ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = , µ n = 0.12 m 2 /Vs, µ p = 0.

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = , µ n = 0.12 m 2 /Vs, µ p = 0."

Transcript

1 DE e DTE: PROVA SCRITTA DEL 6 Giugno 2013 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = , µ n = 0.12 m 2 /Vs, µ p = m 2 /Vs, τ n = τ p = 10 6 s, S = 1 mm 2 ) è polarizzato con V BE = 0.55 V e V CE = 5.55 V. 1) Determinare la lunghezza eettiva di base e la corrente di collettore, trascurando l'ampiezza delle regioni di svuotamento delle giunzioni polarizzate in diretta [4]. In queste condizioni di polarizzazione, è stata misurata una corrente di base pari a I B = 1 ma. 2) Determinare i parametri β F, α F e l'ecienza di emettitore γ.[4] 3) Determinare la frazione di corrente di emettitore I Ep dovuta all'iniezione di lacune.[2] ESERCIZIO 2 (DE,DTE) Un transistore n-mos (processo polysilicon gate, N A = cm 3, µ n = 800 cm 2 /Vs, t ox = 30 nm, W = L = 2 µm) è polarizzato con V GS = 5 V e V DS = 3 V. 1) Determinare la corrente nel transistore e l'espressione (numerica) del potenziale in funzione di y nel canale (si utilizzi l'espressione di I DS per y generico).[4] 2) Determinare l'espressione del campo elettrico ɛ y in direzione del canale, e valutare ɛ y in y = L (si può procedere considerando il valore assoluto).[2] 3) Determinare l'espressione del campo elettrico perpendicolare al canale ɛ x (y) nel silicio, all'interfaccia ossido-silicio (per x = 0, usare il teorema di Gauss), e calcolare ɛ x per y = L.[4] ESERCIZIO 3 (DTE) 1) Descrivere il processo LOCOS con spacers per la fabbricazione di circuiti con transistori n-mos.[4] 2) Determinare il minimo spessore di ossido di campo che garantisca l'isolamento dei dispositivi, sapendo che N A = cm 3 e che la tensione di alimentazione massima del circuito è pari a 5 V.[3] 3) Sapendo che il secondo livello di interconnessioni (primo livello: poly) viene realizzato con un metallo con Φ M = 3 V, determinare il minimo 1

2 spessore di ossido deposto per CVD (usare per l'ossido di campo lo spessore calcolato nel punto precedente).[3] Vcc 12 V R1 4k Rd 0.2 k Q1 Vu M1 R2 6k Re 2k Rs 0.2 k Figura 1: Circuito relativo all'esercizio 4 (DE) ESERCIZIO 4 (DE) Per l'amplicatore in gura, il transistore Q 1 è un n + pn con β F > 300, il transistore M 1 è un n-mos (struttura MOS ideale), t ox = 30 nm, N A = cm 3, µ n = 800 cm 2 /Vs, W = 100 µm, L = 4 µm. 1) Calcolare il punto di riposo dei transistori. [4] 2) Calcolare i parametri dinamici (g m ed r d ) del transistore M 1. SUGGE- RIMENTO: per r d considerare L eff = L per V DS = V DSSat e calcolare L eff per V DS = 12 V.[4] 2

3 3) Calcolare i parametri dinamici ibridi del transistore bipolare, sapendo che r bb =2 kω, h fe 300, h re = 0. La resistenza di uscita è 10 volte quella del MOS.[2] 3

4 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (W met = 3 µm, N Abase = 10 16, N Dcollettore = , µ n = 0.12 m 2 /Vs, µ p = m 2 /Vs, τ n = τ p = 10 6 s, S = 1 mm 2 ) è polarizzato con V BE = 0.55 V e V CE = 5.55 V. 1) Determinare la lunghezza eettiva di base e la corrente di collettore, trascurando l'ampiezza delle regioni di svuotamento delle giunzioni polarizzate in diretta [4]. In queste condizioni di polarizzazione, è stata misurata una corrente di base pari a I B = 1 ma. 2) Determinare i parametri β F, α F e l'ecienza di emettitore γ.[4] 3) Determinare la frazione di corrente di emettitore I Ep dovuta all'iniezione di lacune. SUGGERIMENTO: approssimare I En I C.[2] SOLUZIONE 1 1) Il transistore è in zona attiva diretta, con la giunzione base-emettitore polarizzata in diretta e la giunzione base-collettore polarizzata in inversa. Calcoliamo la lunghezza eettiva della base, trascurando la regione di svuotamento emettitore-base (polarizzata in diretta). La regione di svuotamento collettore-base si calcola come: ( ) NAbase N Dcollettore V 0CB = V T ln = V (1) n 2 i V CB = 5.0 V (2) ( ) 2ɛs 1 1 W CB = + (V 0 + V CB ) = 2.11 µm (3) q N Abase N Dcollettore Di questa regione di svuotamento, la frazione che cade in base è: N Dcollettore X BC = W BC = 0.35 µm (4) N Dcollettore + N Abase La lunghezza eettiva della base risulta dunque: W eff = = 2.65 µm (5) Per il calcolo della corrente di collettore, possiamo usare il modello a controllo di carica, oppure la derivata del prolo (calcolo in valore assoluto, corrente 4

5 di collettore uscente): I C = qsd n δn p (0) W eff (6) D n = V T µ n = (7) δn p (0) n p0 e V EB V T = n2 i e VEB V T = m 3 (8) N Abase I C = 7.05 ma (9) 2) Da notare che la corrente di base misurata è molto più alta di quella che si avrebbe con ecienza di emettitore unitaria: I B = Q B τ n (10) I B = qsn p0e VEB V T W eff = 7.9 µa (11) 2τ n Avremo quindi, seguendo le denizioni dei vari parametri (in valore assoluto): Dal momento che α F = γα t : β F = I C = 7 (12) I B β F α F = = (13) β F + 1 α t = L n = e quindi l'ecienza di emettitore risulta: W (14) eff 2 2L 2 n D n τ n = µm (15) α t = (16) γ = α F α t = (17) 3) Dalla denizione di ecienza di emettitore: I En γ = (18) I Ep + I En 1 γ I Ep = I En = 1 ma (19) γ 5

