Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 07 Maggio 2018

Dimensione: px
Iniziare la visualizzazioe della pagina:

Download "Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 07 Maggio 2018"

Transcript

1 Soluzione Compitino Fisica Generale I In. Elettronica e Telecomunicazioni 07 Maio 018 Esercizio 1 1) Sulla massa m 1 aiscono la sua forza peso m 1, la forza di tensione T 1 e la reazione normale del blocco 1, come in Fiura a sinistra. La forza peso è esterna mentre le altre sono interne al sistema formato dal blocco e dalle tre masse. Sulla massa m aiscono la sua forza peso m, le due forze di tensione T 1 e T e la reazione normale del blocco, come in Fiura al centro. La forza peso è esterna mentre le altre sono interne al sistema. Infine per la massa m 3 la situazione è analoa a m 1 : su m 3 aiscono la sua forza peso m 3, la forza di tensione T e la reazione normale del blocco 3 come in Fiura a destra. La forza peso è esterna mentre le altre sono interne al sistema. Si noti che essendo tutte le forze peso (inclusa quella del blocco!) dirette verticalmente, l unica forza esterna al sistema aente in direzione orizzontale è la forza F, che quindi determina l accelerazione del centro di massa a CM. ) Se le tre masse sono ferme rispetto al blocco, le loro accelerazioni sono tutte euali all accelerazione A del blocco. Possiamo quindi scrivere le equazioni del moto per le tre masse nella forma: m 1 a 1 = m 1 A = m 1 + T { m a = m A = m + T + T 1 + (1) m 3 a 3 = m 3 A = m 3 + T + 3 in cui le inconite sono le reazioni vincolari, le tensioni e la massa m 3. Iniziamo dall equazione del moto per m 1, scomponendola in direzione orizzontale e verticale ricordando che α = π/ sin α = cos α = / e A = /: { m 1A = m 1 = (T 1 1 ) 0 = (T ) m 1 () Sommando le due equazioni del sistema () si ottiene: m 1 = (T 1 1 ) + (T ) m 1 = T 1 m 1 T 1 = 3m 1 = 3 m 1 (3)

2 Sottraendo le stesse equazioni si ottiene invece: m 1 = (T 1 1 ) (T ) + m 1 = 1 + m 1 1 = m 1 = m 1 () Scomponendo in direzione orizzontale e verticale l equazione del moto per m 3 si ottiene: { m 3A = m 3 = ( 3 T ) 0 = (T + 3 ) m 3 (5) Si può notare che il sistema (5) è analoo al sistema () con le sostituzioni: T 1 3, 1 T, m 1 m 3 ; la soluzione del sistema (5) si determina quindi immediatamente da quella del sistema () (equazioni (3) e ()) tenendo conto di tali sostituzioni: 3 = 3 m 3 (6) T = m 3 (7) con la (6) e la (7) che sono le analohe rispettivamente della (3) e della () ed in cui ricordiamo che m 3 è inota. Scomponendo infine in direzione orizzontale e verticale l equazione del moto per m si ottiene: { m A = m = (T T 1 ) 0 = m (8) Dalla prima equazione si ricava immediatamente: T = m + T 1 = m + 3 m 1 (9) Eualiando infine la (7) e la (9) si ha: m + 3 m 1 = m 3 m 3 = 3m 1 + m = 5.83 k (10) 3) Poiché il valore di m 3 non corrisponde ad una situazione di equilibrio nel sistema di quiete del blocco, le tre masse sono in moto relativo rispetto al blocco stesso. Tuttavia, dato che la corda è inestensibile, il modulo delle tre accelerazioni relative a 1, a e a 3 deve essere euale. Inoltre a è orizzontale, a 1 è diretto a 5 con componenti verticale ed orizzontale entrambe positive e a 3 è diretto a 5 con componente orizzontale positiva e componente verticale neativa. Applicando la lee di trasformazione delle accelerazioni possiamo riscrivere il sistema (1) come seue: m 1 a 1 = m 1 (a 1 + A ) = m 1 + T { m a = m (a + A ) = m + T + T 1 + (11) m 3 a 3 = m 3 (a 3 + A ) = m 3 + T + 3

