PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 19 Settembre 2018

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 19 Settembre 2018"

Transcript

1 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 19 Settembre 2018 ESERCIZIO 1 Nel circuito in gura (V CC = 8 V, R = 1 kω), il transistore npn ha N Demettitore = cm 3 (emettitore lungo), N Abase = cm 3, N Ccollettore = cm 3, τ n = τ p = 10 6 s, µ n = 0.09 m 2 /Vs, µ p = 0.03 m 2 /Vs, S=1 mm 2, W metallurgica = 3 µm. La tensione V BE è incognita, ed è stata misurata I C pari a 3 ma. R 1 k Vcc 8 V V BE Q 1) Determinare la lunghezza eettiva di base (per il calcolo della regione di svuotamento si usi l'approssimazione V BE V γ ) e, in seguito, il valore esatto della tensione V BE. [3] 2) Determinare il fattore di trasporto della base α T e la corrente totale di base (emettitore lungo). [4] 3) Determinare l'ecienza di emettitore, nonchè α f e β f. [3] ESERCIZIO 2 Il condensatore MOS in gura, ideale con t ox = 30 nm, è fabbricato su un substrato di silicio p + con in top un sottile strato drogato p = N A = cm 3, spesso t = 400 nm (vedi gura). Gate N A p + =N A + Ox t 1) Disegnare qualitativamente l'andamento del campo elettrico all'inversione, in funzione di x, e scrivere un'espressione analitica di E(x) in 0 < x < t (0 all'interfaccia ossido-silicio). (Per inversione si intende n s = N A, non n s = N A + ). [4]

2 2) Calcolare il campo elettrico all'inversione, per x = 0 (interfaccia ossidosilicio) e x = t. [3] 3) Calcolare la tensione di soglia, usando il valore del campo elettrico alla supercie determinato nel punto 2. [3] ESERCIZIO 3 Nel circuito in gura, il transistore Q è un p + np con β fmin = 300, M è un trasistore n-mos polysilicon gate, con gate di tipo p +, N A = cm 3, t ox = 30 nm, µ n = 0.08 m 2 /Vs, V T H = 1 V, W/L = 18, L = 3 µm. Vcc Rz R E 1 k 12 V Q Vz 7.3 V R1 Vu M R2 [4] 1) Determinare la carica nell'ossido per il transistore n-mos. [2] 2) Determinare la tensione di uscita ed il punto di riposo dei transistori.

3 3) Date V DS e V GS calcolate nel punto 2, determinare la lunghezza eettiva di canale e la corrente I DS corrispondente, confrontandola con quella del punto 2. Il circuito può funzionare? [4]

4 ESERCIZIO 1 Nel circuito in gura (V CC = 8 V, R = 1 kω), il transistore npn ha N Demettitore = cm 3 (emettitore lungo), N Abase = cm 3, N Ccollettore = cm 3, τ n = τ p = 10 6 s, µ n = 0.09 m 2 /Vs, µ p = 0.03 m 2 /Vs, S=1 mm 2, W metallurgica = 3 µm. La tensione V BE è incognita, ed è stata misurata I C pari a 3 ma. R 1 k Vcc 8 V V BE Q 1) Determinare la lunghezza eettiva di base (per il calcolo della regione di svuotamento si usi l'approssimazione V BE V γ ) e il valore esatto della tensione V BE. [4] 2) Determinare il fattore di trasporto della base e la corrente di base (emettitore lungo)[3]. 3) Determinare l'ecienza di emettitore, nonchè α f e β f. [3] SOLUZIONE 1 1) Per il calcolo della lunghezza eettiva di base bisogna ricavare la regione di svuotamento base-collettore, determinata da V CB. Facendo l'approssimazione suggerita dal testo abbiamo V CB = V CE V BE V CE V γ dove V CE = V CC RI C = 5 V, e quindi V CB 4.3 V. Abbiamo quindi: W BE (V = 4.3 V) = V 0BE = V T ln N AbaseN Dcollettore 2ɛs q n 2 i ( 1 N Abase + 1 N Dcollettore = V X BE = W BE N Dcollettore N Abase + N Dcollettore = 0.47 µm W effettiva = W metallurgica 0.47 = 2.53 µm ) (V 0 + V CB ) = 1.40 µm

5 Per il calcolo del valore esatto della V BE possiamo fare riferimento al modello a controllo di carica (W = W effettivo ): I C = Q B τ t Q B = qs n2 i N A τ t = W 2 2D n I C = qs n2 i D n N A W ( ) e V BE V W T 1 2 ( e V BE /overv T 1 ) Trascurando l'1 sottratto all'esponenziale avremo: D n = V T µ n = m 2 /s V BE = V T ln I CW = 0.51 V qs n2 i N A D n 2) Il calcolo di α T è immediato: L n = D n τ n = µm 1 α T = = W 2 2L 2 n La corrente di base è data da due contributi: iniezione di elettroni dall'emettitore alla base, il cui contributo è Q B /τ n, e iniezione di lacune dalla base all'emettitore, che non è trascurabile poichè l'emettitore non è fortemente drogato. I B emettitore base = Q B τ n ( ) = qs n2 i e V BE V W T 1 N A 2τn D p I B base emettitore = I Ep = qs N Demettitore n 2 i L p ( ) e V BE V T 1 D p = V T µ p = m 2 /s L p = D p τ p = µm I B base emettitore = I Ep = µa I B = µa = I C α T 1 α T = 4.12 µa