6 ESERCIZIO 2 (DE,DTE) Un transistore n-mos (processo polysilicon gate, N A = cm 3, µ n = 800 cm 2 /Vs, t ox = 30 nm, W = L = 2 µm) è polarizzato con V GS = 5 V e V DS = 3 V. 1) Determinare la corrente nel transistore e l'espressione (numerica) del potenziale in funzione di y nel canale (si utilizzi l'espressione di I DS per y generico).[4] 2) Determinare l'espressione del campo elettrico ɛ y in direzione del canale, e valutare ɛ y in y = L (si può procedere considerando il valore assoluto).[3] 3) Determinare l'espressione del campo elettrico perpendicolare al canale ɛ x (y) nel silicio, all'interfaccia ossido-silicio (per x = 0, usare il teorema di Gauss), e calcolare ɛ x per y = L.[3] SOLUZIONE 2 1) Calcoliamo la tensione di soglia. C ox = ɛ ox = F/m 2 (20) t ox ( ) NA ψ B = V T ln = (21) n i Φ MS = E g 2q + ψ B = (22) V T H = 2ɛs qn A 2ψ B C ox + 2ψ B Φ MS = V (23) Il transistore è polarizzato in zona triodo, poichè V DS < V DSSat = V GS V T H = = V. Avremo dunque: I DS = µ n C ox W L [ (V GS V T H ) V DS V 2 DS 2 ] = 0.9 ma (24) Per il calcolo dell'andamento del potenziale lungo il canale possiamo usare una relazione analoga alla condizione di saturazione (vedi dispense, dove viene riportato il calcolo del tempo di transito nel transistore MOS): I DS y = µ n C ox W 6 [ (V GS V T H ) V (y) V (y)2 2 ] (25)

7 y = V (y) V (y) 2 (26) V V + y = 0 (27) V V y = 0 (28) Questa equazione di secondo grado può essere risolta in V (y), ottenendo: V (y) = (29) y (30) È immediato vericare che, a meno di arrotondamenti, V (L) = V DS = 3 V. 2) Per il calcolo dell'espressione del campo elettrico lungo y basta fare la derivata del potenziale: dv (y) ɛ y (y) = dy ɛ y (y) = y (31) (32) Da questa espressione è immediato calcolare ɛ y (y = L) = 2.67 MV/m. 3) Il campo elettrico perpendicolare al canale ɛ x (y), all'interfaccia ossidosilicio nel silicio, può essere calcolato conoscendo la carica Q s (y) nel silicio: ɛ x (y) = Q s(y) ɛ s (33) V GS = Q s(y) C ox + 2ψ b + V (y) (34) Q s (y) = C ox (V GS 2ψ b V (y)) (35) oppure, alternativamente (viene la stessa cosa): Q s (y) = Q n (y) + Q w (y) = C ox (V GS V T H V (y)) + Si ottiene: (36) 2ɛ s qn A 2ψ b (37) Q s (y) = y (38) ɛ x (y) = y (39) 7

8 Svolgendo i conti otteniamo ɛ x (y = L) = mv/m, maggiore del campo elettrico lungo y nello stesso punto. ESERCIZIO 3 (DTE) 1) Descrivere il processo LOCOS con spacers per la fabbricazione di circuiti con transistori n-mos.[4] 2) Determinare il minimo spessore di ossido di campo che garantisca l'isolamento dei dispositivi, sapendo che N A = cm 3 e che la tensione di alimentazione massima del circuito è pari a 5 V.[3] 3) Sapendo che il secondo livello di interconnessioni (primo livello: poly) viene realizzato con un metallo con Φ M = 3 V, determinare il minimo spessore di ossido deposto per CVD (usare per l'ossido di campo lo spessore calcolato nel punto precedente).[3] SOLUZIONE 3 1) Si rimanda alla dispensa per una descrizione dettagliata del processo LOCOS con spacers. 2) La tensione di soglia V T H della struttura MOS parassita poly-ossidosilicio deve essere maggiore di 5 V. ψ B = V T ln ( ) NA n i = (40) Φ MS = E g 2q + ψ B = (41) Da questo segue: C ox = 2ɛs qn A 2ψ B V T H 2ψ B + Φ MS = F/m 2 (42) t ox minimo = ɛ ox C ox = 370 nm (43) 8

9 3) Basta ripetere gli stessi conti, considerando una Φ MS diversa: Φ MS = 3 χ + E g 2q + ψ B = (44) 2ɛs qn A 2ψ B C ox = = F/m 2 (45) V T H 2ψ B + Φ MS t ox minimo totale = ɛ ox C ox = 449 nm (46) da questo avremo che lo spessore di ossido CVD deve essere almeno =79 nm. ESERCIZIO 4 (DE) Per l'amplicatore in gura, il transistore Q 1 è un n + pn con β F > 300, il transistore M 1 è un n-mos (struttura MOS ideale), t ox = 30 nm, N A = cm 3, µ n = 800 cm 2 /Vs, W = 100 µm, L = 4 µm. 1) Calcolare il punto di riposo dei transistori. [4] 2) Calcolare i parametri dinamici (g m ed r d ) del transistore M 1. SUGGE- RIMENTO: per r d considerare L eff = L per V DS = V DSSat e calcolare L eff per V DS = 12 V.[4] 3) Calcolare i parametri dinamici ibridi del transistore bipolare, sapendo che r bb =2 kω, h fe 300, h re = 0. La resistenza di uscita è 10 volte quella del MOS.[2] SOLUZIONE 4 1) Per la tensione di soglia (è quella del secondo esercizio, a parte la Φ MS : C ox = ɛ ox = F/m 2 (47) t ox ( ) NA ψ B = V T ln = (48) n i V T H = 2ɛs qn A 2ψ B C ox + 2ψ B = 1.11 V (49) 9

10 Vcc 12 V R1 4k Rd 0.2 k Q1 Vu M1 R2 6k Re 2k Rs 0.2 k Figura 2: Circuito relativo all'esercizio 4 (DE) Per il punto di riposo: V B = 7.2 V (50) V E = 6.5 V (51) I E = 6.5 = 3.25 ma (52) 2 V CE = V CC V E = 5.5 V (53) I B = I E β F = 10.8 µa (54) Dall'ultima relazione I B << V CC /R 1 + R 2 = 1 ma, quindi il partitore pesante vericato. Per il transistore MOS, supponendo che sia in saturazione, possiamo scrivere 10

11 Vcc 12 V R1 4k Rd 0.2 k Q1 M1 Vu R2 6k Re 2k Rs 0.2 k la relazione (V G = V E ): I DS = W µ n C ox L (V G V S V T H ) 2 (55) V S R S = W µ n C ox 2L (V G V S V T H ) 2 (56) V S = 0.23 (5.39 V S ) 2 (57) Da cui si ottiene come unica soluzione valida V S = 2.26 V, con una corrente I DS = 11.3 ma. Da questo si ricava V DS = V CC I DS (R d + R s ) = 7.48 V > V GS V T H = 3.13 V. Avremo dunque per M 1 : Per il bipolare: V GS = 4.24 V I DS = ma V DS = 7.48 V > V GS V T H I C I E = 3.25 ma 11