3 in cui le espressioni delle tensioni e delle reazioni sono a priori diverse da quelle ricavate in precedenza, con l eccezione di dato che il moto della massa m in verticale è nullo esattamente come prima. Tenendo conto delle direzioni delle accelerazioni relative ed indicando con a il loro modulo comune si ha: m 1 [(a + A) x + a y ] = m 1y + (T 1 1 ) x + (T ) y m (a + A)x = (T T 1 )x + ( m + )y m { 3 [(a + A) x a y ] = m 3y + ( 3 T ) x + ( 3 + T ) y (1) dove x e y sono, come usuale, l asse orizzontale e quello verticale. Le equazioni per m 1 diventano quindi: { m 1 ( a + A) = m 1 ( a + ) = (T 1 1 ) m 1a = (T 1 1 ) m 1 m 1 a = (T ) m 1 (13) (T ) m 1 (T 1 1 ) + m 1 (T ) m 1 + (T 1 1 ) m 1 Invece per m 3 si ha: = 1 m 1 = T 1 3m 1 = 0 1 = m 1 (1) = m 1 a T 1 = m 1 (a + 3 ) (15) { m 3 ( a + A) = m 3 ( a + ) = ( 3 T ) m 3a = ( 3 T ) m 3 m 3 a = (T + 3 ) + m 3 (16) (T + 3 ) + m 3 ( 3 T ) + m 3 (T + 3 ) + m 3 + ( 3 T ) m 3 Infine per m si ricava: = 3 + 3m 3 = T + m 3 = 0 3 = 3m 3 (17) = m 3 a T = m 3 ( a + ) (18) m (a + A) = m (a + ) = (T T 1 ) (19) m + = 0 (0) Combinando la (15), la (18) e la (19) si determina il valore di a : m a = (T T 1 ) m = m 3 ( a + ) m 1 (a + 3 ) m a (m 1 + m + m 3 ) = (m 3 3m 1 m ) a = (m 3 3m 1 m m 1 +m +m 3 ) = 1.3 m/s (1) Le forze di tensione si ottenono per sostituzione nella (15) e nella (18): T 1 = m 1 (a + 3 ) = 11.8 N; T = m 3 ( a + ) =. N ()

4 ) La forza F è l unica forza esterna al sistema in direzione orizzontale per cui (attenzione a non scordarsi il blocco di massa m!): F x = F = (m 1 + m + m 3 + m)a CM = (m 1 a 1x + m a x + m 3 a 3x + ma) = m 1 ( a + A) + m (a + A) + m 3 ( a + A) + ma = a ( m 1 + m + m 3) + (m 1 + m + m 3 + m) = 33.5 N (3) Esercizio 1) Il momento di inerzia del disco con attaccata la massa m 1 si ottiene dalla relazione: I = I disco + m 1 d = M + m 1d () Consideriamo come sistema il disco, le masse m 1 e m e la terra (per descrivere l interazione ravitazionale attraverso l eneria potenziale). L unica forza esterna presente è la reazione del vincolo dell asse del disco che tuttavia non compie lavoro per cui l eneria meccanica del sistema si conserva. Scriviamo la conservazione dell eneria considerando come istante iniziale quello in cui il sistema non si è ancora messo in moto e come istante finale quello in cui la corda si è srotolata di una lunhezza h: E i = K i + U i = m h + 0; E f = K f + U f = 1 Iω + 1 m V + 0 (5) E i = E f (6) Poiché la fune è inestensibile si ha: V = ω, per cui si ottiene: ω = m h I+m (7) ) Le forze aenti sulla massa m sono la tensione del filo che indichiamo con T e la forza peso. Indichiamo con a l accelerazione di m : T + m = m a (8) Considerando un asse z verticale e diretto come in fiura verso l alto la (8) diventa: T m = m a = m α (9) in quanto la corda non slitta sulla carrucola. Per il disco possiamo utilizzare la seconda equazione cardinale: l unica forza con momento non nullo rispetto al polo O centro del disco è la tensione del filo, per cui si ha: Λ T = Iα T = Iα T = Iα (30) Utilizzando la (9) e la (30) si ottiene: α = m M + m 1d + m M + m 1 d Iα ; T = = m (31) M + m 1 d + m

