Laurea Triennale in Matematica, Università Sapienza Corso di Probabilità 2 A.A. 2010/2011 Prova scritta 10 giugno 2011 Soluzione degli esercizi

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Laurea Triennale in Matematica, Università Sapienza Corso di Probabilità 2 A.A. 2010/2011 Prova scritta 10 giugno 2011 Soluzione degli esercizi"

Transcript

1 Laurea Triennale in Matematica, Uniersità Saienza Corso di Probabilità A.A. 00/0 Proa scritta 0 giugno 0 Soluzione degli esercizi Esercizio. Un modello di cellulare iene enduto con una batteria istallata ed una batteria di risera. Si suone che i temi di durata delle batterie - misurati in ore - sono ariabili aleatorie indiendenti, con distribuzione G(; 0:000). Si indichi con T il temo di funzionamento - misurato in ore - realizzato dalle batterie del cellulare, resuonendo che, esaurita la rima batteria, essa enga subito sostituita con la seconda (che, no al momento dell istallazione, iene conserata in modo da rimanere raticamente nuoa). a) Calcolare P ft > 0:000g b) Consideriamo 00 esemlari di tale modello ed indichiamo con M la roorzione di quelli er cui tali temi comlessii di funzionamento suerino la quota di 0:000 ore. Calcolare l arossimazione gaussiana er la robabilità : P f0:8 < M < 0:94g: Soluzione a) Indicando con X ; X i temi di durata delle due batterie, si ha che T X + X segue una distribuzione gamma G(4; 0:000). Dunque T ha la stessa distribuzione di robabilità di T 4, temo di attesa no al quarto arrio in un rocesso di Poisson di intensità 0:000 e ossiamo scriere, er ogni t > 0, P ft > tg P ft 4 > tg P fn t < 4g X P fn t kg k0 X e t (t) k k! : k0 In articolare, er t 0000, si ha t e P ft > 0000g e :5 4 6: ' 0:857 b) La ariabile aleatoria M ha alore atteso 0:857, arianza ( ) 00 0:005 e scarto standard 0:005 0:05:

2 Infatti essa si uò edere dunque come M S doe S 00 P 00 j Y j, Y ; Y,... essendo ariabili aleatorie binarie, con E (Y j ) e V ar (Y j ) ( ). Scrieremo allora M 0: :05 Z ed arossimiamo la distribuzione di robabilità della ariabile standardizzata Z con la distribuzione gaussiana standard N (0; ). Otteniamo quindi P f0:8 < M < 0:94g P f0:8 < 0: :05 Z < 0:94g P f 0:057 0:05 < Z < 0:057 0:057 0:05 g ' 0:05 (: 68 6) 0:948 0:896: Esercizio. Consideriamo tre ariabili aleatorie X ; X ; X i.i.d. con distribuzione gaussiana N 0; e oniamo V X + X ; W X + X : a) Qual è la funzione di densità marginale f V di V? Dimostrare l esattezza della risosta data calcolando f V in termini di conoluzione fra le funzioni di densità di X e X b) Determinare la funzione di densità congiunta f X;V;W (; ; w) er la terna (X ; V; W ) c) Calcolare il coe ciente di correlazione (V; W ) d) Qual è la funzione di densità congiunta f V;W della coia (V; W )? Dimostrare l esattezza della risosta data calcolando f V;W quale marginale della densità f X;V;W ottenuta nel recedente unto b). Soluzione a) V segue una distribuzione gaussiana N 0; e la sua funzione di densità è f V () exf 4 g: Possiamo, in articolare, dimostrarlo come segue (eslicitando tuti i dettagli dei ari assaggi): f V () Z + exf x g exf ( x) gdx Z + exf (x x)g exf gdx

3 Z exf + g exf (x x)gdx Z exf + g exf x x) + g exf 4 4 gdx exf g exf Z + 4 )g exf (x ) gdx exf g exf Z + 4 )g exf (x ) gdx exf Z + 4 gg exf (x ) gdx exf 4 g: b) Per determinare la funzione di densità congiunta f X;V;W (; ; w) della terna (X ; V; W ) consideriamo la trasformazione la cui inersa è X X V X + X W X + X ; X V X X X X W X : Il modulo del determinante jacobiano di tale trasformazione inersa è quindi uguale ad. Dunque f X;V;W (; ; w) f X;X ;X (; ; w ) c) exf exf h + ( ) + (w ) i g + + w ( + w) g: (V; W ) Co (X + X ; X + X )

4 Co (X ; X + X ) + Co (X ; X + X ) V ar (X ) d) V e W hanno alori attesi uguali a 0, arianze uguali a e coe ciente di correlazione (V; W ). Inoltre, essendo la terna (X ; V; W ) ottenuta attraerso una trasformazione lineare inertibile a artire dalla terna (X ; X ; X ) (doe X ; X ; X sono gaussiane indiendenti), la distribuzione congiunta della coia (V; W ) è una gaussiana bidimensionale; iù recisamente dorà essere N 0; 0; ; ;. Possiamo cioè a ermare che la funzione di densità congiunta f V;W di (V; W ) dee essere data da f V;W (; w) exf w + w g: L esercizio richiede comunque di eri care la alidità di tale uguaglianza calcolando f V;W quale marginale della densità tri-dimensionale calcolata nel recedente unto b). A tale roosito, ossiamo scriere f V;W (; w) Z + exf + + w ( + w) gd exf + w Z + g exf exf + w g exf exf " Z + + w ( + w) exf # g Z + + w w w exf + w " ( + w) gd ( + w) ( + w) + 9 exf Z + g w exf + w w g: exf g Esercizio. 6 alline numerate (da a 6) sono inizialmente distribuite fra due urne A e B. A ciascun asso n (n ; ; :::) iene scelto a caso un numero comreso fra e 6 e la corrisondente allina iene estratta dall urna in cui attualmente si troa. Questa iene oi rimessa nella stessa urna o sostata all altra urna con robabilità e q, risettiamente. Indichiamo con X n il numero di alline che si troano nell urna A al asso n. fx n g n0;;::: de nisce così una catena di Marko omogenea (modello modi cato dell urna di Ehrenfest), con sazio degli stati E : f0; ; :::; 6g. # ( + w) gd exf ( + w) gd 9 ( + w) gd 4