12 I B = I C β min = 10.8 µa V BE V γ = 0.7 V V CE = 5.5 V Entrambi i transistori sono quindi polarizzati correttamente. 2) La resistenza r D del MOS è denita come: E quindi: 1 r d = I DS V DS VGS =cost 1 r d = I DS2 I DS1 V DS2 V DS1 Per semplicità scegliamo V DS1 = V DSSat = V GS V T H = 3.13 V, per cui la corrente è pari a quella calcolata sopra: I DS = ma già calcolata sopra con L eff = L = 4 µm). Per V DS2 scegliamo V DS2 = 12 V come suggerito dal testo. ( ) ND N A V 0DSusbs = V T ln = V (58) n 2 i V DP = V DS V P S = V DS V DSSat = = 8.87 V (59) 2ɛs W DP = (V 0DSubs + V DP ) = 1.13 µm (60) qn A Da questo possiamo ricavare la lunghezza eettiva del canale e la corrente I DS per V DS = 12 V: L eff = = 2.87 µm (61) I DS (V DS = 12) = µ n C ox W 2L eff (V GS V T H ) 2 = ma (62) E quindi la resistenza dierenziale di uscita risulta: (63) 1 = = (64) r d r d = 2000 kω (65) 12

13 Il guadagno g m risulta: 3) Avremo: g m = µ n C ox W L (V GS V T H ) = (66) r b e = V T I B = 2398 Ω (67) g m = h fe r b e = (68) r d = 20 kω (69) 13

DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014

DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014 DE e DTE: PROVA SCRITTA DEL 16 Settembre 2014 ESERCIZIO 1 (DE,DTE) Un transistore n + pn (N A = N D = 10 16 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = τ p = 10 6 s, = 3 µm, S=1 mm 2 ), è polarizzato

Dettagli

DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016

DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016 DE e DTE: PROVA SCRITTA DEL 16 Febbraio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (N Demettitore = N Abase = 10 16 cm 3, N Dcollettore = 5 10 15 cm 3, µ n = 0.1 m 2 /Vs, τ n = τ p = 10 6, µ

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 10 Giugno 2016

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 10 Giugno 2016 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 0 Giugno 206 ESERCIZIO Il transistore bipolare npn nelle gure ha N Demettitore = N Dcollettore = 0 7 cm 3, N Abase = 0 6 cm 3, µ n = 0. m 2 /Vs, τ n = τ p =

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 19 Settembre 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 19 Settembre 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 19 Settembre 2018 ESERCIZIO 1 Nel circuito in gura (V CC = 8 V, R = 1 kω), il transistore npn ha N Demettitore = 10 17 cm 3 (emettitore lungo), N Abase = 10

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 6 Febbraio 2019 ESERCIZIO 1 In gura sono rappresentati due diodi identici: N A = 10 16 cm 3, N D = 10 15 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.03 m 2 /Vs, τ n =

Dettagli

DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015

DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015 DE e DTE: PROVA SCRITTA DEL 29 Giugno 2015 ESERCIZIO 1 (DE,DTE) Un transistore (emettitore n + ) è caratterizzato da base = 5 10 15 cm 3, lunghezza metallurgica W met = 4 µm, τ n = 1 µs, µ n = 0.1 m 2

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 30 Giugno 2016 ESERCIZIO 1 Considerare delle giunzioni p + n, con N D = 10 15 cm 3, µ n = 0.12 m 2 /Vs, S=1 mm 2. Il campo elettrico di break- down a valanga

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = cm 3, N D = cm 3,

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = cm 3, N D = cm 3, PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Febbraio 2017 ESERCIZIO 1 Una giunzione pn è caratterizzata da N A = 5 10 15 cm 3, N D = 10 16 cm 3, µ n = 0.10 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = τ p =

Dettagli

DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015

DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015 DE e DTE: PROVA SCRITTA DEL 8 Giugno 2015 ESERCIZIO 1 (DE,DTE) Il transistore in gura è un n + pn + con base = 10 16 cm 3, τ n = 1 µs, µ n = 0.1 m 2 /Vs, S = 1mm 2. La resistenza R C = 1 kω, e V CC = 12

Dettagli

DE e DTE: PROVA SCRITTA DEL 7 Gennaio 2013

DE e DTE: PROVA SCRITTA DEL 7 Gennaio 2013 DE e DTE: PROVA SCRITTA DEL 7 Gennaio 013 ESERCIZIO 1 (DE,DTE) Un condensatore MOS è realizzato su substrato p, N A = 10 16 cm 3, t ox = 50 nm. A metà dell ossido (a t ox /) viene introdotto uno strato

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Gennaio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Gennaio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Gennaio 2018 ESERCIZIO 1 Un transistore n + pn, con N ABase = N DCollettore = 5 10 15 cm 3, µ n = 0.11 m 2 /Vs, τ n = 10 6 s, S = 1 mm 2, è polarizzato con

Dettagli

DE e DTE: PROVA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = cm 3, N Dcollettore = cm 3, µ

DE e DTE: PROVA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = cm 3, N Dcollettore = cm 3, µ DE e DTE: PROA SCRITTA DEL 28 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn (N Abase = 10 16 cm 3, N Dcollettore = 10 15 cm 3, µ n = 0.1 m 2 /s, τ n = 10 6, S = 1 mm 2 ) è polarizzato

Dettagli

ESERCIZIO 3 Nel circuito in gura, il transistore bipolare è un n + pn +, con N A = cm 3, τ n = 10 6 s, µ n = 0.09 m 2 /Vs, S = 1 mm 2.