6 3) L'ecienza di emettitore è data dal rapporto tra la corrente utile dell'emettitore, dovuta agli elettroni iniettati nella base e la cui massima parte arriva sul collettore, e la corrente totale, che comprende anche la frazione dovuta all'iniezione della base verso l'emettitore. γ E = γ E = I En I Ep + I En I E0n I E0p + I E0n Si possono fare tutti i conti, oppure far riferimento ai conti del punto precedente, considerando la piccolissima approssimazione I En I C e ricordando che I B base emettitore = I Ep. Otteniamo γ E = Abbiamo allora α f = γ E α T = e β f = α f 1 α f = ESERCIZIO 2 Il condensatore MOS in gura, ideale con t ox = 30 nm, è fabbricato su un substrato di silicio p + con in top un sottile strato drogato p = N A = cm 3. Lo strato è spesso t = 400 nm. Gate N A p + =N A + Ox t 1) Disegnare qualitativamente l'andamento del campo elettrico all'inversione, in funzione di x, e scriverne un'espressione analitica in funzione di E(x = t) per 0 < x < t (x = 0 all'interfaccia ossido-silicio). Per inversione si intende n s = N A (non N + A ).[4] 2) Calcolare il campo elettrico all'inversione, per x = 0 (interfaccia ossidosilicio) e x = t. [3] 3) Calcolare la tensione di soglia.[3] SOLUZIONE 2

7 1) La prima cosa da notare è che la regione di svuotamento all'inversione W (2ψ B ) è più grande di t: ψ B = kt q ln N A = n i 2ɛs W (2ψ B ) = 2ψ B = 870 nm qn A Quindi, all'inversione, la regione di svuotamento prende tutto lo strato t. Il campo elettrico non penetra nella regione p +, o meglio penetra in uno strato piccolissimo, svuotandolo per uno spessore trascurabile. Il campo elettrico ha un andamento qualitativo come riportato in gura: La pendenza 0 t x del campo elettrico tra 0 e t è determinato dalla carica qn A nello strato t che è completamente svuotato. Indicando con E t il campo elettrico in x = t è immediato vericare che l'andamento del campo elettrico può essere scritto come: E(x) = E t + qn A ɛ s (t x) (1) Quindi per x = t avremo E(t)=E t, e per x = 0 (alla supercie) avremo E s = E t + qn A ɛ s t 2) L'area del prolo del campo elettrico (integrale) è pari alla dierenza di potenziale nel silicio che all'inversione è pari a 2ψ B. Facendo l'area del trapezio avremo dunque: ( ) Et + E s t = 2ψ B 2 E t + E t + qn A ɛ s t t = 2ψ B 2

8 E t + qn A t = 2ψ B 2ɛ s t E t = 2ψ B qn A t = MV/m t 2ɛ s E s = E(x = 0) = MV/m 3) La caduta di tensione all'inversione (cioè la tensione di soglia) è data dalla caduta nell'ossido più la caduta di tensione nel silicio, che è pari a 2ψ B : V T H = V ox + 2ψ B V T H = E ox t ox + 2ψ B V T H = E s ɛ ox ɛ Si t ox + 2ψ B = 0.68 V ESERCIZIO 3 Nel circuito in gura, il transistore Q è un p + np con β fmin = 300, M è un trasistore n-mos polysilicon gate, con gate di tipo p +, N A = cm 3, t ox = 30 nm, µ n = 0.08 m 2 /Vs, V T H = 1 V, W/L = 18, L = 3 µm. 1) Determinare la carica nell'ossido per il transistore n-mos. [2] 2) Determinare la tensione di uscita ed il punto di riposo dei transistori. [4] 3) Date V DS e V GS calcolate nel punto 2, determinare la lunghezza eettiva di canale e la corrente I DS corrispondente, confrontandola con quella del punto 2. Il circuito può funzionare? [4] SOLUZIONE 3 1) Calcoliamo i parametri del condensatore MOS: C ox = ɛ ox t ox = ψ B = V T ln N A n i = V Φ MS = E g 2q ψ B = V

9 Rz R E 1 k Vcc 12 V Q Vz 7.3 V R1 Vu M R2 V T H = Q ox = 2ɛs qn A 2ψ B + 2ψ B + Φ MS Q ox = 1 V C ox C ox 2ɛ s qn A 2ψ B C ox (2ψ B + Φ MS ) C ox V T H = C/m 2 2) La tensione di base di Q è pari a 7.3 V, quindi V E = 8 V I E = (12 8)/1 = 4 ma. La corrente di base è al massimo I Bmax = 4/300 = ma. Poichè la corrente in R Z può essere stimata come (12 7.3)/R Z = 1.6 ma >> I B, quindi lo zener è correttamente polarizzato con I Z > 1 ma. La corrente I C di 4 ma si divide tra la I DS e la corrente di polarizzazione del partitore per la V GS. Possiamo scrivere: I DS = I C V GS R 2

10 I C V GS = µ nc ox W R 2 2 L (V GS V T H ) 2 Questa seconda equazione è una equazione in V GS risolvibile facilmente. Come soluzione accettabile da V GS = 3 V, quindi I DS = 3 ma, V DS = V u = 6 V. Quindi M è correttamente polarizzato in saturazione con V DS > V GS V T H e Q è in zona attiva diretta, con V EC = 8 6 = 2 V. E per Q: V GS = 3 V V DS = V u = 6 V I DS = 3 ma I E I C = 4 ma V EB = V γ = 0.7 V V EC = 2 V I Bmax = 13 µa 3) Calcoliamo l'ampiezza della regione di svuotamento drain-substrato: V 0DBulk = E g 2q + ψ B = V V DSSat = V GS V T H = 2 V V DS V DSSat = 4 V 2ɛs W DBulk = (V 0DBulk + 4) = µm qn A L eff = L W DBulk = 2.2 µm I DS = µ nc ox W (V GS V T H ) 2 = 4.52 ma 2 L eff

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 10 Giugno 2016

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 10 Giugno 2016 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 0 Giugno 206 ESERCIZIO Il transistore bipolare npn nelle gure ha N Demettitore = N Dcollettore = 0 7 cm 3, N Abase = 0 6 cm 3, µ n = 0. m 2 /Vs, τ n = τ p =

Dettagli

ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = , µ n = 0.12 m 2 /Vs, µ p = 0.

ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = , µ n = 0.12 m 2 /Vs, µ p = 0. DE e DTE: PROVA SCRITTA DEL 6 Giugno 2013 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = 2 10 15, µ n = 0.12 m 2 /Vs, µ p = 0.045 m 2 /Vs, τ n = τ p =

Dettagli

DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014

DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014 DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014 ESERCIZIO 1 (DE,DTE) Un transistore n + pn (N A = N D = 10 16 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = τ p = 10 6 s, = 3 µm, S=1 mm 2 ), è polarizzato

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019 ESERCIZIO 1 In gura sono rappresentati due diodi identici: N A = 10 16 cm 3, N D = 10 15 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.03 m 2 /Vs, τ n =

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 13 Giugno 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 13 Giugno 2018 POVA SCITTA di DISPOSITIVI ELETTONICI del 13 Giugno 2018 ESECIZIO 1 In gura è rappresentato un circuito, basato su un transistore bipolare n + pn +, = 2 kω. Per il transistore abbiamo N Abase = 10 16 cm

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = cm 3, N D = cm 3,

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = cm 3, N D = cm 3, PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio 2017 ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = 5 10 15 cm 3, N D = 10 16 cm 3, µ n = 0.10 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = τ p =

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017 ESERCIZIO 1 Una giunzione pn, con entrambe le basi lunghe, è caratterizzata da N A = N D = 5 10 15 cm 3, µ n = 0.11 m 2 /Vs, µ p = 0.04 m

Dettagli

DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015

DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015 DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015 ESERCIZIO 1 (DE,DTE) Il transistore in gura è un n + pn + con base = 10 16 cm 3, τ n = 1 µs, µ n = 0.1 m 2 /Vs, S = 1mm 2. La resistenza R C = 1 kω, e V CC = 12

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018 ESERCIZIO 1 Nel circuito in gura, il diodo p + n è illuminato alla supercie. La base p + è corta, W p = 5 µm, la base n è lunga. Abbiamo: N A

Dettagli

DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015

DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015 DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015 ESERCIZIO 1 (DE,DTE) Un transistore (emettitore n + ) è caratterizzato da base = 5 10 15 cm 3, lunghezza metallurgica W met = 4 µm, τ n = 1 µs, µ n = 0.1 m 2

Dettagli

ESERCIZIO 1 Il transistore bipolare in gura è caratterizzato da N Abase = cm 3,

ESERCIZIO 1 Il transistore bipolare in gura è caratterizzato da N Abase = cm 3, POVA SCITTA di DISPOSITIVI ELETTONICI del 17 Luglio 017 ESECIZIO 1 Il transistore bipolare in gura è caratterizzato da base = 5 10 15 cm 3, µ n = 0.11 m /Vs, µ p = 0.04 m /Vs, = τ p = 10 6 s, = 3 µm, S

Dettagli

DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016

DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016 DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (N Demettitore = N Abase = 10 16 cm 3, N Dcollettore = 5 10 15 cm 3, µ n = 0.1 m 2 /Vs, τ n = τ p = 10 6, µ

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016 ESERCIZIO 1 Considerare delle giunzioni p + n, con N D = 10 15 cm 3, µ n = 0.12 m 2 /Vs, S=1 mm 2. Il campo elettrico di break- down a valanga

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019 ESERCIZIO 1 Un transistore npn a base corta è caratterizzato da: N Dem = 10 15 cm 3 (emettitore lungo), N Abase = 10 16 cm 3, N Dcoll = 10 15

Dettagli

DE e DTE: PROVA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = cm 3, N Dcollettore = cm 3, µ

DE e DTE: PROVA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = cm 3, N Dcollettore = cm 3, µ DE e DTE: PROA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = 10 16 cm 3, N Dcollettore = 10 15 cm 3, µ n = 0.1 m 2 /s, τ n = 10 6, S = 1 mm 2 ) è polarizzato

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017 ESERCIZIO 1 Un transistore n + pn + (N Abase = 10 16 cm 3, W = 4 µm, S = 1 mm 2,µ n = 0.11 m 2 /Vs, τ n = 10 6 s) è polarizzato come in gura

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018 ESERCIZIO 1 Nel circuito in gura il diodo A è una giunzione Schottky a base corta, substrato n = N D = 10 15 cm 3 e W n = 5 µm. Il metallo

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018 ESERCIZIO 1 In gura è rappresentato un pezzo di silicio, drogato da una parte n + (N D = 10 19 cm 3, µ n+ = 0.015 m 3 ) e dall'altra n (N D

Dettagli

ESERCIZIO 3 Nel circuito in gura, il transistore bipolare è un n + pn +, con N A = cm 3, τ n = 10 6 s, µ n = 0.09 m 2 /Vs, S = 1 mm 2.