5 a) Determinare la matrice delle robabilità di transizione ad un asso er la catena b) Calcolare la distribuzione inariante, motiandone esistenza ed unicità c) La catena è reersibile risetto a tale distribuzione? d) Siegare quale di erenza sussiste fra il caso 0 ed il caso > 0 (facoltatio). Soluzione a) In qualunque stato si troi la catena, è uguale a la robabilità di restare, in un asso, nello stato stesso. A artire dallo stato 0 l unica ossibile transizione è erso lo stato ; e ciò aiene con robabilità q. Analogamente, oltre che restare nello stato 6, l unica ossibile transizione a artire dallo stato 6 è erso lo stato 5; e ciò aiene con robabilità q. Da uno stato i (con i ; ; ::; 5) la catena, oltre che restare nello stesso stato con robabilità, uò aere una transizione erso lo stato (i ) - e ciò aiene con robabilità q i 6 - oure erso lo stato (i + ) - e ciò aiene con robabilità q 6 i 6. b) L esistenza di una distribuzione inariante è garantita dal fatto che lo sazio degli stati ha cardinalità nita. Partendo da un qualunque stato, qualunque altro stato uò essere raggiunto in un massimo di sei assi. Dunque la catena è irriducibile e la distribuzione inariante è unica. Notiamo iù recisamente a questo roosito che, er qualunque coia di stati, la robabilità di transizione in sei assi è strettamente ositia. Dunque la catena è anche regolare. In irtù del recedente unto a), le equazioni cui tale distribuzione dee obbedire sono q 6 + q + q 0 + q + q q 4 + q q 5 + q q 4 + q q 5 5

6 Si ottiene facilmente la soluzione 6 0 ; 5 0 ; 0 0 ; ; ; 6 0 Imonendo la condizione di normalizzazione si ottiene 0 64 e dunque 6X i ; i ; 5 64 ; 0 64 ; ; ; 6 64 : Si otrebbe anche notare (si eda iù aanti) che tale distribuzione di robabilità coincide con la distribuzione binomiale b(6; ): 64 6 e tutti i numeratori sono dei coe cienti binomiali della forma 6 i. c) La catena è reersibile; sono infatti soddisfatte le equazioni del bilancio dettagliato. Essendo la catena regolare, la distribuzione inariante dee aere anche il signi cato di distribuzione di equilibrio ed è intuitio che, nella resente situazione, la distribuzione di equilibrio debba aunto coincidre con la b(6; ). A questo unto, un raido controllo ermette di eri care la alidità delle equazioni del bilancio dettagliato e ciò dà dunque la conferma rigorosa che sia b(6; ) la distribuzione inariante. d) E immediato rileare che la distribuzione inariante non diende dal alore di. Nel caso > 0, come detto sora, la catena è erò regolare, mentre nel caso 0 tale rorietà iene a cadere, ur se la catena resta irriducibile. 6

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 2009/10 Prova scritta del 21/7/2010

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 2009/10 Prova scritta del 21/7/2010 Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 009/0 Prova scritta del /7/00 Nota. E obbligatorio sia scegliere le risoste (numeriche, o le formule nali a seconda del

Dettagli

E (X 2 ) = E (G) + E (E 2 ) = 1, V ar (X 2 ) = V ar (G) + V ar (E 2 ) = 5, Cov(X 1, X 2 ) = Cov(G + E 1, G + E 2 ) = V ar (G) = 4,

E (X 2 ) = E (G) + E (E 2 ) = 1, V ar (X 2 ) = V ar (G) + V ar (E 2 ) = 5, Cov(X 1, X 2 ) = Cov(G + E 1, G + E 2 ) = V ar (G) = 4, Laurea Triennale in Matematica, Università La Sapienza Corso di Probabilità, AA 04/05 Prova di Esonero Maggio 05 degli esercizi proposti Siano G, E, E tre variabili aleatorie gaussiane indipendenti, rispettivamente

Dettagli

CP110 Probabilità: Esame 2 settembre 2013 Testo e soluzione

CP110 Probabilità: Esame 2 settembre 2013 Testo e soluzione Diartimento di Matematica, Roma Tre Pietro Cauto 212-13, II semestre 2 settembre, 213 CP11 Probabilità: Esame 2 settembre 213 Testo e soluzione 1. (6 ts) Abbiamo due mazzi di carte francesi, il mazzo A

Dettagli

Probabilità e tempi medi di assorbimento

Probabilità e tempi medi di assorbimento Probabilità e temi medi di assorbimento 6.1 Probabilità di assorbimento Consideriamo una catena con un numero finito di stati che indichiamo con S = {1, 2,... r}. Sia C una classe chiusa di S. Se la catena

Dettagli

con distribuzione gaussiana standard e si ponga

con distribuzione gaussiana standard e si ponga Laurea Triennale in Matematica, Università La Sapienza Corso di Probabilità, AA 6/7 Prova di Esonero Maggio 7 Testi e soluzioni degli esercizi proposti Siano Z, Z, Z variabili aleatorie indipendenti e

Dettagli

Traccia dello svolgimento di alcuni esercizi del compito del 15/04/08

Traccia dello svolgimento di alcuni esercizi del compito del 15/04/08 Traccia dello svolgimento di alcuni esercizi del comito del //8 Esercizio.. L esercizio richiede di risolvere in generale il seguente sistema lineare @ A = b a. Il sistema ^A = b ammette soluzioni se Rg(

Dettagli

CP110 Probabilità: Esonero 1

CP110 Probabilità: Esonero 1 Diartimento di Matematica, Roma Tre Pietro Cauto 2010-11, II semestre 12 arile, 2011 CP110 Probabilità: Esonero 1 Cognome Nome Matricola Firma Nota: 1. L unica cosa che si uo usare durante l esame è una

Dettagli

CALCOLO DELLE PROBABILITÀ. 1. La probabilità che una candela accesa si spenga è p = 1, perché è assolutamente certo che si esaurirà.