ESERCIZIO 3 Nel circuito in gura, il transistore bipolare è un n + pn +, con N A = cm 3, τ n = 10 6 s, µ n = 0.09 m 2 /Vs, S = 1 mm 2. PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 16 Gennaio 2019 ESERCIZIO 1 Un transistore bipolare n + pn (N Abase = 10 16 cm 3, N Dcollettore = 2 10 16 cm 3, τ n = 10 6 s, µ n = 0.1 m 2 /Vs, S=1 mm 2 )

Dettagli

3) Determinare il campo elettrico per x = 50 µm (trascurare l'ampiezza

3) Determinare il campo elettrico per x = 50 µm (trascurare l'ampiezza DE e DTE: PROVA SCRITTA DEL 8 Gennaio 2016 ESERCIZIO 1 (DE,DTE) Un diodo pn è caratterizzato da: S = 1 mm 2, N A = 10 16 cm 3, N D = 10 16 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ n = 10 5 S (nella

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 15 Settembre 2017 ESERCIZIO 1 Una giunzione pn, con entrambe le basi lunghe, è caratterizzata da N A = N D = 5 10 15 cm 3, µ n = 0.11 m 2 /Vs, µ p = 0.04 m

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 13 Giugno 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 13 Giugno 2018 POVA SCITTA di DISPOSITIVI ELETTONICI del 13 Giugno 2018 ESECIZIO 1 In gura è rappresentato un circuito, basato su un transistore bipolare n + pn +, = 2 kω. Per il transistore abbiamo N Abase = 10 16 cm

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 27 Gennaio 2017 ESERCIZIO 1 Un transistore n + pn + (N Abase = 10 16 cm 3, W = 4 µm, S = 1 mm 2,µ n = 0.11 m 2 /Vs, τ n = 10 6 s) è polarizzato come in gura

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 24 Luglio 2019 ESERCIZIO 1 Un transistore npn a base corta è caratterizzato da: N Dem = 10 15 cm 3 (emettitore lungo), N Abase = 10 16 cm 3, N Dcoll = 10 15

Dettagli

ESERCIZIO 1 Il transistore bipolare in gura è caratterizzato da N Abase = cm 3,

ESERCIZIO 1 Il transistore bipolare in gura è caratterizzato da N Abase = cm 3, POVA SCITTA di DISPOSITIVI ELETTONICI del 17 Luglio 017 ESECIZIO 1 Il transistore bipolare in gura è caratterizzato da base = 5 10 15 cm 3, µ n = 0.11 m /Vs, µ p = 0.04 m /Vs, = τ p = 10 6 s, = 3 µm, S

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Luglio 2018 ESERCIZIO 1 Nel circuito in gura, il diodo p + n è illuminato alla supercie. La base p + è corta, W p = 5 µm, la base n è lunga. Abbiamo: N A

Dettagli

DE e DTE: PROVA SCRITTA DEL 23 Giugno 2012

DE e DTE: PROVA SCRITTA DEL 23 Giugno 2012 DE e DTE: PROA SCRITTA DEL 23 Giugno 2012 ESERCIZIO 1 (DE,DTE) Un transistore bipolare npn (N D emettitore = 10 16 cm 3, N A base = 10 16 cm 3, N D collettore = 10 15 cm 3, τ n = τ p = 10 6 s, µ n = 1000

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Febbraio 2018 ESERCIZIO 1 In gura è rappresentato un pezzo di silicio, drogato da una parte n + (N D = 10 19 cm 3, µ n+ = 0.015 m 3 ) e dall'altra n (N D

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 3 Luglio 2019 ESERCIZIO 1 Un diodo p + n è a base corta: W = 4 µm, N D = 10 16 cm 3, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ p = τ n = 10 6 s, S=1 mm 2. 1)

Dettagli

DE e DTE: PROVA SCRITTA DEL 4 Giugno 2012

DE e DTE: PROVA SCRITTA DEL 4 Giugno 2012 DE e DTE: PROA SCRITTA DEL 4 Giugno 2012 ESERCIZIO 1 (DE,DTE) Una giunzione pn (N A = N D = 10 16 cm 3, τ n = τ p = 10 6 s, µ n = 1000 cm 2 /s, µ p = 450 cm 2 /s, S = 1 mm 2 ) è polarizzata con = 0.5.

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Gennaio ESERCIZIO 1 Si consideri un diodo pn con W n = W p = 500 µm, N A = N D = cm 3,

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 9 Gennaio ESERCIZIO 1 Si consideri un diodo pn con W n = W p = 500 µm, N A = N D = cm 3, PROVA SCRTTA di DSPOSTV ELETTRONC del 9 Gennaio 2016 ESERCZO 1 Si consideri un diodo pn con W n = W p = 500 µm, N A = = 10 15 cm 3, τ n = τ p = 1 µs, µ n = 1500 cm 2 /Vs, µ p = 400 cm 2 /Vs, S = 1 mm 2.

Dettagli

DE e DTE: PROVA SCRITTA DEL 14 Febbraio 2015

DE e DTE: PROVA SCRITTA DEL 14 Febbraio 2015 DE e DTE: PROVA SCRTTA DEL 14 Febbraio 2015 ESERCZO 1 (DE,DTE) due diodi in gura sono uno a base lunga (diodo A: p + n, N D = 5 10 15 cm 3, τ n = τ p = 1 µs, µ p = 0.04 m 2 /Vs, S = 1mm 2 ) e uno a base

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 22 Novembre 2018 ESERCIZIO 1 Nel circuito in gura il diodo A è una giunzione Schottky a base corta, substrato n = N D = 10 15 cm 3 e W n = 5 µm. Il metallo

Dettagli

ESERCIZIO 1 In gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs,

ESERCIZIO 1 In gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs, PROVA SCRTTA di DSPOSTV ELETTRONC del 22 Febbraio 2019 ESERCZO 1 n gura è rappresentata una giunzione p + n (S=1 mm 2, µ n = 0.1 m 2 /Vs, µ p = 0.04 m 2 /Vs, τ p = τ n = 10 6 s). La parte n è drogata N

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2019 ESERCIZIO 1 In gura è rappresentato, a sinistra, un dispositivo costituito da una giunzione p + n e da un contatto metallico sulla parte n. Per

Dettagli

DE e DTE: PROVA SCRITTA DEL 23 Luglio ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /Vs, µ p = 200 cm 2 /Vs,

DE e DTE: PROVA SCRITTA DEL 23 Luglio ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /Vs, µ p = 200 cm 2 /Vs, DE e DTE: PROA SCRITTA DEL 23 Luglio 2015 ESERCIZIO 1 (DE,DTE) Un diodo p + n a base lunga, con µ n = 1100 cm 2 /s, µ p = 200 cm 2 /s, τ n = τ p = 1 µs, N A = 10 19 cm 3, N D = 5 10 15 cm 3, S = 1 mm 2

Dettagli

ESERCIZIO 1 Il transistore in gura è un n + pn +, con W = 3 µm, N Abase = cm 3,

ESERCIZIO 1 Il transistore in gura è un n + pn +, con W = 3 µm, N Abase = cm 3, PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 8 Settembre 2016 ESERCIZIO 1 Il transistore in gura è un n + pn +, con W = 3 µm, N Abase = 10 16 cm 3, µ n = 0.1 m 2 /V s, τ n = 10 6 s, S = 1 mm 2. Trascurare

Dettagli

DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012

DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012 DE e DTE: PROVA SCRITTA DEL 10 Settembre 2012 ESERCIZIO 1 (DE,DTE) Una giunzione pn è polarizzata con V = 0.5 V. I dati della giunzione sono: N D = 10 16 cm 3, N A = 10 15 cm 3, µ n = 1100 cm 2 /Vs, µ

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 12 Giugno 2017 ESERCIZIO 1 Una giunzione p + n è caratterizzata da N D = 5 10 15 cm 3, µ p = 0.04 m 2 /Vs, τ p = 10 6 s, S = 1 mm 2. Questa giunzione è polarizzata

Dettagli

1) Il lato n è lungo (1 mm), mentre quello p è sicuramente corto (3 µm). Calcoliamo la regione di svuotamento per V = 0.5 V: = V.