ESERCIZIO 3 Nel circuito in gura, il transistore bipolare è un n + pn +, con N A = cm 3, τ n = 10 6 s, µ n = 0.09 m 2 /Vs, S = 1 mm 2. PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 16 Gennaio 2019 ESERCIZIO 1 Un transistore bipolare n + pn (N Abase = 10 16 cm 3, N Dcollettore = 2 10 16 cm 3, τ n = 10 6 s, µ n = 0.1 m 2 /Vs, S=1 mm 2 )

Dettagli

DE e DTE: PROVA SCRITTA DEL 7 Gennaio 2013

DE e DTE: PROVA SCRITTA DEL 7 Gennaio 2013 DE e DTE: PROVA SCRITTA DEL 7 Gennaio 013 ESERCIZIO 1 (DE,DTE) Un condensatore MOS è realizzato su substrato p, N A = 10 16 cm 3, t ox = 50 nm. A metà dell ossido (a t ox /) viene introdotto uno strato

Dettagli

ESERCIZIO 1 In gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs,

ESERCIZIO 1 In gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs, PROVA SCRTTA di DSPOSTV ELETTRONC del 22 Febbraio 2019 ESERCZO 1 n gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ p = τ n = 10 6 s). La parte n è drogata N

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Gennaio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Gennaio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Gennaio 2018 ESERCIZIO 1 Un transistore n + pn, con N ABase = N DCollettore = 5 10 15 cm 3, µ n = 0.11 m 2 /Vs, τ n = 10 6 s, S = 1 mm 2, è polarizzato con

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019 ESERCIZIO 1 Un diodo p + n è a base corta: W = 4 µm, N D = 10 16 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ p = τ n = 10 6 s, S=1 mm 2. 1)

Dettagli

DE e DTE: PROVA SCRITTA DEL 23 Luglio ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /Vs, µ p = 200 cm 2 /Vs,

DE e DTE: PROVA SCRITTA DEL 23 Luglio ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /Vs, µ p = 200 cm 2 /Vs, DE e DTE: PROA SCRITTA DEL 23 Luglio 2015 ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /s, µ p = 200 cm 2 /s, τ n = τ p = 1 µs, N A = 10 19 cm 3, N D = 5 10 15 cm 3, S = 1 mm 2

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018 ESERCIZIO 1 Nel circuito in gura, il diodo p + n a destra è a base lunga con N D = 10 16 cm 3, S = 10 cm 2. Il diodo p + n a sinistra ha N D

Dettagli

3) Determinare il campo elettrico per x = 50 µm (trascurare l'ampiezza

3) Determinare il campo elettrico per x = 50 µm (trascurare l'ampiezza DE e DTE: PROVA SCRITTA DEL 8 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un diodo pn è caratterizzato da: S = 1 mm 2, N A = 10 16 cm 3, N D = 10 16 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = 10 5 S (nella

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019 ESERCIZIO 1 In gura è rappresentato, a sinistra, un dispositivo costituito da una giunzione p + n e da un contatto metallico sulla parte n. Per

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017 ESERCIZIO 1 Una giunzione p + n è caratterizzata da N D = 5 10 15 cm 3, µ p = 0.04 m 2 /Vs, τ p = 10 6 s, S = 1 mm 2. Questa giunzione è polarizzata

Dettagli

ESERCIZIO 1 Il transistore in gura è un n + pn +, con W = 3 µm, N Abase = cm 3,

ESERCIZIO 1 Il transistore in gura è un n + pn +, con W = 3 µm, N Abase = cm 3, PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Settembre 2016 ESERCIZIO 1 Il transistore in gura è un n + pn +, con W = 3 µm, N Abase = 10 16 cm 3, µ n = 0.1 m 2 /V s, τ n = 10 6 s, S = 1 mm 2. Trascurare

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Gennaio ESERCIZIO 1 Si consideri un diodo pn con W n = W p = 500 µm, N A = N D = cm 3,

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Gennaio ESERCIZIO 1 Si consideri un diodo pn con W n = W p = 500 µm, N A = N D = cm 3, PROVA SCRTTA di DSPOSTV ELETTRONC del 9 Gennaio 2016 ESERCZO 1 Si consideri un diodo pn con W n = W p = 500 µm, N A = = 10 15 cm 3, τ n = τ p = 1 µs, µ n = 1500 cm 2 /Vs, µ p = 400 cm 2 /Vs, S = 1 mm 2.

Dettagli

DE e DTE: PROVA SCRITTA DEL 4 Giugno 2012

DE e DTE: PROVA SCRITTA DEL 4 Giugno 2012 DE e DTE: PROA SCRITTA DEL 4 Giugno 2012 ESERCIZIO 1 (DE,DTE) Una giunzione pn (N A = N D = 10 16 cm 3, τ n = τ p = 10 6 s, µ n = 1000 cm 2 /s, µ p = 450 cm 2 /s, S = 1 mm 2 ) è polarizzata con = 0.5.

Dettagli

DE e DTE: PROVA SCRITTA DEL 14 Febbraio 2015

DE e DTE: PROVA SCRITTA DEL 14 Febbraio 2015 DE e DTE: PROVA SCRTTA DEL 14 Febbraio 2015 ESERCZO 1 (DE,DTE) due diodi in gura sono uno a base lunga (diodo A: p + n, N D = 5 10 15 cm 3, τ n = τ p = 1 µs, µ p = 0.04 m 2 /Vs, S = 1mm 2 ) e uno a base

Dettagli

DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012

DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012 DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012 ESERCIZIO 1 (DE,DTE) Una giunzione pn è polarizzata con V = 0.5 V. I dati della giunzione sono: N D = 10 16 cm 3, N A = 10 15 cm 3, µ n = 1100 cm 2 /Vs, µ

Dettagli

DE e DTE: PROVA SCRITTA DEL 22 Gennaio 2012

DE e DTE: PROVA SCRITTA DEL 22 Gennaio 2012 DE e DTE: PROVA SCRITTA DEL Gennaio 01 ESERCIZIO 1 (DE,DTE) Un processo per la realizzazione di transistori n-mos è caratterizzato da: N A = 10 16 cm 3, µ n canale = 800 cm /Vs, µ n bulk = 1000 cm /Vs,

Dettagli

DE e DTE: PROVA SCRITTA DEL 23 Giugno 2012

DE e DTE: PROVA SCRITTA DEL 23 Giugno 2012 DE e DTE: PROA SCRITTA DEL 23 Giugno 2012 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (N D emettitore = 10 16 cm 3, N A base = 10 16 cm 3, N D collettore = 10 15 cm 3, τ n = τ p = 10 6 s, µ n = 1000

Dettagli

1) Il lato n è lungo (1 mm), mentre quello p è sicuramente corto (3 µm). Calcoliamo la regione di svuotamento per V = 0.5 V: = V.