5 L accelerazione anolare e la tensione non dipendono da t 1. Per determinare la lunhezza del filo l(t 1 ) rispetto alla posizione iniziale si può utilizzare la relazione: l(t 1 ) = θ(t 1 ) dove: θ(t 1 ) = 1 αt 1 (3) l(t 1 ) = m M + m 1 d + m t 1 (33) 3) Il chiodo è l unico oetto che può esercitare una forza nel piano del disco e quindi deve fornire una forza in rado di mantenere in rotazione la massa m 1. Le componenti tanenziale e radiale della forza che il chiodo esercita su m 1 si ottenono quindi scrivendo la seconda lee della dinamica per la massa m 1. Conoscendo le componenti tanenziale e radiale dell accelerazione all istante t 1 si ha: F T = m 1 αd; F = m 1 ( ω d) (3) dove i versi dei versori radiale e tanenziale sono rispettivamente uscente dal disco ed antiorario. ) Per trovare la velocità del disco e quindi della massa m quando il chiodo si rompe si può imporre la conservazione del momento anolare luno l asse z (L z ), considerando come polo il centro del disco: infatti non sono presenti forze impulsive che possano alterare il momento anolare, per cui L z non cambia durante l intervallo di tempo in cui il chiodo si rompe. Detti quindi I e ω il momento d inerzia del disco e la velocità anolare del disco dopo la rottura del chiodo otteniamo dalla conservazione di L z : Iω = I ω + m 1 d ω = (I + m 1 d )ω = Iω ω = ω (35) Quindi il disco subito dopo la rottura del chiodo ruota con la stessa velocità anolare che aveva immediatamente prima della rottura: ω = ω(t 1 ) = αt 1 (36) Dopo l istante t 1 cambia però l accelerazione anolare che diventa: α = T I = m M +m = m ( M +m ) (37) in cui T è la nuova tensione del filo, leata a α da una relazione analoa alla (30). All istante t la lunhezza di corda che si è srotolata è quindi: l(t ) = l(t 1 ) + θ(t ) = l(t 1 ) + ( 1 α (t t 1 ) + ω(t 1 )(t t 1 )) (38)

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R

E i = mgh 0 = mg2r mv2 = mg2r mrg = E f. da cui si ricava h 0 = 5 2 R Esercizio 1 Un corpo puntiforme di massa m scivola lungo una pista liscia di raggio R partendo da fermo da un altezza h rispetto al fondo della pista come rappresentato in figura. a) Determinare il valore

Dettagli

Soluzioni della prima prova di accertamento Fisica Generale 1

Soluzioni della prima prova di accertamento Fisica Generale 1 Corso di Laurea in Ineneria Biomedica, dell Informazione, Elettronica e Informatica Canale 2 (S. Amerio, L. Martucci) Padova, 20 aprile 2013 Soluzioni della prima prova di accertamento Fisica Generale

Dettagli

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009

Fisica Generale I (primo modulo) A.A , 9 febbraio 2009 Fisica Generale I (primo modulo) A.A. 2008-09, 9 febbraio 2009 Esercizio 1. Due corpi di massa M 1 = 10kg e M 2 = 5Kg sono collegati da un filo ideale passante per due carrucole prive di massa, come in

Dettagli

Figura 1: Il corpo rigido ed il sistema solidale

Figura 1: Il corpo rigido ed il sistema solidale Esercizio. onsideriamo il sistema mostrato in fiura, costituito da due aste A e B, di uual massa b ed uual lunhezza L, vincolate con cerniera nell estremo comune ed i cui estremi A e B sono vincolati a

Dettagli

Soluzione del Secondo Esonero A.A , del 28/05/2013

Soluzione del Secondo Esonero A.A , del 28/05/2013 Soluzione del Secondo Esonero A.A. 01-013, del 8/05/013 Primo esercizio a) Sia v la velocità del secondo punto materiale subito dopo l urto, all inizio del tratto orizzontale con attrito. Tra il punto

