesco Algarotti" Classe: 3 Sez. A A. S. 2017/18 PROGRAMMA DI MATEMATICA
Classe: 3 Sez. A A. S. 2017/18 Libro di testo: Bergamini Trifone Barozzi Matematica.bianco (2 vol.) Bergamini Trifone Barozzi Matematica.rosso (vol. 3s) Volume 2 Ripasso. Scomposizione in fattori primi
Matematica Lezione 11
Università di Cagliari Corso di Laurea in Farmacia Matematica Lezione 11 Sonia Cannas 15/11/2018 Funzione esponenziale Abbiamo disegnato il grafico qualitativo delle funzioni esponenziali y = a x con a
Carta Semilogaritmica Esempio
Carta Semilogaritmica Esempio 8 10000 1000 100 10 3 2 1 8 3 2 1 8 3 2 1 8 3 2 1 8 3 2 Sono date le coordinate cartesiane di alcuni punti desunti da osservazioni sperimentali: A = (1,7.1) B = (2,12.1) C
Liceo Scientifico Severi Salerno
Liceo Scientifico Severi Salerno VERIFICA SCRITTA MATEMATICA Docente: Pappalardo Vincenzo Data: 20/10/2018 Classe: IV D 1. Risolvere le seguenti equazioni e disequazioni esponenziali: 3 2 x 5 4 x 1 = 20
x dove fx ( ) assume tali valori si dice punto di massimo o di
7. Funzioni limitate ed illimitate, funzioni inverse Definizione: Una funzione f: A Bsi dice limitata superiormente od inferiormente se il suo condominio è un insieme limitato superiormente od inferiormente.
Le funzioni elementari. Corsi di Laurea in Tecniche di Radiologia... A.A. 2010-2011 - Analisi Matematica - Le funzioni elementari - p.
Le funzioni elementari Corsi di Laurea in Tecniche di Radiologia... A.A. 200-20 - Analisi Matematica - Le funzioni elementari - p. /43 Funzioni lineari e affini Potenze ad esponente naturale Confronto
Funzioni Pari e Dispari
Una funzione f : R R si dice Funzioni Pari e Dispari PARI: se f( ) = f() R In questo caso il grafico della funzione è simmetrico rispetto all asse DISPARI: se f( ) = f() R In questo caso il grafico della
ESPONENZIALI E LOGARITMI
Dispensa di Matematica per la classe 4. C Anno scolastico 07-08 ESPONENZIALI E LOGARITMI Nome e Cognome: POTENZE a b si legge A ELEVATO A BI : a è la base, b è l esponente, l operazione è l elevamento
Programmazione per Obiettivi Minimi. Matematica Primo anno
Programmazione per Obiettivi Minimi Matematica Primo anno Saper operare in N, Z e Q. Conoscere e saper applicare le proprietà delle potenze con esponente intero e relativo. Saper operare con i monomi.
Indice. Prefazione. Fattorizzazione di A + B Fattorizzazione di trinomi particolari 22 2
Prefazione XI Test di ingresso 1 Capitolo 1 Insiemi numerici, intervalli e intorni 5 1.1 Introduzione 5 1.2 Insiemi generici 5 1.2.1 Relazioni e operazioni tra insiemi 7 1.3 Insiemi numerici 8 1.3.1 Rappresentazione
Ing. Alessandro Pochì
Dispense di Matematica La funzione aritmica e la funzione esponenziale Questa opera è distribuita con: Licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate.0 Italia Ing. Alessandro
Funzioni e grafici. prof. Andres Manzini
Università degli studi di Modena e Reggio Emilia Dipartimento di Scienze e Metodi dell Ingegneria Corso MOOC Iscriversi a Ingegneria Reggio Emilia Introduzione Definizione Si dice funzione (o applicazione)
Concavità verso il basso (funzione concava) Si dice che in x0 il grafico della funzione f(x) abbia la concavità rivolta verso il basso, se esiste
CONCAVITA E CONVESSITA DI UNA FUNZIONE. FLESSI. SCHEMA GENERALE PER LO STUDIO DI FUNZIONE. FUNZIONI RAZIONALI E IRRAZIONALI INTERE E FRATTE. TEOREMA DI DE L HOSPITAL CON APPLICAZIONI AI LIMITI. 1 Concavit{
PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016
PROGRAMMA DI MATEMATICA APPLICATA Classe III SIA sez. A A.S. 2015/2016 LE DISEQUAZIONI 1. Le disequazioni di primo e secondo grado 2. Le disequazioni di grado superiore al secondo e le disequazioni fratte
CLASSE terza SEZIONE E A.S PROGRAMMA SVOLTO
CLASSE terza SEZIONE E A.S. 2015-16 PROGRAMMA SVOLTO RIPASSO ARGOMENTI PROPEDEUTICI L insieme dei numeri razionali. Equazioni e disequazioni di primo grado Sistemi di equazioni e disequazioni di primo
Elenco moduli Argomenti Strumenti / Testi Letture / Metodi. partecipazione degli alunni. 2 Completamento equazioni e disequazioni.