1) Il lato n è lungo (1 mm), mentre quello p è sicuramente corto (3 µm). Calcoliamo la regione di svuotamento per V = 0.5 V: = V. ESERCIZIO 1 (DE,DTE) Una giunzione pn è caratterizzata da (W p e W n distanze tra il piano della giunzione e rispettivamente contatto p ed n): S = 1 mm, N D = 10 16 cm 3, W n = 1 mm, N A = 10 15 cm 3,

Dettagli

DE e DTE: PROVA SCRITTA DEL 5 febbraio ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione

DE e DTE: PROVA SCRITTA DEL 5 febbraio ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione DE e DTE: PROVA SCRITTA DEL 5 febbraio 011 ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione del dispositivo di cui nella figura è mostrata la sezione; la

Dettagli

DE e DTE: PROVA SCRITTA DEL 8 Febbraio 2012

DE e DTE: PROVA SCRITTA DEL 8 Febbraio 2012 DE e DTE: PROA SCRITTA DEL 8 Febbraio 01 ESERCIZIO 1 (DE,DTE) Una struttura n-mos ( = 10 16 cm 3, t ox = 30 nm) è realizzata con un processo polysilicon gate n +. La struttura è illuminata con luce rossa

Dettagli

DE e DTE: PROVA SCRITTA DEL 9 Gennaio 2012

DE e DTE: PROVA SCRITTA DEL 9 Gennaio 2012 DE e DTE: PROVA SCRITTA DEL 9 Gennaio 01 ESERCIZIO 1 (DE,DTE) Un transistore n-mos (N A = 10 16 cm 3, µ n = 800 cm /Vs nel canale, W = L = 5 µm, t ox = 50 nm), realizzato con un processo polysilicon gate,

Dettagli

DE e DTE: PROVA SCRITTA DEL 16 Luglio 2012

DE e DTE: PROVA SCRITTA DEL 16 Luglio 2012 000000000 111111111 000000000 111111111 DE e DTE: PROA SCRITTA DEL 16 Luglio 01 ESERCIZIO 1 (DE,DTE) Nella figura è mostrato lo schema di massima di un transistore n-mos (condensatore MOS ideale), con

Dettagli

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n Esercizio U3. - Tensione di soglia del MOSFET a canale n Si ricavi dettagliatamente l espressione per la tensione di soglia di un MOSFET ad arricchimento a canale p e successivamente la si calcoli nel

Dettagli

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn con N Abase = N Dcollettore = 10 16 cm 3, µ n = 0.09 m 2 /Vs, µ p = 0.035 m 2 /Vs, τ n = τ p = 10 6 s, S=1

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Transistore MOS

Dispositivi e Tecnologie Elettroniche. Esercitazione Transistore MOS Dispositivi e Tecnologie Elettroniche Esercitazione Transistore MOS Esercizio 1: testo Si consideri un sistema MOS costituito da un substrato di Si con drogaggio N A = 10 16 cm 3, uno strato di ossido

Dettagli

Il Sistema Metallo Ossido Semiconduttore (MOS)

Il Sistema Metallo Ossido Semiconduttore (MOS) Il Sistema Metallo Ossido Semiconduttore (MOS) E una struttura simile ad un condensatore, con queste differenze: A polarizzazione nulla la concentrazione dei portatori nel semiconduttore è assai minore

Dettagli

Esercizio U2.1 - Giunzione non brusca

Esercizio U2.1 - Giunzione non brusca Esercizio U2.1 - Giunzione non brusca Si consideri una giunzione p + -n con drogaggio uniforme nel lato p (N A = 10 19 cm 3 ) e giunzione metallurgica situata in x = 0. Il drogaggio del lato n, definito

Dettagli

ESERCIZIO 1. γ = 1 + D EN B W D B N E L E

ESERCIZIO 1. γ = 1 + D EN B W D B N E L E ESERCIZIO 1 In un un bjt npn in cui il fattore di trasporto in base è pari a 0.9995, l efficienza di emettitore è pari a 0.99938, è noto che la tensione di breakdown per valanga ha modulo pari a BV CE0

Dettagli

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che ESERCIZIO Su un transistor BJT pnp caratterizzato da N E = 0 8 cm 3 N B = 0 6 cm 3 N C = 0 5 cm 3 A = mm 2 vengono effettuate le seguenti misure: Tensione V CB negativa, emettitore aperto: I C = 0nA Tensione

Dettagli

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005 Transistori MOS Ing. Ivan Blunno 1 aprile 005 1 Introduzione In questa dispensa verranno presentati i transistor MOS (Metal Oxide Semiconductor) di tipo N e P dal punto di vista del loro funzionamento

Dettagli

Il transistore bipolare a giunzione (BJT)

Il transistore bipolare a giunzione (BJT) Il transistore bipolare a giunzione (BJT) Il funzionamento da transistore, cioè l'interazione fra le due giunzioni pn connesse back to back, è dovuto allo spessore ridotto dell'area di base (tipicamente

Dettagli

Esercizio : calcolo della conducibilita in un conduttore metallico.