Dettagli

g m Compito di Fisica Generale di Ingegneria CIVILE 27 gennaio 2010.

g m Compito di Fisica Generale di Ingegneria CIVILE 27 gennaio 2010. Compito di Fisica Generale di Ineneria CIVILE 7 ennaio 010. Esercizio 1: Due ruote cilindriche omoenee identiche di massa m = 0.5 k e raio R = 10 cm sono saldate ad un asse cilindrico coassiale di massa

Dettagli

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura:

SOLUZIONE Il diagramma delle forze che agiscono sul corpo è mostrata in figura: Esercizio 1 Un blocco di massa M inizialmente fermo è lasciato libero di muoversi al tempo t = 0 su un piano inclinato scabro (µ S e µ D ). a) Determinare il valore limite di θ (θ 0 ) per cui il blocco

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019

Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Soluzione degli esercizi dello scritto di Meccanica del 08/07/2019 Esercizio 1 Un asta rigida di lunghezza L = 0.8 m e massa M è vincolata nell estremo A ad un perno liscio ed è appesa all altro estremo

Dettagli

Esercizio (tratto dal problema 7.52 del Mazzoldi 2)

Esercizio (tratto dal problema 7.52 del Mazzoldi 2) 1 Esercizio (tratto dal problema 7.5 del Mazzoldi ) Un doppio piano è costituito da due rampe contrapposte, di materiali diversi, inclinate ciascuna di un angolo rispetto all orizzontale. Sulla rampa di

Dettagli

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno.

M p. θ max. P v P. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Esercizi di Meccanica (M6) Consegna: giovedì 3 giugno. Problema 1: Si consideri un corpo rigido formato da una sfera omogenea di raggio R e massa M 1 e da una sbarretta omogenea di lunghezza L, massa M

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B Compito di Fisica Ingegneria elettrica e gestionale Soluzioni fila B Massimo Vassalli 9 Gennaio 008 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati sono

Dettagli

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019

Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Soluzione degli esercizi dello scritto di Meccanica del 17/06/2019 Esercizio 1 Un corpo rigido è formato da un asta di lunghezza L = 2 m e massa trascurabile, ai cui estremi sono fissati due corpi puntiformi,

Dettagli

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti];

4. Disegnare le forze che agiscono sull anello e scrivere la legge che determina il moto del suo centro di massa lungo il piano di destra [2 punti]; 1 Esercizio Una ruota di raggio e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

mg 2a 1 tan 2 θ = 3 8 m (6)

mg 2a 1 tan 2 θ = 3 8 m (6) Soluzioni Esercizio 1. All equilibrio la forza elastica, la forza peso e la reazione vincolare del piano si bilanciano: F el + P + R n = 0 (1) Se la massa si trova in A, proiettando lungo la direzione

Dettagli

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 26 settembre 2002 Soluzioni A = B =

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 26 settembre 2002 Soluzioni A = B = Università di Pavia Facoltà di Ineneria Esame di Meccanica Razionale ppello del 6 settembre 00 Soluzioni D1. Un sistema dinamico ha due radi di libertà ed è soetto a forze attive conservative. La laraniana

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A Compito di Fisica Ingegneria elettrica e gestionale Soluzioni fila A Massimo Vassalli 9 Aprile 008 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati sono

Dettagli

Soluzione della prova scritta di Fisica 1 del 2/03/2010

Soluzione della prova scritta di Fisica 1 del 2/03/2010 Soluzione della prova scritta di Fisica 1 del 2/03/2010 1 Quesito y T2 N 0000000000 1111111111 m T1 x T 2 m B B T1 m Figura 1: Quesito 2 L accelerazione della massa m (che coincide in modulo con l accelerazione

Dettagli

Esercitazioni del 09/06/2010

Esercitazioni del 09/06/2010 Esercitazioni del 09/06/2010 Problema 1) Un anello di massa m e di raggio r rotola, senza strisciare, partendo da fermo, lungo un piano inclinato di un angolo α=30 0. a) Determinare la legge del moto.