CALCOLO DELLE PROBABILITÀ. 1. La probabilità che una candela accesa si spenga è p = 1, perché è assolutamente certo che si esaurirà. CALCOLO DELLE PROBABILITÀ -Definizione di robabilità -Legge additiva (eventi disgiunti) -Probabilità totale -Eventi comosti -Eventi indiendenti -Legge moltilicativa -Probabilità comoste - -Definizione

Dettagli

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica

Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Facoltà di Ingegneria Calcolo delle Probabilità e Statistica Ingegneria Civile e A&T e Informatica Prima prova scritta A.A. 8-9 Durata della prova h Punteggi: ) + + ; ) + + + ; ) +. Totale. Esercizio Sia

Dettagli

Soluzioni di Esercizi di Esame di Segnali Aleatori per Telecomunicazioni

Soluzioni di Esercizi di Esame di Segnali Aleatori per Telecomunicazioni Corso di Laurea in Ingegneria Informatica corso di Telecomunicazioni (rof. G. Giunta) (editing a cura dell ing. F. Benedetto) Soluzioni di sercizi di same di Segnali Aleatori per Telecomunicazioni same

Dettagli

TEORIA DELLA PROBABILITÁ

TEORIA DELLA PROBABILITÁ TEORIA DELLA PROBABILITÁ Cenni storici i rimi arocci alla teoria della robabilità sono della metà del XVII secolo (Pascal, Fermat, Bernoulli) gli ambiti di alicazione sono i giochi d azzardo e roblemi

Dettagli

Esercizi con martingale Pietro Caputo 23 novembre 2006

Esercizi con martingale Pietro Caputo 23 novembre 2006 Esercizi con martingale Pietro Cauto 23 novembre 2006 Esercizio 1. Sia {X n } la asseggiata aleatoria simmetrica su Z con X 0 = 0, vale a dire che Z k = X k X k 1, k = 1, 2,... sono indiendenti e valgono

Dettagli

Comportamento asintotico delle Catene di Markov

Comportamento asintotico delle Catene di Markov Comortamento asintotico delle Catene di Markov In queste note analizzeremo il comortamento asintotico della catene di Markov a temo discreto omogenee, con sazio degli stati di dimensione finita. I risultati

Dettagli

ESERCIZIO 1: Vincolo di bilancio lineare

ESERCIZIO 1: Vincolo di bilancio lineare Microeconomia rof. Barigozzi ESERCIZIO 1: Vincolo di bilancio lineare Si immagini un individuo che ha a disosizione un budget di 500 euro e deve decidere come allocare tale budget tra un bene, che ha un

Dettagli

Lezione VII - 11/03/2003 ora 14:30-16:30 - Entropia, trasformazione isoentropica, pompe di calore - Originale di Unetti Matteo

Lezione VII - 11/03/2003 ora 14:30-16:30 - Entropia, trasformazione isoentropica, pompe di calore - Originale di Unetti Matteo Lezione VII - /03/003 ora 4:30-6:30 - Entroia, trasformazione isoentroica, ome di calore - Originale di Unetti Matteo Entroia Si uò introdurre una nuoa funzione di stato, l Entroia, definita così come

Dettagli

La probabilità. f n. evidentemente è 0 ( E)

La probabilità. f n. evidentemente è 0 ( E) La robabilità Definizione - Eserimento aleatorio Ogni fenomeno del mondo reale al quale associare una situazione di incertezza. Es: Lancio di un dado, estrazioni numeri della tombola, ecc. Definizione

Dettagli

Capitolo 2. Funzioni

Capitolo 2. Funzioni Caitolo 2 Funzioni 2.1. De nizioni Un concetto di fondamentale imortanza è quello di funzione. roosito la seguente de nizione: Vale a questo De nizione 10 Dati due insiemi (non vuoti) X e Y, si chiama

Dettagli

Parte II. I Principio della TERMODINAMICA a.a

Parte II. I Principio della TERMODINAMICA a.a Parte II I Princiio della TERMODINAMICA a.a. 04-5 Equazioni di bilancio Mentre un sistema aerto consente flussi di massa e di energia attraerso le sezioni di ingresso e di uscita e flussi di energia attraerso

Dettagli

INTRODUZIONE. L obiettivo centrale della tesi consiste nell analizzare, attraverso una opportuna tecnica

INTRODUZIONE. L obiettivo centrale della tesi consiste nell analizzare, attraverso una opportuna tecnica INTRODUZIONE L obiettio centrale della tesi consiste nell analizzare attraerso una oortuna tecnica statistica denominata ANALISI DELLE COMPONENTI PRINCIPALI due distinti set di dati relatii allo stato

Dettagli

c) Ancora in corrispondenza allo stesso valore di p e ponendo Y = minorazione, fornita dalla diseguaglianza di Chebichev, per la probabilita

c) Ancora in corrispondenza allo stesso valore di p e ponendo Y = minorazione, fornita dalla diseguaglianza di Chebichev, per la probabilita Laurea Triennale in Matematica Corso di Calcolo delle Probabilita I A.A. 00/00 (Docenti: M. Piccioni, F. Spizzichino) a prova di esonero 6 giugno 00 Risolvere almeno tre dei seguenti esercizi.. Indichiamo

Dettagli

Esempio Le preferenze di un consumatore sono descritte dalla funzione di utilità U = x 1 x 2. Il suo reddito è pari a 400 con p 1 = 4 e p 2 = 10.

Esempio Le preferenze di un consumatore sono descritte dalla funzione di utilità U = x 1 x 2. Il suo reddito è pari a 400 con p 1 = 4 e p 2 = 10. 4. Effetto reddito ed effetto sostituzione Esemio Le referenze di un consumatore sono descritte dalla funzione di utilità U. Il suo reddito è ari a 400 con 4 e 0. a) Determinare la scelta ottima e come

Dettagli

RICHIAMI di CALCOLO delle PROBABILITA

RICHIAMI di CALCOLO delle PROBABILITA Facoltà di Ingegneria - Università di Bologna Anno Accademico: 00/ TECNICA ED ECONOMIA DEI TRASPORTI Docente: Marino Lui RICHIAMI di CALCOLO delle PROBABILITA PROBABILITA Ci sono fenomeni che non si osso

Dettagli

UNIVERSITÀ DEGLI STUDI DI SALERNO Svolgimento della prova scritta di Matematica II 08 Giugno 2011