Esercizio : calcolo della conducibilita in un conduttore metallico. Esercizio : calcolo della conducibilita in un conduttore metallico. Si consideri una striscia di metallo in un circuito integrato, con dimensioni:lunghezza L =.8 [mm], Area della sezione A = 4 [µm²] (micrometri

Dettagli

Dispositivi e Tecnologie Elettroniche. Il transistore bipolare

Dispositivi e Tecnologie Elettroniche. Il transistore bipolare Dispositivi e Tecnologie Elettroniche l transistore bipolare Struttura di principio l transistore bipolare è fondamentalmente composto da due giunzioni pn, realizzate sul medesimo substrato a formare una

Dettagli

Nella seguente foto, possiamo vedere l'esterno di alcuni transistor:

Nella seguente foto, possiamo vedere l'esterno di alcuni transistor: IL BJT Il transistor BJT è un componente che viene utilizzato come amplificatore. Si dice amplificatore di tensione un circuito che dà in uscita una tensione più grande di quella di ingresso. Si dice amplificatore

Dettagli

Dispositivi e Tecnologie Elettroniche. Il transistore MOS

Dispositivi e Tecnologie Elettroniche. Il transistore MOS Dispositivi e Tecnologie Elettroniche Il transistore MOS Il transistore MOS La struttura MOS a due terminali vista può venire utilizzata per costruire un condensatore integrato È la struttura base del

Dettagli

Fondamenti di Elettronica, Sez.3

Fondamenti di Elettronica, Sez.3 Fondamenti di Elettronica, Sez.3 Alessandra Flammini alessandra.flammini@unibs.it Ufficio 24 Dip. Ingegneria dell Informazione 030-3715627 Lunedì 16:30-18:30 Fondamenti di elettronica, A. Flammini, AA2018-2019

Dettagli

Dispositivi e Tecnologie Elettroniche. Il sistema MOS

Dispositivi e Tecnologie Elettroniche. Il sistema MOS Dispositivi e Tecnologie Elettroniche Il sistema MOS l ossido è SiO 2 l ossido è molto sottile ( 40 Å) il metallo è sostituito con silicio policristallino drograto n + (poly) Dispositivi e Tecnologie Elettroniche

Dettagli

Elettronica Il transistore bipolare a giunzione

Elettronica Il transistore bipolare a giunzione Elettronica Il transistore biolare a giunzione Valentino Liberali Diartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Il transistore biolare a giunzione 6 maggio

Dettagli

Esercitazione n 2: Circuiti di polarizzazione (2/2)

Esercitazione n 2: Circuiti di polarizzazione (2/2) Esercitazione n 2: Circuiti di polarizzazione (2/2) 1) Per il circuito di in Fig. 1 dimensionare R in modo tale che la corrente di collettore di Q 1 sia 5 ma. Siano noti: V CC = 15 V; β = 150; Q1 = Q2

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Giunzione pn

Dispositivi e Tecnologie Elettroniche. Esercitazione Giunzione pn Dispositivi e Tecnologie Elettroniche Esercitazione Giunzione pn Esercizio 1: testo Si consideri una giunzione brusca e simmetrica con drogaggio N A N D 10 17 cm 3 sezione trasversale A 0.5 mm 2 e lati

Dettagli

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A Copyright 006 he McGraw-Hill Companies srl SOLUZIONI DI ESERCIZI - Elettronica Digitale III ed. Capitolo Esercizio. V OH 5 V, V OL 0.5 V; NM H V OH - V IH V; NM L V IH - V IL.5 V. Esercizio.3 Il percorso

Dettagli

Ricavo della formula

Ricavo della formula Dispositivi e Circuiti Elettronici Ricavo della formula E F i E F = k B T ln N A n i Si consideri la relazione di Shockey: ( ) EFi E F p = n i exp k B T Si osservi anche che per x = il semiconduttore è

Dettagli

Elettronica I Il transistore bipolare a giunzione

Elettronica I Il transistore bipolare a giunzione Elettronica I Il transistore biolare a giunzione Valentino Liberali Diartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it htt://www.dti.unimi.it/ liberali

Dettagli

1 = 2 1 = 2 W L W L MOSFET ENHANCEMENT A CANALE P D I D > 0 B V SD > 0 D I D < 0 B V DS < 0 V SG > 0 S V GS < 0. Regione di interdizione

1 = 2 1 = 2 W L W L MOSFET ENHANCEMENT A CANALE P D I D > 0 B V SD > 0 D I D < 0 B V DS < 0 V SG > 0 S V GS < 0. Regione di interdizione MOFE ENHANCEMEN A CANALE P MOFE a canale p hanno una struttura analoga a quelli a canale n, con la differenza che i tipi di semiconduttore sono scambiati: ora source e drain sono realizzati con semiconduttori

Dettagli

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Si analizzi l amplificatore mostrato in figura, determinando: 1. il valore del guadagno di tensione a frequenze intermedie; 2. le frequenze di taglio

Dettagli

Soluzione del compito di Elettronica e di Elettronica Digitale del 15 gennaio 2003

Soluzione del compito di Elettronica e di Elettronica Digitale del 15 gennaio 2003 Soluzione del compito di Elettronica e di Elettronica Digitale del 5 gennaio 2003 Esercizio Calcolo di R 5, R 6 e del punto di lavoro dei transistori Per l analisi del punto di riposo prendiamo in considerazione

Dettagli

3.1 Verifica qualitativa del funzionamento di un FET

3.1 Verifica qualitativa del funzionamento di un FET Esercitazione n. 3 Circuiti con Transistori Rilevamento delle curve caratteristiche Questa esercitazione prevede il rilevamento di caratteristiche V(I) o V2(V1). In entrambi i casi conviene eseguire la

Dettagli

DEE POLITECNICO DI BARI LABORATORIO DI ELETTRONICA APPLICATA ESERCITAZIONE 2

DEE POLITECNICO DI BARI LABORATORIO DI ELETTRONICA APPLICATA ESERCITAZIONE 2 POLITECNICO DI BARI DEE DIPARTIMENTO ELETTROTECNICA ELETTRONICA Via E. Orabona, 4 70125 Bari (BA) Tel. 080/5460266 - Telefax 080/5460410 LABORATORIO DI ELETTRONICA APPLICATA Circuito di autopolarizzazione