Dettagli

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Soluzione Compito di isica Generale I Ing. Elettronica e delle Telecomunicazioni 12/01/2018 Esercizio 1 1) Scriviamo le equazioni del moto della sfera sul piano inclinato. Le forze agenti sono il peso

Dettagli

Esercizio n 1. = 200 g t = 0 sistema in quiete a)? a 1. = 100 g m 2. a 2 b)? acc. angolare c)? T 1. e T 2

Esercizio n 1. = 200 g t = 0 sistema in quiete a)? a 1. = 100 g m 2. a 2 b)? acc. angolare c)? T 1. e T 2 Esercizio n 1 Su un disco di massa M e raggio R è praticata una sottile scanalatura di raggio r che non altera il suo momento d'inerzia. Al disco, che può ruotare attorno ad un asse orizzontale passante

Dettagli

ESERCIZIO 1 DATI NUMERICI. COMPITO A: m 1 = 2 kg m 2 = 6 kg θ = 25 µ d = 0.18 COMPITO B: m 1 = 2 kg m 2 = 4 kg θ = 50 µ d = 0.

ESERCIZIO 1 DATI NUMERICI. COMPITO A: m 1 = 2 kg m 2 = 6 kg θ = 25 µ d = 0.18 COMPITO B: m 1 = 2 kg m 2 = 4 kg θ = 50 µ d = 0. ESERCIZIO 1 Due blocchi di massa m 1 e m sono connessi da un filo ideale libero di scorrere attorno ad una carrucola di massa trascurabile. I due blocchi si muovono su un piano inclinato di un angolo rispetto

Dettagli

ESERCIZIO 1 SOLUZIONI

ESERCIZIO 1 SOLUZIONI - ESERCIZIO - Un corpo di massa m = 00 g si trova su un tavolo liscio. Il corpo m è mantenuto inizialmente fermo, appoggiato ad una molla di costante elastica k = 00 N/m, inizialmente compressa. Ad un

Dettagli

Nota: per la risoluzione si mostrino chiaramente i diagrammi delle forze per il blocchetto e per la lastra

Nota: per la risoluzione si mostrino chiaramente i diagrammi delle forze per il blocchetto e per la lastra FISICA GENERALE I - Sede di Spezia - Prova A di Meccanica del 15/02/2016 ME 1 Un blocchetto di massa =5.0 è appoggiato sopra una di massa =10 e tra e blocchetto vi è attrito con coefficiente statico =0.90

Dettagli

Meccanica Primo compito d'esonero B 4 Maggio 2011

Meccanica Primo compito d'esonero B 4 Maggio 2011 Esercizio n. 1 Si consideri la uida indicata in fiura. Nel tratto BC, di lunhezza L vi è attrito con coefficiente di attrito dinamico µ d ; altrove non vi è attrito. Il tratto CD è un arco di circonferenza

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEOSPAZIALI Tema d esame 5-07 - 014 M d, J d, M O A v A, F Esercizio 1. Il sistema in fiura è posto nel piano verticale ed è costituito da una disco di massa M d, momento d inerzia

Dettagli

VII ESERCITAZIONE. Soluzione

VII ESERCITAZIONE. Soluzione VII ESERCITAZIONE 1. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria. Calcoliamo

Dettagli

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2

Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A Soluzioni proposte per il Foglio di Esercizi n. 2 Fisica I - Ing. Sicurezza e Protezione, prof. Schiavi A.A. 2004-2005 Soluzioni proposte per il Foglio di Esercizi n. 2 2.1. Il proiettile ed il sasso cadono lungo y per effetto della accelerazione di gravità

Dettagli

VII ESERCITAZIONE - 29 Novembre 2013

VII ESERCITAZIONE - 29 Novembre 2013 VII ESERCITAZIONE - 9 Novembre 013 I. MOMENTO DI INERZIA DEL CONO Calcolare il momento di inerzia di un cono omogeneo massiccio, di altezza H, angolo al vertice α e massa M, rispetto al suo asse di simmetria.