UNIVERSITÀ DEGLI STUDI DI SALERNO Svolgimento della prova scritta di Matematica II 08 Giugno 2011 Esercizio UNIVERSITÀ EGLI STUI I SALERNO della rova scritta di Matematica II Giugno In R con la struttura di sazio euclideo canonica si considerino le due rette: r : x y + ; s : x y ;. (a) dire se le rette

Dettagli

ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA

ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA ESERCITAZIONE 4: MONOPOLIO E CONCORRENZA PERFETTA Esercizio : Scelta ottimale di un monoolista e imoste Si consideri un monoolista con la seguente funzione di costo totale: C ( ) = 400 + + 0 0 La domanda

Dettagli

1) Canali discreti con memoria. 2) Modello di Gilbert e Elliott. 3) Modello di Fritchman. 4) Modello ad N stati

1) Canali discreti con memoria. 2) Modello di Gilbert e Elliott. 3) Modello di Fritchman. 4) Modello ad N stati Argomenti della Lezione 1) Canali discreti con memoria 2) Modello di Gilbert e Elliott 3) Modello di Fritchman 4) Modello ad N stati 1 Molti canali di comunicazione reali hanno un comortamento variabile

Dettagli

MATEMATICA E STATISTICA CORSO A III COMPITINO 20 Marzo 2009

MATEMATICA E STATISTICA CORSO A III COMPITINO 20 Marzo 2009 MATEMATICA E STATISTICA CORSO A III COMPITINO Marzo 9 SOLUZIONI. () Sia X una variabile aleatoria binomiale con valor medio uguale a 5/; la varianza di X può valere? Giustificare la risposta. Il valor

Dettagli

UNIVERSITÀ DEGLI STUDI DI SALERNO Svolgimento della prova scritta - fuori corso - di Matematica II 11 Novembre 2010

UNIVERSITÀ DEGLI STUDI DI SALERNO Svolgimento della prova scritta - fuori corso - di Matematica II 11 Novembre 2010 UNIVERSITÀ DEGLI STUDI DI SALERNO della rova scritta - fuori corso - di Matematica II Novembre Esercizio In R si considerino i seguenti sottosazi vettoriali: V = (x; y; z) R j x y z = x z =, W = (x; y;

Dettagli

Fondamenti di Meteorologia e Climatologia

Fondamenti di Meteorologia e Climatologia Uniersità degli studi di rento Facoltà di Ingegneria Corso di Laurea in Ingegneria er l Ambiente e il erritorio Prof. Dino Zardi Diartimento di Ingegneria Ciile ed Ambientale Fondamenti di Meteorologia

Dettagli

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 2009/10 30/6/2010

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 2009/10 30/6/2010 Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione, a.a. 29/ /6/2 Nota. E obbligatorio sia scegliere le risposte numeriche, o le formule nali a seconda del caso) negli appositi

Dettagli

Esercizi svolti di termodinamica applicata

Esercizi svolti di termodinamica applicata 0 ; 0 ; 0 Esercizi solti di termodinamica alicata Ex) A g di aria engono forniti 00 J di calore una olta a ressione costante ed una olta a olume costante semre a artire dallo stesso stato iniziale. Calcolare

Dettagli

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016

Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 2015/ Settembre 2016 Prova scritta di Probabilità e Statistica Appello unico, II sessione, a.a. 205/206 20 Settembre 206 Esercizio. Un dado equilibrato viene lanciato ripetutamente. Indichiamo con X n il risultato dell n-esimo

Dettagli

UNIVERSITA` di ROMA TOR VERGATA

UNIVERSITA` di ROMA TOR VERGATA UNIVERSITA` di ROMA TOR VERGATA Corso di PS2-Probabilità 2 PBaldi appello, 23 giugno 29 Corso di Laurea in Matematica Esercizio Per α 2 consideriamo la catena di Markov su {, 2, 3} associata alla matrice

Dettagli

e la forza di Archimede è uguale al peso del fluido occupato: A = M b)il corpo scende di h, cui corrisponde una variazione di energia potenziale

e la forza di Archimede è uguale al peso del fluido occupato: A = M b)il corpo scende di h, cui corrisponde una variazione di energia potenziale ) Meccanica Un sistema è comosto da un coro omogeneo di massa M e densità ρ e da una data quantità di luido (di densità minore ρ ) in cui il coro è immerso. Inizialmente (stato i) il coro è ermo, quindi

Dettagli

Domanda (D) = Offerta (S, da supply )

Domanda (D) = Offerta (S, da supply ) UNIVERSITÀ DEGLI STUDI DI BERGAMO Laurea Triennale in Ingegneria Gestionale Lezione 10 Euilibrio di mercato Prof. Gianmaria Martini Euilibrio di mercato Un mercato è in euilibrio uando la uantità domandata

Dettagli

Introduzione alle macchine termiche

Introduzione alle macchine termiche 1 Introduzione alle macchine termiche In questa nota 1 introduciamo il concetto di macchina termica che oera con trasformazioni cicliche er trasformare calore in lavoro. In generale questo argomento viene

Dettagli

Verifica di ipotesi: approfondimenti

Verifica di ipotesi: approfondimenti 1. Il -value Verifica di iotesi: arofondimenti Il test si uò effettuare: Determinando reventivamente le regioni di accettazione di H 0 e H 1 er lo stimatore considerato (sulla base del livello α e osservando

Dettagli

Sezioni d urto. Prof. Sergio Petrera Università degli Studi dell Aquila. 11 giugno La regola d oro di Fermi e la sezione d urto di Born

Sezioni d urto. Prof. Sergio Petrera Università degli Studi dell Aquila. 11 giugno La regola d oro di Fermi e la sezione d urto di Born Sezioni d urto Prof. Sergio Petrera Università degli Studi dell Aquila giugno 008 La regola d oro di Fermi e la sezione d urto di Born La regola d oro di Fermi si ricava in Meccanica Quantistica Non Relativistica

Dettagli

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica

Università Politecnica delle Marche Facoltà di Ingegneria Ing. Informatica e Automatica Ing. delle Telecomunicazioni Teledidattica Università Politecnica delle Marche Facoltà di ngegneria ng. nformatica e Automatica ng. delle Telecomunicazioni Teledidattica ANALS NUMERCA TEMA D (Prof. A. M. Perdon) Ancona, 7 luglio 6 PARTE - SOLUZONE

Dettagli

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot.

UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014. I Esonero - 29 Ottobre Tot. UNIVERSITÀ DEGLI STUDI ROMA TRE Corso di Laurea in Matematica ST410 - Statistica 1 - A.A. 2013/2014 I Esonero - 29 Ottobre 2013 1 2 3 4 5 6 7 8 Tot. Avvertenza: Svolgere ogni esercizio nello spazio assegnato,

Dettagli

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE.

Scrivere su ogni foglio NOME e COGNOME. Le risposte devono essere giustificate sui fogli protocollo e riportate nel foglio RISPOSTE. Corso di Laurea Triennale in Matematica Corso di Calcolo delle Probabilità (docenti G. Nappo, F. Spizzichino prova scritta giugno 5 (tempo a disposizione: ore La prova scritta consiste nello svolgimento

Dettagli

Corsi di Probabilità ecc., per Ing. dell Automazione, Informatica e Inf.Gest.Azienda, 17/9/2011. B 0 0 a=3 b=3 0 0 b=3 a=3 0 A : 0 b=3 0 0 a=3

Corsi di Probabilità ecc., per Ing. dell Automazione, Informatica e Inf.Gest.Azienda, 17/9/2011. B 0 0 a=3 b=3 0 0 b=3 a=3 0 A : 0 b=3 0 0 a=3 Corsi di Probabilità ecc., per Ing. dell Automazione, Informatica e Inf.Gest.Azienda, 7/9/ mjx j Esercizio. Si consideri la funzione f (x) = C jx j e i) Stabilire per quali valori di m e di C è una densità

Dettagli

III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2018/19

III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 2018/19 III Appello di Calcolo delle Probabilità Laurea Triennale in Matematica 8/9 Martedì luglio 9 Cognome: Nome: Email: Se non è espressamente indicato il contrario, per la soluzione degli esercizi è possibile

Dettagli

Esame di AM2 & EAP (270/04) a.a. 2009/10

Esame di AM2 & EAP (270/04) a.a. 2009/10 Quarto appello del 16 Luglio 2010 1. Un urna contiene delle palline numerate e distribuite in seguente maniera: Vengono estratte due palline senza rimpiazzo e siano X e Y rispettivamente il numero della

Dettagli

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i

DISTRIBUZIONE di PROBABILITA. Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che può assumere i DISTRIBUZIONE di PROBABILITA Si dice variabile aleatoria (o casuale) discreta X una quantità variabile che uò assumere i valori: ; ;, n al verificarsi degli eventi incomatibili e comlementari: E ; E ;..;

Dettagli

ESERCITAZIONE N. 1 Equilibrio di mercato ed elasticità

ESERCITAZIONE N. 1 Equilibrio di mercato ed elasticità MICROCONOMIA CLA A.A. 003-004 ocente: Giacomo Calzolari RCITAZION N. quilibrio di mercato ed elasticità RCIZIO : quilibrio di mercato e sostamenti delle curve La quantità domandata di un certo bene è descritta

Dettagli

Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07

Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07 Generalizzazione dell equazione logistica (UN) Autore: Antonello Urso - 07/07/07 Pianetagalileo - (ultimo aggiornamento: 23/07/07) Introduzione: L equazione logistica uò descrivere lo sviluo di una oolazione

Dettagli

Classe 2Obi Competenze di Matematica 5 Ottobre 2016

Classe 2Obi Competenze di Matematica 5 Ottobre 2016 Classe 2Obi Cometenze di Matematica 5 Ottobre 2016 1. Si considerino gli insiemi I = {x 1,x 2,x 3,x 4,x 5,x 6,x 7 } e F = {,,,, } e sia la relazione R : I! F definita come segue: R = {(x 1, ), (x 2, ),

Dettagli

Fisica II. 5 Esercitazioni

Fisica II. 5 Esercitazioni Esercizi solti Esercizio 5.1 Una articella, di carica q e (e-1.6 10-19 C è la carica dell elettrone) e massa m6.68 10-7 Kg, è in moto in un camo magnetico di intensità B1 T con elocità ari a 1/15 della

Dettagli

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili.

Sessione live #2 Settimana dal 24 al 30 marzo. Statistica Descrittiva (II): Analisi congiunta, Regressione lineare Quantili. Sessione lie # Settimana dal 4 al 30 marzo Statistica Descrittia (II): Analisi congiunta, Regressione lineare Quantili Lezioni CD: 3 4-5 Analisi congiunta Da un camione di 40 studenti sono stati rileati

Dettagli

GLI ARRAY 17/05/2013. Per definire un array è necessario fornire: Nome Come per le altre variabili. Tipo. int v [5];

GLI ARRAY 17/05/2013. Per definire un array è necessario fornire: Nome Come per le altre variabili. Tipo. int v [5]; GLI ARRAY Gli array Gli array sono strutture dati statiche, di tio sequenziale, che consentono la memorizzazione e la gestione di uno o iù dati omogenei (dello stesso tio) raggiungibili er mezzo di un

Dettagli

B = {n N : n primo} (3) allora l intersezione di B e P è l insieme dei numeri naturali che sono sia primi che pari, quindi

B = {n N : n primo} (3) allora l intersezione di B e P è l insieme dei numeri naturali che sono sia primi che pari, quindi Lezione n.1 - Insiemi e numeri La matematica è innanzi tutto un linguaggio. Questo linguaggio è basato innanzi tutto sulla teoria degli insiemi. Un insieme è una collezione di oggetti, e uò essere secificato

Dettagli

Principi di Economia Microeconomia. Esercitazione 1 Domanda, Offerta ed Equilibrio. Soluzioni

Principi di Economia Microeconomia. Esercitazione 1 Domanda, Offerta ed Equilibrio. Soluzioni Princii di Economia Microeconomia Esercitazione 1 Domanda, Offerta ed Equilibrio Soluzioni Maria Tsouri Novembre 1 1. Raresentate graficamente le seguenti funzioni di domanda e di offerta: (a) d =1-P Calcoliamo

Dettagli

CP110 Probabilità: Esame 4 giugno Testo e soluzione

CP110 Probabilità: Esame 4 giugno Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 202-3, II semestre 4 giugno, 203 CP0 Probabilità: Esame 4 giugno 203 Testo e soluzione . (6 pts) Un urna contiene inizialmente pallina rossa e 0 palline

Dettagli

Enunciato di Kelvin-Plank

Enunciato di Kelvin-Plank ezione VI - 3/03/003 ora 8:30-0:30 - Enunciato di Kelin-Plank, laoro nelle trasformazioni di gas erfetti, Entalia - Originale di Cara Mauro e Dondi Silia Enunciato di Kelin-Plank Non è ossibile effettuare

Dettagli

La perdita secca di monopolio.