1) Il lato n è lungo (1 mm), mentre quello p è sicuramente corto (3 µm). Calcoliamo la regione di svuotamento per V = 0.5 V: = V. ESERCIZIO 1 (DE,DTE) Una giunzione pn è caratterizzata da (W p e W n distanze tra il piano della giunzione e rispettivamente contatto p ed n): S = 1 mm, N D = 10 16 cm 3, W n = 1 mm, N A = 10 15 cm 3,

Dettagli

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018

PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018 PROVA SCRITTA di DISPOSITIVI ELETTRONICI del 25 Luglio 2018 ESERCIZIO 1 Nel circuito in gura, il diodo p + n a destra è a base lunga con N D = 10 16 cm 3, S = 10 cm 2. Il diodo p + n a sinistra ha N D

Dettagli

DE e DTE: PROVA SCRITTA DEL 8 Febbraio 2012

DE e DTE: PROVA SCRITTA DEL 8 Febbraio 2012 DE e DTE: PROA SCRITTA DEL 8 Febbraio 01 ESERCIZIO 1 (DE,DTE) Una struttura n-mos ( = 10 16 cm 3, t ox = 30 nm) è realizzata con un processo polysilicon gate n +. La struttura è illuminata con luce rossa

Dettagli

DE e DTE: PROVA SCRITTA DEL 22 Gennaio 2012

DE e DTE: PROVA SCRITTA DEL 22 Gennaio 2012 DE e DTE: PROVA SCRITTA DEL Gennaio 01 ESERCIZIO 1 (DE,DTE) Un processo per la realizzazione di transistori n-mos è caratterizzato da: N A = 10 16 cm 3, µ n canale = 800 cm /Vs, µ n bulk = 1000 cm /Vs,

Dettagli

DE e DTE: PROVA SCRITTA DEL 9 Gennaio 2012

DE e DTE: PROVA SCRITTA DEL 9 Gennaio 2012 DE e DTE: PROVA SCRITTA DEL 9 Gennaio 01 ESERCIZIO 1 (DE,DTE) Un transistore n-mos (N A = 10 16 cm 3, µ n = 800 cm /Vs nel canale, W = L = 5 µm, t ox = 50 nm), realizzato con un processo polysilicon gate,

Dettagli

DE e DTE: PROVA SCRITTA DEL 5 febbraio ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione

DE e DTE: PROVA SCRITTA DEL 5 febbraio ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione DE e DTE: PROVA SCRITTA DEL 5 febbraio 011 ESERCIZIO 1 (DTE) 1) Descrivere i processi e disegnare le maschere necessarie alla realizzazione del dispositivo di cui nella figura è mostrata la sezione; la

Dettagli

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015

DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 DE e DTE: PROVA SCRITTA DEL 26 Gennaio 2015 ESERCIZIO 1 (DE,DTE) Un transistore bipolare n + pn con N Abase = N Dcollettore = 10 16 cm 3, µ n = 0.09 m 2 /Vs, µ p = 0.035 m 2 /Vs, τ n = τ p = 10 6 s, S=1

Dettagli

DE e DTE: PROVA SCRITTA DEL 16 Luglio 2012

DE e DTE: PROVA SCRITTA DEL 16 Luglio 2012 000000000 111111111 000000000 111111111 DE e DTE: PROA SCRITTA DEL 16 Luglio 01 ESERCIZIO 1 (DE,DTE) Nella figura è mostrato lo schema di massima di un transistore n-mos (condensatore MOS ideale), con

Dettagli

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che

ESERCIZIO 1. Soluzione. Per risolvere il problema utilizzo il modello di Ebers-Moll, grazie al quale potrò calcolare L E, W, L C, infatti so che ESERCIZIO Su un transistor BJT pnp caratterizzato da N E = 0 8 cm 3 N B = 0 6 cm 3 N C = 0 5 cm 3 A = mm 2 vengono effettuate le seguenti misure: Tensione V CB negativa, emettitore aperto: I C = 0nA Tensione

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Transistore MOS

Dispositivi e Tecnologie Elettroniche. Esercitazione Transistore MOS Dispositivi e Tecnologie Elettroniche Esercitazione Transistore MOS Esercizio 1: testo Si consideri un sistema MOS costituito da un substrato di Si con drogaggio N A = 10 16 cm 3, uno strato di ossido

Dettagli

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n

Esercizio U3.1 - Tensione di soglia del MOSFET a canale n Esercizio U3. - Tensione di soglia del MOSFET a canale n Si ricavi dettagliatamente l espressione per la tensione di soglia di un MOSFET ad arricchimento a canale p e successivamente la si calcoli nel

Dettagli

Esercizio U2.1 - Giunzione non brusca

Esercizio U2.1 - Giunzione non brusca Esercizio U2.1 - Giunzione non brusca Si consideri una giunzione p + -n con drogaggio uniforme nel lato p (N A = 10 19 cm 3 ) e giunzione metallurgica situata in x = 0. Il drogaggio del lato n, definito

Dettagli

ESERCIZIO 1. γ = 1 + D EN B W D B N E L E

ESERCIZIO 1. γ = 1 + D EN B W D B N E L E ESERCIZIO 1 In un un bjt npn in cui il fattore di trasporto in base è pari a 0.9995, l efficienza di emettitore è pari a 0.99938, è noto che la tensione di breakdown per valanga ha modulo pari a BV CE0

Dettagli

Dispositivi e Tecnologie Elettroniche. Il transistore bipolare

Dispositivi e Tecnologie Elettroniche. Il transistore bipolare Dispositivi e Tecnologie Elettroniche l transistore bipolare Struttura di principio l transistore bipolare è fondamentalmente composto da due giunzioni pn, realizzate sul medesimo substrato a formare una

Dettagli

Il TRANSISTOR. Il primo transistor della storia

Il TRANSISTOR. Il primo transistor della storia Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,