Pagina 1 di 5 DISCIPLINA: MATEMATICA E LABORATORIO INDIRIZZO: IGEA CLASSE: IV FM DOCENTE : Cornelio Terreni Elenco moduli Argomenti Strumenti / Testi Letture / Metodi 1 Matematica RIPASSO e COMPLETAMENTO:
Progetto Matematica in Rete - Funzioni - FUNZIONI. f : A B, con A e B insiemi non vuoti, è una legge x A uno e un solo elemento y B
FUNZIONI Deinizione di unzione : una unzione che associa ad ogni elemento : A B, con A e B insiemi non vuoti, è una legge A uno e un solo elemento y B y () y viene chiamato immagine di e indicato anche
PROGRAMMA DI MATEMATICA APPLICATA
PROGRAMMA DI MATEMATICA APPLICATA Classe II A Turismo A.S. 2014/2015 Prof.ssa RUGGIERO ANGELA ISABELLA I NUMERI REALI Radicali: - Riduzione allo stesso indice e semplificazione - Alcune operazioni fra
1. Studia la funzione che rappresenta la superficie del parallelepipedo in funzione del lato b della base quadrata e rappresentala graficamente;
PROBLEMA 2: Il ghiaccio Il tuo liceo, nell'ambito dell'alternanza scuola lavoro, ha organizzato per gli studenti del quinto anno un attività presso lo stabilimento ICE ON DEMAND sito nella tua regione.
Esercizio 1. f(x) = 4 5x2 x 2 +x 2. Esercizio 2. f(x) = x2 16. Esercizio 3. f(x) = x2 1 9 x 2
Matematica ed Informatica+Fisica ESERCIZI Modulo di Matematica ed Informatica Corso di Laurea in CTF - anno acc. 2013/2014 docente: Giulia Giantesio, [email protected] Esercizi 8: Studio di funzioni Studio
Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio Studio di Funzione
Esercitazioni di Matematica Generale A.A. 2016/2017 Pietro Pastore Lezione del 25 Gennaio 2017 Studio di Funzione 1. Si consideri la funzione reale di variabile reale così definita f() = 2 + 4. (a) Determinare
Matematica Esame. Giuseppe Vittucci Marzetti
Matematica Esame Giuseppe Vittucci Marzetti Dipartimento di Sociologia e Ricerca Sociale Università degli Studi di Milano-Bicocca Corso di Laurea in Scienze dell Organizzazione 18 Settembre 2019 Istruzioni:
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico
PROGRAMMA MATEMATICA Classe 1 A AFM anno scolastico 2015-2016 I numeri naturali rappresentazione dei numeri naturali, le quattro operazioni, multipli e divisori di un numero. Criteri di divisibilità, le
Trasformazioni Logaritmiche
Trasformazioni Logaritmiche Una funzione y = f(x) può essere rappresentata in scala logaritmica ponendo Si noti che y = f(x) diventa ossia Quando mi conviene? X = log α x, Y = log α y. log α (x) = log
I LICEO CLASSICO. Le equazioni e le disequazioni di II grado e di grado superiore
CONOSCENZE indirizzo CLASSICO I LICEO CLASSICO Le equazioni e le disequazioni di II grado e di grado superiore Equazioni di secondo grado incomplete; equazioni di secondo grado complete; formula risolutiva
FUNZIONI LOGARITMICHE
La funzione f: R R + dove f(x) = b x b>0, b 1, è invertibile. La funzione inversa si chiama logaritmo in base b log b : R + R, essendo la funzione inversa si ha log b (b x ) = x b log b x = x In particolare
Equazioni e disequazioni algebriche. Soluzione. Si tratta del quadrato di un binomio. Si ha pertanto. (x m y n ) 2 = x 2m 2x m y n + y 2n
Si tratta del quadrato di un binomio. Si ha pertanto (x m y n ) 2 = x 2m 2x m y n + y 2n 4. La divisione (x 3 3x 2 + 5x 2) : (x 2) ha Q(x) = x 2 x + 3 e R = 4 Dalla divisione tra i polinomi risulta (x
1) D0MINIO. Determinare il dominio della funzione f (x) = ln ( x 3 4x 2 3x). Deve essere x 3 4x 2 3x > 0. Ovviamente x 0.
D0MINIO Determinare il dominio della funzione f ln 4 + Deve essere 4 + > 0 Ovviamente 0 Se > 0, 4 + 4 + quindi 0 < < > Se < 0, 4 + 4 4 e, ricordando che < 0, deve essere 4 < 0 dunque 7 < < 0 Il campo di