Dettagli

Stadi Amplificatori di Base

Stadi Amplificatori di Base Stadi Amplificatori di Base Biagio Provinzano Marzo 2005 Ipotesi di lavoro: i) Transistor npn acceso ed in zona attiva v BE 1 0.7V e v C >v B ii) Consideriamo un classico schema di polarizzazione con quattro

Dettagli

Struttura del condensatore MOS

Struttura del condensatore MOS Struttura del condensatore MOS Primo elettrodo - Gate: realizzato con materiali a bassa resistività come metallo o silicio policristallino Secondo elettrodo - Substrato o Body: semiconduttore di tipo n

Dettagli

Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = Ñ 2»Î τ p = 10 6 S = 1. p+ n

Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = Ñ 2»Î τ p = 10 6 S = 1. p+ n Ì ÈÊÇÎ Ë ÊÁÌÌ Ä ÒÒ Ó ¾¼½ Ë Ê Á ÁÇ ½ Ì µ Ä ÙÒÞ ÓÒ p + n Ò ÙÖ N D = 10 16 Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = 0.045 Ñ 2»Î τ p = 10 6 S = 1 ÑÑ 2 ÐÙÒ µ ÔÓÐ Ö ÞÞ Ø Ò Ö ØØ ÓÒ = 0.3 κ ½µ Ø ÖÑ Ò Ö Ð ÓÖÖ ÒØ Ò

Dettagli

Modello di Ebers-Moll del transistore bipolare a giunzione

Modello di Ebers-Moll del transistore bipolare a giunzione D Modello di Ebers-Moll del transistore bipolare a giunzione Un transistore bipolare è un dispositivo non lineare che può essere modellato facendo ricorso alle caratteristiche non lineari dei diodi. Il

Dettagli

TRANSISTOR BIPOLARE A GIUNZIONE ( BJT ) [ing. R. STORACE]

TRANSISTOR BIPOLARE A GIUNZIONE ( BJT ) [ing. R. STORACE] TRANSISTOR BIPOLARE A GIUNZIONE ( BJT ) [ing. R. STORACE] 1. Che cos'è? E' un componente con 3 terminali, chiamati EMETTITORE, BASE,COLLETTORE, che può funzionare in modi diversi a seconda di come è configurato,

Dettagli

Generatori di Corrente Continua

Generatori di Corrente Continua Generatori di Corrente Continua Maurizio Monteduro Siamo abituati a considerare i generatori come qualcosa di ideale, come un aggeggio perfetto che attinge o eroga corrente non interessandosi di come possa

Dettagli

Il TRANSISTOR. Il primo transistor della storia

Il TRANSISTOR. Il primo transistor della storia Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,

Dettagli

Dispositivi elettronici. Il transistor bipolare a giunzione (bjt( bjt)

Dispositivi elettronici. Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici l transistor bipolare a giunzione (bjt( bjt) Sommario l transistor bipolare a giunzione (bjt) come è fatto un bjt principi di funzionamento (giunzione a base corta) effetto transistor

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO www.polimi.it ELETTRONICA per ingegneria BIOMEDICA prof. Alberto TOSI Sommario Transistore MOSFET Struttura Equazioni caratteristiche Curve caratteristiche Funzionamento come amplificatore

Dettagli

Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET

Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET Dispositivi unipolari Il contatto metallo-semiconduttore Il transistor JFET Il transistor MESFET Il diodo MOS Il transistor MOSFET 1 Contatti metallo semiconduttore (1) La deposizione di uno strato metallico

Dettagli

BJT. Bipolar Junction Transistor

BJT. Bipolar Junction Transistor BJT Bipolar Junction Transistor BJT Ideato e fabbricato nel 1947 da Schockley, Bardeen, Brattain. E costituito da 2 giunzioni pn consecutive realizzate su un unica porzione di silicio e pertanto puo essere

Dettagli

Dispositivi elettronici Esperienze di laboratorio

Dispositivi elettronici Esperienze di laboratorio Dispositivi elettronici Esperienze di laboratorio Universitá degli Studi di L Aquila Massimo Lucresi Luigi Pilolli Mariano Spadaccini maggio 2002 Esperienza n. 1 Analisi della risposta in frequenza di

Dettagli

Il TRANSISTOR. Il primo transistor della storia

Il TRANSISTOR. Il primo transistor della storia Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,

Dettagli

Transistore bipolare a giunzione (BJT)

Transistore bipolare a giunzione (BJT) ransistore bipolare a giunzione (J) Parte 1 www.die.ing.unibo.it/pers/mastri/didattica.htm (versione del 22-5-2012) ransistore bipolare a giunzione (J) l transistore bipolare a giunzione è un dispositivo

Dettagli

Esperienza n 7: CARATTERISTICHE di transistor BJT e MosFet

Esperienza n 7: CARATTERISTICHE di transistor BJT e MosFet Laboratorio V Esperienza n 7: CARATTERSTCHE di Transistors JT e MosFet 1 Esperienza n 7: CARATTERSTCHE di transistor JT e MosFet Caratteristica del transistor bipolare (JT) l transistor bipolare è uno

Dettagli

I dispositivi elettronici. Dispense del corso ELETTRONICA L

I dispositivi elettronici. Dispense del corso ELETTRONICA L I dispositivi elettronici Dispense del corso ELETTRONICA L Sommario I semiconduttori La giunzione pn Il transistor MOS Cenni sul principio di funzionamento Modellizzazione Fenomeni reattivi parassiti Top-down