Dettagli

Soluzione della prova scritta di Fisica 1 del 12/01/2010

Soluzione della prova scritta di Fisica 1 del 12/01/2010 Soluzione della prova scritta di Fisica 1 del 12/01/2010 1 Quesito La soluzione alla prima domanda del quesito si ricava imponendo che l energia potenziale complessiva associata al sistema meccanico abbia

Dettagli

Fisica 1 Anno Accademico 2011/2012

Fisica 1 Anno Accademico 2011/2012 Matteo Luca Ruggiero DISAT@Politecnico di Torino Anno Accademico 2011/2012 (7 Maggio - 11 Maggio 2012) Sintesi Abbiamo introdotto riformulato il teorema dell energia cinetica in presenza di forze non conservative,

Dettagli

Problema (tratto dal 7.42 del Mazzoldi 2)

Problema (tratto dal 7.42 del Mazzoldi 2) Problema (tratto dal 7.4 del azzoldi Un disco di massa m D e raggio R ruota attorno all asse verticale passante per il centro con velocità angolare costante ω. ll istante t 0 viene delicatamente appoggiata

Dettagli

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013

POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a I a prova in itinere, 10 maggio 2013 POLITECNICO DI MILANO Facoltà di Ingegneria Industriale Fondamenti di Fisica Sperimentale, a.a. 2012-13 I a prova in itinere, 10 maggio 2013 Giustificare le risposte e scrivere in modo chiaro e leggibile.

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B Massimo Vassalli 26 Marzo 2008 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati sono

Dettagli

Seminario didattico Ingegneria Elettronica. Lezione 6: Dinamica del Corpo Rigido

Seminario didattico Ingegneria Elettronica. Lezione 6: Dinamica del Corpo Rigido Seminario didattico Ingegneria Elettronica Lezione 6: Dinamica del Corpo Rigido 1 Esercizio n 1 Su un disco di massa M e raggio R è praticata una sottile scanalatura di raggio r che non altera il suo momento

Dettagli

Nome Cognome Numero di matricola Coordinata posizione

Nome Cognome Numero di matricola Coordinata posizione Nome Cognome Numero di matricola Coordinata posizione Secondo compito di Fisica Generale 1 + Esercitazioni, a.a. 2017-2018 3 Luglio 2018 =====================================================================

Dettagli

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio:

Poichési conserva l energia meccanica, il lavoro compiuto dal motore è pari alla energia potenziale accumulata all equilibrio: Meccanica 24 Aprile 2018 Problema 1 (1 punto) Un blocco di mass M=90 kg è attaccato tramite una molla di costante elastiìca K= 2 10 3 N/m, massa trascurabile e lunghezza a riposo nulla, a una fune inestensibile

Dettagli

69.8/3 = 23.2 = 23 automobili

69.8/3 = 23.2 = 23 automobili Meccanica 19 Aprile 2017 Problema 1 (1 punto) Una moto salta una fila di automobili di altezza h= 1.5 m e lunghezza l=3m ciascuna. La moto percorre una rampa che forma con l orizzontale un angolo = 30

Dettagli

Prof. Francesco Michelotti. rispetto all orizzontale per spostare una cassa di massa M inizialmente

Prof. Francesco Michelotti. rispetto all orizzontale per spostare una cassa di massa M inizialmente Esame di Fisica ESAME per Ineneria SCRIO DI Elettronica FISICA GENERALE e delle elecomunicazioni DEL 9 FERAIO (Parte 05 I): -0-07 Prof. Francesco Michelotti Vadecum: Nello svolimento dei problemi è indispensabile

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Esercizio (tratto dal problema 7.36 del Mazzoldi 2)

Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Esercizio (tratto dal problema 7.36 del Mazzoldi 2) Un disco di massa m D = 2.4 Kg e raggio R = 6 cm ruota attorno all asse verticale passante per il centro con velocità angolare costante ω = 0 s. ll istante

Dettagli

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 )

(trascurare la massa delle razze della ruota, e schematizzarla come un anello; momento d inerzia dell anello I A = MR 2 ) 1 Esercizio Una ruota di raggio R e di massa M può rotolare senza strisciare lungo un piano inclinato di un angolo θ 2, ed è collegato tramite un filo inestensibile ad un blocco di massa m, che a sua volta

Dettagli

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017

Corso Meccanica Anno Accademico 2016/17 Scritto del 24/07/2017 Esercizio n. 1 Un punto materiale di massa m è vincolato a muoversi sotto l azione della gravità su un vincolo bilaterale (vedi figura) formato da un arco di circonferenza, AB, sotteso ad un angolo di

Dettagli

Calcolare la tensione T della corda e la reazione vincolare N in C.