La perdita secca di monopolio. La erdita secca di monoolio. La erdita secca di monoolio. Consideriamo il caso generale in cui si abbia una funzione di domanda inversa di mercato =a-b ed una funzione di offerta =c+d Va notato che la

Dettagli

a 11 s 1 + a 12 s a 1n s n = b 1 a 21 s 1 + a 22 s a 2n s n = b 2..

a 11 s 1 + a 12 s a 1n s n = b 1 a 21 s 1 + a 22 s a 2n s n = b 2.. Matematica II 020304 Ogni sistema di m equazioni lineari in n incognite x 1 x 2 x n si uo raresentare nella forma a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2 a m1 x 1

Dettagli

Processi. Giuseppe Sanfilippo. 30 novembre Processo di Bernoulli-Passeggiata aleatoria semplice (Simple Random Walk)

Processi. Giuseppe Sanfilippo. 30 novembre Processo di Bernoulli-Passeggiata aleatoria semplice (Simple Random Walk) Processi Giusee Sanfilio 30 novembre 005 1 Processo di Bernoulli-Passeggiata aleatoria semlice Simle Random Walk) vedi [5, ]) Analizziamo uno dei classici rocessi discreti. Sia E 1, E,..., E n,... una

Dettagli

Corso di probabilità e statistica

Corso di probabilità e statistica Università degli Studi di Verona Facoltà di Scienze MM.FF.NN. Corso di Laurea in Informatica Corso di probabilità e statistica (Prof. L.Morato) Esercizi Parte III: variabili aleatorie dipendenti e indipendenti,

Dettagli

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere

Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (269AA) A.A. 2016/17 - Prima prova in itinere Corso di Laurea in Informatica Calcolo delle Probabilità e Statistica (69AA) A.A. 016/17 - Prima prova in itinere 017-01-13 La durata della prova è di tre ore. Le risposte devono essere adeguatamente giustificate.

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2013/2014 www.mat.uniroma2.it/~caramell/did 1314/ps.htm 04/03/2014 - Lezioni 1, 2 Breve introduzione al corso. Fenomeni deterministici

Dettagli

Esempio di prova scritta per il primo parziale

Esempio di prova scritta per il primo parziale Esempio di prova scritta per il primo parziale Corso di Laurea in Economia e Management Matematica per l Economia (E-Z) a.a. 06 07 prof. Gianluca Amato Regole generali Si svolga il primo esercizio e, a

Dettagli

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova in itinere

Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 2018/19 - Prova in itinere Corso di Laurea in Ingegneria Robotica e dell Automazione Probabilità e Processi Stocastici (455AA) A.A. 208/9 - Prova in itinere 208--2 La durata della prova è di due ore e mezzo. Le risposte devono essere

Dettagli

SISTEMI A CODA MARKOVIANI TEMPO-DISCRETI

SISTEMI A CODA MARKOVIANI TEMPO-DISCRETI SISTEMI A CODA MARKOVIANI TEMPO-DISCRETI La sequenza di variabili aleatorie xi, i.. n, forma una catena di Markov temodiscreta se er ogni n e er tutti i valori assunti dalle variabili aleatorie si ha P(xn

Dettagli

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente

Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente Firenze - Dip. di Fisica 2 agosto 2008 Densità di probabilità del prodotto di due variabili casuali distribuite uniformemente In questa dispensa, che presentiamo a semplice titolo di esercizio e applicazione

Dettagli

UNIVERSITÀ DEGLI STUDI DI SALERNO Svolgimento Prova scritta di Matematica II 09 Febbraio 2011

UNIVERSITÀ DEGLI STUDI DI SALERNO Svolgimento Prova scritta di Matematica II 09 Febbraio 2011 UNIVERSITÀ DEGLI STUDI DI SALERNO Prova scritta di Matematica II 9 Febbraio Esercizio In R si considerino le due rette: t r : 5 y ; s : y t ; a) calcolare una base ortonormale di R a artire dai vettori

Dettagli

Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14

Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14 Probabilità e Processi stocastici. Ingegneria Robotica e dell Automazione. Prova scritta del giorno 15/12/14 In ingegneria un sistema formato da n componenti è detto k su n se funziona quando almeno k

Dettagli

Problema Determina l equazione omogenea del completamento proiettivo della conica a ne di equazione: 2x 2 3y 2 +5x 2y +3=0.

Problema Determina l equazione omogenea del completamento proiettivo della conica a ne di equazione: 2x 2 3y 2 +5x 2y +3=0. 8 Esercizi svolti Coniche a ni Nel iano a ne (reale o comlesso) sia fissato un sitema di riferimento con coordinate (, ). Si consideri il comletamento roiettivo con coordinate omogenee [X,X,X ] tali che

Dettagli

CP110 Probabilità: Esame 13 settembre Testo e soluzione

CP110 Probabilità: Esame 13 settembre Testo e soluzione Dipartimento di Matematica, Roma Tre Pietro Caputo 2011-12, II semestre 13 settembre, 2012 CP110 Probabilità: Esame 13 settembre 2012 Testo e soluzione 1. (6 pts) Una scatola contiene 10 palline, 8 bianche

Dettagli

I fasci di circonferenze

I fasci di circonferenze A I fasci di circonferenze Se combiniamo linearmente le equazioni di due circonferenze otteniamo un fascio di circonferenze. Per esemio, date le circonferenze di equazioni la loro combinazione lineare