Dettagli

Il TRANSISTOR. Il primo transistor della storia

Il TRANSISTOR. Il primo transistor della storia Il TRANSISTOR Il primo transistor della storia Inventori del Transistor Il Transistor Bipolare a Giunzione (BJT) è stato inventato nei laboratori BELL nel 1948, da tre fisici: John Bardeen Walter Brattain,

Dettagli

Esercitazione n 2: Circuiti di polarizzazione (2/2)

Esercitazione n 2: Circuiti di polarizzazione (2/2) Esercitazione n 2: Circuiti di polarizzazione (2/2) 1) Per il circuito di in Fig. 1 dimensionare R in modo tale che la corrente di collettore di Q 1 sia 5 ma. Siano noti: V CC = 15 V; β = 150; Q1 = Q2

Dettagli

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005

Transistori MOS. Ing. Ivan Blunno 21 aprile 2005 Transistori MOS Ing. Ivan Blunno 1 aprile 005 1 Introduzione In questa dispensa verranno presentati i transistor MOS (Metal Oxide Semiconductor) di tipo N e P dal punto di vista del loro funzionamento

Dettagli

Il transistore bipolare a giunzione (BJT)

Il transistore bipolare a giunzione (BJT) Il transistore bipolare a giunzione (BJT) Il funzionamento da transistore, cioè l'interazione fra le due giunzioni pn connesse back to back, è dovuto allo spessore ridotto dell'area di base (tipicamente

Dettagli

r> 0 p< 0 stabile; r< 0 p> 0 instabile

r> 0 p< 0 stabile; r< 0 p> 0 instabile Circuiti dinamici del primo ordine I i V p. s. r C v V( s) 1 1 scv( s) + = 0; s+ V( s) = 0; p= r rc rc r> 0 p< 0 stabile; r< 0 p> 0 instabile 101 Compito a casa: dimostrare che il seguente circuito ha

Dettagli

Esercizi sui BJT. Università degli Studi di Roma Tor Vergata Dipartimento di Ing. Elettronica corso di ELETTRONICA APPLICATA. Prof.

Esercizi sui BJT. Università degli Studi di Roma Tor Vergata Dipartimento di Ing. Elettronica corso di ELETTRONICA APPLICATA. Prof. Università degli Studi di Roma Tor Vergata Dipartimento di ng. Elettronica corso di ELETTRONCA APPLCATA Prof. Franco GANNN Esercizi sui BJT / 1 ESERCZ SU BJT Per prima cosa, ricordiamo cosa si intende

Dettagli

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A

Esercizio 1.3 Il percorso con maggiore tempo di propagazione è quello del segnale A Copyright 006 he McGraw-Hill Companies srl SOLUZIONI DI ESERCIZI - Elettronica Digitale III ed. Capitolo Esercizio. V OH 5 V, V OL 0.5 V; NM H V OH - V IH V; NM L V IH - V IL.5 V. Esercizio.3 Il percorso

Dettagli

DEE POLITECNICO DI BARI LABORATORIO DI ELETTRONICA APPLICATA ESERCITAZIONE 2

DEE POLITECNICO DI BARI LABORATORIO DI ELETTRONICA APPLICATA ESERCITAZIONE 2 POLITECNICO DI BARI DEE DIPARTIMENTO ELETTROTECNICA ELETTRONICA Via E. Orabona, 4 70125 Bari (BA) Tel. 080/5460266 - Telefax 080/5460410 LABORATORIO DI ELETTRONICA APPLICATA Circuito di autopolarizzazione

Dettagli

3 B aut TPSEE 4 TEST FILA 1 3 apr Q1 BC Volts. VALUTAZIONE di COGNOME :. Nome :

3 B aut TPSEE 4 TEST FILA 1 3 apr Q1 BC Volts. VALUTAZIONE di COGNOME :. Nome : 3 B aut TPSEE 4 TEST FILA 1 3 apr 2013 1. Dato il seguente circuito e i valori di tensioni e correnti, determinare : a) La regione di funzionamento b) h FE, I E, V CB c) R B, R C d) cosa bisogna fare per

Dettagli

Modello di Ebers-Moll del transistore bipolare a giunzione

Modello di Ebers-Moll del transistore bipolare a giunzione D Modello di Ebers-Moll del transistore bipolare a giunzione Un transistore bipolare è un dispositivo non lineare che può essere modellato facendo ricorso alle caratteristiche non lineari dei diodi. Il

Dettagli

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003

Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Corso di ELETTRONICA 1 (Elettronici N.O.) 17/06/2003 Si analizzi l amplificatore mostrato in figura, determinando: 1. il valore del guadagno di tensione a frequenze intermedie; 2. le frequenze di taglio

Dettagli

Esercizio : calcolo della conducibilita in un conduttore metallico.

Esercizio : calcolo della conducibilita in un conduttore metallico. Esercizio : calcolo della conducibilita in un conduttore metallico. Si consideri una striscia di metallo in un circuito integrato, con dimensioni:lunghezza L =.8 [mm], Area della sezione A = 4 [µm²] (micrometri

Dettagli

Dispositivi e Tecnologie Elettroniche. Esercitazione Giunzione pn

Dispositivi e Tecnologie Elettroniche. Esercitazione Giunzione pn Dispositivi e Tecnologie Elettroniche Esercitazione Giunzione pn Esercizio 1: testo Si consideri una giunzione brusca e simmetrica con drogaggio N A N D 10 17 cm 3 sezione trasversale A 0.5 mm 2 e lati

Dettagli

Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS

Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Elettronica dei Sistemi Digitali Calcolo degli elementi parassiti in tecnologia CMOS Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it

Dettagli

Dispositivi elettronici Esperienze di laboratorio

Dispositivi elettronici Esperienze di laboratorio Dispositivi elettronici Esperienze di laboratorio Universitá degli Studi di L Aquila Massimo Lucresi Luigi Pilolli Mariano Spadaccini maggio 2002 Esperienza n. 1 Analisi della risposta in frequenza di

Dettagli

Esonero del Corso di Elettronica I 23 aprile 2001

Esonero del Corso di Elettronica I 23 aprile 2001 Esonero del Corso di Elettronica I 23 aprile 2001 1) Nell amplificatore MO di figura k=5.10-4 A/V 2, V T = 2 V, = 10K Ω, =10V, =3V. eterminare il guadagno di tensione per un segnale applicato tra gate

Dettagli

Fondamenti di Elettronica, Sez.3

Fondamenti di Elettronica, Sez.3 Fondamenti di Elettronica, Sez.3 Alessandra Flammini alessandra.flammini@unibs.it Ufficio 24 Dip. Ingegneria dell Informazione 030-3715627 Lunedì 16:30-18:30 Fondamenti di elettronica, A. Flammini, AA2018-2019