Dettagli

Formulario di CIRCUITI ELETTRONICI ANALOGICI L-A

Formulario di CIRCUITI ELETTRONICI ANALOGICI L-A Formulario di CIRCUITI ELETTRONICI ANALOGICI L-A Gennaio - Marzo 2009 Identità ed equazioni relative all elettronica analogica tratti dalle lezioni del corso di Circuiti Elettronici Analogici L-A alla

Dettagli

Esonero del Corso di Elettronica I 23 aprile 2001

Esonero del Corso di Elettronica I 23 aprile 2001 Esonero del Corso di Elettronica I 23 aprile 2001 1) Nell amplificatore MO di figura k=5.10-4 A/V 2, V T = 2 V, = 10K Ω, =10V, =3V. eterminare il guadagno di tensione per un segnale applicato tra gate

Dettagli

Tensione di soglia Q C. x d. x d

Tensione di soglia Q C. x d. x d ensione di soglia In presenza di cariche nell ossido e/o di φms 0, la tensione di soglia viene odificata a causa del contributo di FB, che rappresenta la tensione che occorre applicare al gate per portare

Dettagli

slides per cortesia di Prof. B. Bertucci

slides per cortesia di Prof. B. Bertucci slides per cortesia di Prof. B. Bertucci Giunzione p-n in equilibrio: Densità di portatori maggiori maggioritari/ minoritari dai due lati della giunzione (lontano dalla zona di contatto): Nella zona di

Dettagli

Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS

Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Esercitazione del 21 Maggio 2008

Esercitazione del 21 Maggio 2008 Esercitazione del 1 Maggio 008 Es. 1 - pmos in configurazione drain comune 1) Con riferimento al circuito in Fig. 1, determinare le regioni di funzionamento del transistore Mp nel piano V out (V in ).

Dettagli

ESERCIZIO Punto di riposo, R 1,R 2. Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha

ESERCIZIO Punto di riposo, R 1,R 2. Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha 1/16 ESERCIZIO 1 1.1 - Punto di riposo, R 1,R 2 Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha V CE1 = V R E I E1 I E2 ) V 2R E I C = 12.0 V. 1) Nel punto di riposo si ha I B1

Dettagli

Transistor a giunzione bipolare

Transistor a giunzione bipolare Transistor a giunzione bipolare Da Wikipedia, l'enciclopedia libera. Simbolo del BJT NPN Simbolo del BJT PNP In elettronica, il transistor a giunzione bipolare, anche chiamato con l'acronimo BJT, abbreviazione

Dettagli

Esercizi sui BJT. Università degli Studi di Roma Tor Vergata Dipartimento di Ing. Elettronica corso di ELETTRONICA APPLICATA. Prof.

Esercizi sui BJT. Università degli Studi di Roma Tor Vergata Dipartimento di Ing. Elettronica corso di ELETTRONICA APPLICATA. Prof. Università degli Studi di Roma Tor Vergata Dipartimento di ng. Elettronica corso di ELETTRONCA APPLCATA Prof. Franco GANNN Esercizi sui BJT / 1 ESERCZ SU BJT Per prima cosa, ricordiamo cosa si intende

Dettagli

Transistor a giunzione bipolare

Transistor a giunzione bipolare Page 1 of 7 Transistor a giunzione bipolare Da Wikipedia, l'enciclopedia libera. In elettronica, il transistor a giunzione bipolare, anche chiamato con l'acronimo BJT, abbreviazione del termine inglese

Dettagli

Elettronica II Modello del transistore bipolare a giunzione p. 2

Elettronica II Modello del transistore bipolare a giunzione p. 2 lettronica II Modello del transistore biolare a giunzione Valentino Liberali Diartimento di Tecnologie dell Informazione Università di Milano, 26013 rema e-mail: liberali@dti.unimi.it htt://www.dti.unimi.it/

Dettagli

Anche questo transistor è unipolare. Il suo nome è un acronimo per Metal Oxide

Anche questo transistor è unipolare. Il suo nome è un acronimo per Metal Oxide Il transistor MOSFET MOSFET enhancement mode Anche questo transistor è unipolare. Il suo nome è un acronimo per Metal Oxide Semiconductor Field Effect Transistor. La struttura di principio del dispositivo

Dettagli

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009 Esame del 19 febbraio 2009 Nel circuito di figura Is è un generatore di corrente con l andamento temporale riportato nel grafico. Determinare l'evoluzione temporale della V out e disegnarne il grafico

Dettagli

Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente p. 2

Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente p. 2 Elettronica II La giunzione p-n: calcolo della relazione tensione-corrente Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

4. Il transistore BJT

4. Il transistore BJT 4. Il transistore BJT 4.1 Generatore di corrente controllato in corrente Una funzione essenziale nella maggior parte dei circuiti elettronici è rappresentata dal generatore controllato. Un generatore controllato

Dettagli

RACCOLTA DI ESERCIZI

RACCOLTA DI ESERCIZI 1 ACCOLTA DI ESECIZI 1) Deflessione elettrostatica 1) Un elettrone posto all interno di un sistema di placche di deflessione orizzontali e verticali come in figura viene accelerato da due campi elettrici

Dettagli

Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = Ñ 2»Î τ p = 10 6 S = 1

Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = Ñ 2»Î τ p = 10 6 S = 1 Ì ÈÊÇÎ Ë ÊÁÌÌ Ä ¾ ÒÒ Ó ¾¼½ Ë Ê Á ÁÇ ½ Ì µ Ä ÙÒÞ ÓÒ n + p Ò ÙÖ N A = 10 16 Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = 0.045 Ñ 2»Î τ p = 10 6 S = 1 ÑÑ 2 µ Ø ÒÞ ÙÒÞ ÓÒ ¹ÓÒØ ØØÓ a = 30 µñ ÐÐÙÑ Ò Ø ÙÒ ÓÖÑ Ñ ÒØ ÓÒ

Dettagli