Dettagli

Soluzione numerica dei transitori termici: le differenze finite

Soluzione numerica dei transitori termici: le differenze finite Matteo Righetto (matr. 94) Piero Loatriello (matr.383) Soluzione numerica dei transitori termici: le differenze finite Immaginiamo di voler fornire calore a una lastra iana di un determinato sessore e

Dettagli

, mentre Y è una variabile geometrica di costante q = 1 2. (1 q) n = q (1 q) 3 1 q = (1 2 )3 = 1 8. n=0

, mentre Y è una variabile geometrica di costante q = 1 2. (1 q) n = q (1 q) 3 1 q = (1 2 )3 = 1 8. n=0 SOLUZIONI DEGLI ESERCIZI SULLE VARIABILI ALEATORIE DISCRETE Esercizio. Sono date due urne denominate rispettivamente A e B. A contiene palline bianche e 6 palline rosse, B contiene 8 palline bianche e

Dettagli

Teoria del consumo. Dott.ssa Alessandra Porfido

Teoria del consumo. Dott.ssa Alessandra Porfido Teoria del consumo Dott.ssa Alessandra orfido Esercizio 1 Siano = 20 e = 40 i rezzi unitari di mercato di due beni le cui quantità sono indicate con e. Il reddito R di cui disone il consumatore è ari a

Dettagli

Per quanto detto prima il fenomeno di svuotamento termina quando la pressione di ristagno è pari a:

Per quanto detto prima il fenomeno di svuotamento termina quando la pressione di ristagno è pari a: Esercizi Si consideri il serbatoio schematicamente raresentato in Fig., in cui è contenuto un gas avente inizialmente (cioè al temo t=0) temeratura T o =0F e ressione oi =0si. Il serbatoio è collegato

Dettagli

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA V appello 12/2/2019 1

ANNO ACCADEMICO 2017/2018 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA V appello 12/2/2019 1 ANNO ACCADEMICO 07/08 CORSO di LAUREA in BIOTECNOLOGIE MATEMATICA V aello //09 Esercizio. Una oolazione P è c o m o s t a a l 5 % d a f e m m i n e e a l 8 % d a m a s c h i. La malattia M ha un incidenza

Dettagli

Teoria del consumo Viki Nellas

Teoria del consumo Viki Nellas Teoria del consumo Viki Nellas Esercizio Siano = 0 e = 40 i rezzi unitari di mercato di due beni le cui quantità sono indicate con e. Il reddito R di cui disone il consumatore è ari a 5000 a) Si tracci

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2012/2013 www.mat.uniroma2.it/~caramell/did 1213/ps.htm 05/03/2013 - Lezioni 1, 2, 3 Breve introduzione al corso. Fenomeni deterministici

Dettagli

Variabili Aleatorie Multiple

Variabili Aleatorie Multiple Variabili Aleatorie Multiple v.a. multiple - Esercizio 1 Consideriamo l estrazione con reimmissione di palline colorate da un urna contenente 5 palline bianche, 15 verdi, e 10 rosse. 1) Calcolare la probabilità

Dettagli

Probabilità e Statistica

Probabilità e Statistica Diario delle lezioni e del tutorato di Probabilità e Statistica a.a. 2014/2015 www.mat.uniroma2.it/~caramell/did 1415/ps.htm 02/03/2015 - Lezioni 1, 2 Breve introduzione al corso. Fenomeni deterministici

Dettagli

S t (t, s) A, S s (t, s) B, N(t, s) A B A B.

S t (t, s) A, S s (t, s) B, N(t, s) A B A B. Esercizi 6. Soluzioni. () Sia π : X = P + ta + sb, t, s R un piano in R 3. (i) Dimostrare che π è una superficie (parametrizzata) regolare in tutti i punti. (ii) Calcolare il piano tangente e il ersore

Dettagli

Il flusso ottico. Alberto Borghese Laboratory of Motion Analysis, Virtual Reality (MAVR) Il flusso ottico

Il flusso ottico. Alberto Borghese Laboratory of Motion Analysis, Virtual Reality (MAVR) Il flusso ottico l flusso ottico Alberto Borghese Laborator of Motion Analsis, Virtual Realit (MAVR) testb N.A. Borghese Uniersità di Milano 9/03/003 htt:\\homes.dsi.unimi.it\ borghese /30 l flusso ottico Origina dalla

Dettagli

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17

Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale a.a. 2016/17 Calcolo delle Probabilità e Statistica, Ingegneria Civile e A&T e Informatica I prova finale aa 6/ Punteggi: : 3 + 6; : + + + ; 3: + Una scatola contiene monete; 8 di queste sono equilibrate, mentre le

Dettagli

Mauro Piccioni PROBABILITÀ DI BASE CON 136 ESERCIZI SVOLTI. II edizione

Mauro Piccioni PROBABILITÀ DI BASE CON 136 ESERCIZI SVOLTI. II edizione A01 164 Mauro Piccioni PROBABILITÀ DI BASE CON 136 ESERCIZI SVOLTI II edizione Copyright MMXI ARACNE editrice S.r.l. www.aracneeditrice.it info@aracneeditrice.it via Raffaele Garofalo, 133/A B 00173 Roma

Dettagli

# STUDIO DELLA STABILITA COL CRITERIO DI NYQUIST#

# STUDIO DELLA STABILITA COL CRITERIO DI NYQUIST# # STUIO ELLA STABILITA COL CRITERIO I NYQUIST# Sia il olinomio di variabile comlessa s : Q(s)=a n s n +a n-1 s n-1 + +a 1 s+a 0 (1) Tale olinomio si uo considerare, con riferimento al iano comlesso (iano

Dettagli

Calcolo delle Probabilità 2

Calcolo delle Probabilità 2 Prova d esame di Calcolo delle Probabilità 2 Maggio 2006 Sia X una variabile aleatoria distribuita secondo la densità seguente ke x 1 x < 0 f X (x) = 1/2 0 x 1. 1. Determinare il valore del parametro reale

Dettagli

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la

in forma matriciale: X = A X + B, cioè Se il det A = ad - bc è diverso da zero, la trasformazione è invertibile e quindi biunivoca; in tal caso la TRASFORMAZIONI LINEARI SUL PIANO Sono trasformazioni lineari tutte le trasformazioni del tio: a b c d q in forma matriciale: X A X B, cioè a c b d q Dove a A c b d è la matrice della trasformazione. Se