Dettagli

Il BJT Bipolar Junction Transistor: comportamento statico

Il BJT Bipolar Junction Transistor: comportamento statico Dispositivi Elettronici La il transistore giunzione bipolare PN (BJ) Il BJ Bipolar Junction ransistor: comportamento statico E costituito da due giunzioni PN polarizzate in modo diretto od inverso: Interdizione:

Dettagli

Transistor bipolare a giunzione (bjt bipolar junction transistor)

Transistor bipolare a giunzione (bjt bipolar junction transistor) Transistor bipolare a giunzione (bjt bipolar junction transistor) Il transistor e' formato da due diodi contrapposti con una regione in comune (base) B B E C N E P E N C IE IC E P E C emettitore collettore

Dettagli

Elettronica Il transistore bipolare a giunzione

Elettronica Il transistore bipolare a giunzione Elettronica Il transistore biolare a giunzione Valentino Liberali Diartimento di Fisica Università degli Studi di Milano valentino.liberali@unimi.it Elettronica Il transistore biolare a giunzione 6 maggio

Dettagli

Formulario di CIRCUITI ELETTRONICI ANALOGICI L-A

Formulario di CIRCUITI ELETTRONICI ANALOGICI L-A Formulario di CIRCUITI ELETTRONICI ANALOGICI L-A Gennaio - Marzo 2009 Identità ed equazioni relative all elettronica analogica tratti dalle lezioni del corso di Circuiti Elettronici Analogici L-A alla

Dettagli

Generatori di Corrente Continua

Generatori di Corrente Continua Generatori di Corrente Continua Maurizio Monteduro Siamo abituati a considerare i generatori come qualcosa di ideale, come un aggeggio perfetto che attinge o eroga corrente non interessandosi di come possa

Dettagli

3.1 Verifica qualitativa del funzionamento di un FET

3.1 Verifica qualitativa del funzionamento di un FET Esercitazione n. 3 Circuiti con Transistori Rilevamento delle curve caratteristiche Questa esercitazione prevede il rilevamento di caratteristiche V(I) o V2(V1). In entrambi i casi conviene eseguire la

Dettagli

ESERCIZIO Punto di riposo, R 1,R 2. Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha

ESERCIZIO Punto di riposo, R 1,R 2. Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha 1/16 ESERCIZIO 1 1.1 - Punto di riposo, R 1,R 2 Detta I C = I C1 = I C2 = 2.5mA e ipotizzando I B1 I C1,I B2 I C2, si ha V CE1 = V R E I E1 I E2 ) V 2R E I C = 12.0 V. 1) Nel punto di riposo si ha I B1

Dettagli

Nella seguente foto, possiamo vedere l'esterno di alcuni transistor:

Nella seguente foto, possiamo vedere l'esterno di alcuni transistor: IL BJT Il transistor BJT è un componente che viene utilizzato come amplificatore. Si dice amplificatore di tensione un circuito che dà in uscita una tensione più grande di quella di ingresso. Si dice amplificatore

Dettagli

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2

Elettronica II Grandezze elettriche microscopiche (parte 1) p. 2 Elettronica II Grandezze elettriche microscopiche (parte 1) Valentino Liberali Dipartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it http://www.dti.unimi.it/

Dettagli

Elettronica digitale

Elettronica digitale Elettronica digitale Componenti per circuiti logici (Cap. 3, App. A) Dispositivi elettronici per circuiti logici Diodo Transistore bipolare Transistore a effetto di campo Bipoli Componenti a 2 terminali

Dettagli

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati

Informazioni logistiche e organizzative Applicazione di riferimento. caratteristiche e tipologie di moduli. Circuiti con operazionali reazionati Elettronica per telecomunicazioni 1 Contenuto dell unità A Informazioni logistiche e organizzative Applicazione di riferimento caratteristiche e tipologie di moduli Circuiti con operazionali reazionati

Dettagli

Il Sistema Metallo Ossido Semiconduttore (MOS)

Il Sistema Metallo Ossido Semiconduttore (MOS) Il Sistema Metallo Ossido Semiconduttore (MOS) E una struttura simile ad un condensatore, con queste differenze: A polarizzazione nulla la concentrazione dei portatori nel semiconduttore è assai minore

Dettagli

Struttura del condensatore MOS

Struttura del condensatore MOS Struttura del condensatore MOS Primo elettrodo - Gate: realizzato con materiali a bassa resistività come metallo o silicio policristallino Secondo elettrodo - Substrato o Body: semiconduttore di tipo n

Dettagli

Il diodo come raddrizzatore (1)

Il diodo come raddrizzatore (1) Il diodo come raddrizzatore () 220 V rms 50 Hz Come trasformare una tensione alternata in una continua? Il diodo come raddrizzatore (2) 0 Vγ La rettificazione a semionda Il diodo come raddrizzatore (3)

Dettagli

PUNTO DI SATURAZIONE TRANSISTOR BJT

PUNTO DI SATURAZIONE TRANSISTOR BJT Cristiano Zambon (obiuan) PUNTO DI SATURAZIONE TRANSISTOR BJT 25 November 2013 Introduzione Qualche giorno fa, facendo una lezione ad alcuni studenti sulla maglia standard di polarizzazione di un BJT,

Dettagli

ESERCIZIO 1. Dati due diodi a giunzione pn aventi le seguenti caratteristiche:

ESERCIZIO 1. Dati due diodi a giunzione pn aventi le seguenti caratteristiche: ESERCIZIO 1 Dati due diodi a giunzione pn aventi le seguenti caratteristiche: DIODO A: Si, 10 18 cm 3,N D 10 15 cm 3 DIODO B: Ge, 10 18 cm 3,N D 10 15 cm 3 Valutare, giustificando quantitativamente le

Dettagli

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE

AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CE: AMPLIFICATORI INVERTENTI A SINGOLO TRANSISTORE configurazione CS: G. Martines 1 ANALISI IN CONTINUA Circuito di polarizzazione a quattro resistenze. NOTE: I parametri del modello a piccolo

Dettagli

ESERCIZIO 1. Soluzione

ESERCIZIO 1. Soluzione ESERCIZIO 1 Soluzione Per stabilire quanto deve valere Rx, dato che ho la tensione massima che deve cadere ai suoi capi (20), è sufficiente calcolare quanto vale la corrente che la attraversa. Questa corrente

Dettagli

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame

ν S R B2 Prova n 1: V CC R C R B1 C C R S C S C L out R L Prove d'esame Prova n 1: Per il seguente circuito determinare: 1. R B1, R E tali che: I C = 0,5 ma; V E = 5 V; 2. Guadagno di tensione a piccolo segnale v out /v s alle medie frequenze; 3. Frequenza di taglio inferiore;