Dettagli

1 Richiami di algebra lineare

1 Richiami di algebra lineare 1 Richiami di algebra lineare Definizione 11 (matrici e vettori) Una matrice A e un insieme di numeri A hk, h = 1,, m, k = 1,, n, ordinati in base alla coppia di indici h e k nel modo seguente A 1 A n

Dettagli

SISTEMI TEMPO-DISCRETI SISTEMI A CODA MARKOVIANI TEMPO-DISCRETI

SISTEMI TEMPO-DISCRETI SISTEMI A CODA MARKOVIANI TEMPO-DISCRETI SISTEMI A CODA MARKOVIANI TEMPO-DISCRETI a seuenza di variabili aleatorie xi, i.. n, forma una catena di Markov temodiscreta se er ogni n e er tutti i valori assunti dalle variabili aleatorie si ha P(xn

Dettagli

{ } corrisponde all uscita della faccia i-esima del dado. La distribuzione di probabilità associata ( )

{ } corrisponde all uscita della faccia i-esima del dado. La distribuzione di probabilità associata ( ) Università di Trento - Corsi di Laurea in Ingegneria Civile e in Ingegneria per l Ambiente e il Territorio - 2017/18 Analisi Matematica 1 - professore Alberto Valli 2 foglio di esercizi 25 settembre 2017

Dettagli

Sia dato un corpo su cui agisce una forza. Supponiamo che inizialmente il corpo sia fermo, dalla relazione

Sia dato un corpo su cui agisce una forza. Supponiamo che inizialmente il corpo sia fermo, dalla relazione Lavoro ed energia Sia dato un coro su cui agisce una forza. Suoniamo che inizialmente il coro sia fermo, dalla relazione F = ma doo un certo intervallo di temo in cui la forza agisce sull oggetto, il coro

Dettagli

Principi di Economia - Microeconomia Esercitazione 2 Domanda, offerta ed equilibrio di mercato Soluzioni

Principi di Economia - Microeconomia Esercitazione 2 Domanda, offerta ed equilibrio di mercato Soluzioni Princii di Economia - Microeconomia Esercitazione 2 Domanda, offerta ed equilibrio di mercato Soluzioni Daria Vigani Febbraio 2014 1. Assumiamo la seguente funzione di domanda di mercato er il gelato:

Dettagli

Probabilità e Statistica per l Informatica Esercitazione 4

Probabilità e Statistica per l Informatica Esercitazione 4 Probabilità e Statistica per l Informatica Esercitazione 4 Esercizio : [Ispirato all Esercizio, compito del 7/9/ del IV appello di Statistica e Calcolo delle probabilità, professori Barchielli, Ladelli,

Dettagli

UNIVERSITA DI CAGLIARI FACOLTA DI INGEGNERIA ESERCITAZIONI DI IDROLOGIA NUOVO ORDINAMENTO Anno Accademico 2017/18

UNIVERSITA DI CAGLIARI FACOLTA DI INGEGNERIA ESERCITAZIONI DI IDROLOGIA NUOVO ORDINAMENTO Anno Accademico 2017/18 ESERCITAZIONE Nr.6 Argomenti Calcolo delle ortate al colmo di iena con i metodi: 1) Sirchia-Fassò, 2) Lazzari, 3) lognormale aggiornata, 4) TCEV delle ortate. Prerequisiti Lezioni teoriche (Ca. 7 del rogramma

Dettagli

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione 15/9/2010

Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione 15/9/2010 Calcolo delle Probabilità e Statistica, Ing. Informatica e dell Automazione 5/9/ Nota. E obbligatorio sia scegliere le risposte (numeriche, o le formule nali a seconda del caso) negli appositi spazi, sia

Dettagli

Foglio N.1 Numeri Complessi. Ricordiamo che l insieme delle coppie reali

Foglio N.1 Numeri Complessi. Ricordiamo che l insieme delle coppie reali Foglio N.1 Numeri Complessi Ricordiamo che l insieme delle coppie reali f( ) : 2 Rg che indichiamo con R 2, con le seguenti operazioni: Addizione: ( )+( ) =( + + ) Prodotto per uno scalare: ( ) =( ) 2

Dettagli

Esercizi - 1 Numeri Complessi

Esercizi - 1 Numeri Complessi Esercizi - 1 Numeri Complessi Ricordiamo che l insieme delle coppie reali f( ) : Rg che indichiamo con R, con le seguenti operazioni: Addizione: ( )+( ) =( + + ) Prodotto per uno scalare: ( ) =( ) R risulta

Dettagli

ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE

ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE ESERCITAZIONE 21 : VARIABILI ALEATORIE CONTINUE e-mail: tommei@dm.unipi.it web: www.dm.unipi.it/ tommei Ricevimento: su appuntamento Dipartimento di Matematica, piano terra, studio 114 7 Maggio 2013 Esercizio

Dettagli

DISUGUAGLIANZE. Umberto Marconi Dipartimento di Matematica Pura e Applicata Padova

DISUGUAGLIANZE. Umberto Marconi Dipartimento di Matematica Pura e Applicata Padova 1. PREMESSA 1 DISUGUAGLIANZE Umberto Marconi Diartimento di Matematica Pura e Alicata Padova 1 Premessa Riassumiamo alcune disuguaglianze standard riguardanti somme e integrali (le dimostrazioni seguiranno

Dettagli

Problemi di Fisica. Equilibrio Fluidi

Problemi di Fisica. Equilibrio Fluidi Problemi di isica Equilibrio luidi Comleta la seguente tabella: orza (N) 10 0 80 uerficie (m ) 1 5 4 Pressione (bar) 10 50 5 Tenendo resente la definizione di ressione: e le sue formule inverse: forza

Dettagli

I Giochi di Archimede - Soluzioni Triennio

I Giochi di Archimede - Soluzioni Triennio I Giochi di Archimede - Soluzioni Triennio dicembre 999 C E C A C B D C D C C B D D E A B E C D B C E B D 2 3 4 5 6 7 8 9 02345678920222232425 ) La risosta e (C). Infatti 39 = 723, quindi i lati sono lunghi

Dettagli