Dettagli

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 7. a.a

ELETTROTECNICA ED ELETTRONICA (C.I.) Modulo di Elettronica. Lezione 7. a.a 32586 - ELETTROTENIA ED ELETTRONIA (.I.) Modulo di Elettronica Lezione 7 a.a. 2010-2011 Bipolar Junction Transistor (BJT) Il BJT è realizzato come una coppia di giunzioni PN affiancate. Esistono due categorie

Dettagli

V [V]

V [V] ESERCIZIO 1 Si consideri il seguente grafico, corrispondente ad una caratteristica di un diodo pn non ideale. Si valuti: La corrente di saturazione inversa Il coefficiente di idealità Dire inoltre se questa

Dettagli

Soluzione del compito di Elettronica e di Elettronica Digitale del 15 gennaio 2003

Soluzione del compito di Elettronica e di Elettronica Digitale del 15 gennaio 2003 Soluzione del compito di Elettronica e di Elettronica Digitale del 5 gennaio 2003 Esercizio Calcolo di R 5, R 6 e del punto di lavoro dei transistori Per l analisi del punto di riposo prendiamo in considerazione

Dettagli

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo

Esercitazione 3. Biagio Provinzano Aprile Esercizio 1. I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo Esercitazione 3 Biagio Provinzano Aprile 005 Esercizio I BJT npn hanno la stessa area e la stessa corrente di saturazione, consideriamo V A, β = 00, V BE = 0.7V in zona attiva ed infine Cπ = C µ =0pF.

Dettagli

Elettronica I Il transistore bipolare a giunzione

Elettronica I Il transistore bipolare a giunzione Elettronica I Il transistore biolare a giunzione Valentino Liberali Diartimento di Tecnologie dell Informazione Università di Milano, 26013 Crema e-mail: liberali@dti.unimi.it htt://www.dti.unimi.it/ liberali

Dettagli

1 = 2 1 = 2 W L W L MOSFET ENHANCEMENT A CANALE P D I D > 0 B V SD > 0 D I D < 0 B V DS < 0 V SG > 0 S V GS < 0. Regione di interdizione

1 = 2 1 = 2 W L W L MOSFET ENHANCEMENT A CANALE P D I D > 0 B V SD > 0 D I D < 0 B V DS < 0 V SG > 0 S V GS < 0. Regione di interdizione MOFE ENHANCEMEN A CANALE P MOFE a canale p hanno una struttura analoga a quelli a canale n, con la differenza che i tipi di semiconduttore sono scambiati: ora source e drain sono realizzati con semiconduttori

Dettagli

POLITECNICO DI MILANO

POLITECNICO DI MILANO POLITECNICO DI MILANO www.polimi.it ELETTRONICA per ingegneria BIOMEDICA prof. Alberto TOSI Sommario Transistore MOSFET Struttura Equazioni caratteristiche Curve caratteristiche Funzionamento come amplificatore

Dettagli

Amplificatore monotransistore

Amplificatore monotransistore Elettronica delle Telecomunicazioni Esercitazione 1 Amplificatore monotransistore Rev 1 980305 DDC Rev 3 000328 DDC Specifiche Progettare un amplificatore con un transistore secondo le seguenti specifiche:

Dettagli

Esercitazione del 21 Maggio 2008

Esercitazione del 21 Maggio 2008 Esercitazione del 1 Maggio 008 Es. 1 - pmos in configurazione drain comune 1) Con riferimento al circuito in Fig. 1, determinare le regioni di funzionamento del transistore Mp nel piano V out (V in ).

Dettagli

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009

Corso di ELETTRONICA II modulo. Ingegneria Clinica, Ingegneria Biomedica e Ingegneria dei Sistemi. Prof. Domenico Caputo. Esame del 19 febbraio 2009 Esame del 19 febbraio 2009 Nel circuito di figura Is è un generatore di corrente con l andamento temporale riportato nel grafico. Determinare l'evoluzione temporale della V out e disegnarne il grafico

Dettagli

Le caratteristiche del BJT

Le caratteristiche del BJT La caratteristica del BJT.doc! rev. 1 del 24/06/2008 pagina 1 di 8 LE CARATTERISTICHE DEL BJT 1 Montaggi fondamentali 1 Montaggio ad emettitore comune 1 Montaggio a collettore comune 3 Montaggio a base

Dettagli

Le caratteristiche del BJT

Le caratteristiche del BJT LE CARATTERISTICHE DEL BJT 1 Montaggi fondamentali 1 Montaggio ad emettitore comune 1 Montaggio a collettore comune 3 Montaggio a base comune 4 Caratteristiche ad emettitore comune 4 Caratteristiche di

Dettagli

Stadi Amplificatori di Base

Stadi Amplificatori di Base Stadi Amplificatori di Base Biagio Provinzano Marzo 2005 Ipotesi di lavoro: i) Transistor npn acceso ed in zona attiva v BE 1 0.7V e v C >v B ii) Consideriamo un classico schema di polarizzazione con quattro

Dettagli

Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = Ñ 2»Î τ p = 10 6 S = 1

Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = Ñ 2»Î τ p = 10 6 S = 1 Ì ÈÊÇÎ Ë ÊÁÌÌ Ä ¾ ÒÒ Ó ¾¼½ Ë Ê Á ÁÇ ½ Ì µ Ä ÙÒÞ ÓÒ n + p Ò ÙÖ N A = 10 16 Ñ 3 µ n = 0.1 Ñ 2»Î τ n = 10 6 µ p = 0.045 Ñ 2»Î τ p = 10 6 S = 1 ÑÑ 2 µ Ø ÒÞ ÙÒÞ ÓÒ ¹ÓÒØ ØØÓ a = 30 µñ ÐÐÙÑ Ò Ø ÙÒ ÓÖÑ Ñ ÒØ ÓÒ

Dettagli

Dispositivi elettronici. Il transistor bipolare a giunzione (bjt( bjt)

Dispositivi elettronici. Il transistor bipolare a giunzione (bjt( bjt) Dispositivi elettronici l transistor bipolare a giunzione (bjt( bjt) Sommario l transistor bipolare a giunzione (bjt) come è fatto un bjt principi di funzionamento (giunzione a base corta) effetto transistor

Dettagli

Approfondimenti a Arduino da zero a maker

Approfondimenti a Arduino da zero a maker Approfondimenti a Arduino da zero a maker FM 1 Partitore di tensione Il partitore di tensione è un circuito formato da due o più resistenze poste in serie 1, anche se per semplicità considereremo il caso

Dettagli