Calcolare la tensione T della corda e la reazione vincolare N in C. 1 Esercizio Un cilindro di raggio R = 20 cm e massa m = 150 Kg è appoggiato su un piano inclinato di un angolo θ = 30 o ed è tenuto fermo da una corda tesa orizzontalmente; l attrito statico tra il cilindro

Dettagli

Esercitazione N.3 Dinamica del corpo rigido

Esercitazione N.3 Dinamica del corpo rigido Esercitazione N.3 Dinamica del corpo rigido Questi esercizi sono sulle lezioni dalla 12 alla 18 Relativo alla lezione: Rotazioni rigide attorno ad un asse fisso Rotazioni rigide attorno ad un asse fisso

Dettagli

SOLUZIONE a.-d. Iniziamo a tracciare il diagramma delle forze che agiscono su ogni corpo, come richiesto al punto d.

SOLUZIONE a.-d. Iniziamo a tracciare il diagramma delle forze che agiscono su ogni corpo, come richiesto al punto d. Esercizio 1 Due blocchi di ugual massa m 1 = m sono collegati ad un filo ideale lungo l. Inizialmente, i due corpi sono mantenuti fermi e in contatto tra loro su un piano inclinato di θ con il quale i

Dettagli

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2)

Esercizio (tratto dal Problema 4.24 del Mazzoldi 2) 1 Esercizio (tratto dal Problema 4.4 del Mazzoldi ) Due masse uguali, collegate da un filo, sono disposte come in figura. L angolo vale 30 o, l altezza vale 1 m, il coefficiente di attrito massa-piano

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila A Massimo Vassalli 1 Dicembre 007 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati

Dettagli

Prova in itinere di Fisica (I modulo) Scienze e Tecnologie dell Ambiente. Soluzioni

Prova in itinere di Fisica (I modulo) Scienze e Tecnologie dell Ambiente. Soluzioni Prova in itinere di Fisica (I modulo) Scienze e Tecnologie dell Ambiente 30 Novembre 2007 Soluzioni A) a=2at = 24 m/s 2. a m = v(t 1 + t) v(t 1 ) t = 24.6 m/s 2 3) B) s(t 1 ) = s 0 + t1 0 (At 2 + B)dt

Dettagli

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 26 febbraio 2004 Soluzioni: parte II

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 26 febbraio 2004 Soluzioni: parte II Università di Pavia Facoltà di Ineneria Esame di Meccanica Razionale ppello del 26 febbraio 2004 Soluzioni: parte II Q1. Un corpo è formato da due aste omoenee:, di massa m e lunhezza 4l, e, di massa m

Dettagli

Soluzione Primo Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 30/04/2019

Soluzione Primo Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 30/04/2019 Soluzione Primo Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni //19 Esercizio 1 1) Sul proiettile agiscono la forza di gravità mg e la reazione del piatto sul proiettile, mentre sul piatto

Dettagli

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1

Esame di Fisica Data: 18 Febbraio Fisica. 18 Febbraio Problema 1 Fisica 18 Febbraio 2013 ˆ Esame meccanica: problemi 1, 2 e 3. ˆ Esame elettromagnetismo: problemi 4, 5 e 6. Problema 1 Un corpo di massa M = 12 kg, inizialmente in quiete, viene spinto da una forza di

Dettagli

Dinamica del punto materiale: problemi con gli oscillatori.

Dinamica del punto materiale: problemi con gli oscillatori. Dinamica del punto materiale: problemi con gli oscillatori. Problema: Una molla ideale di costante elastica k = 300 Nm 1 e lunghezza a riposo l 0 = 1 m pende verticalmente avendo un estremità fissata ad

Dettagli

Meccanica 13 Aprile 2015

Meccanica 13 Aprile 2015 Meccanica 3 Aprile 25 Problema (due punti) Due corpi di massa m = kg e m 2 =8 kg sono collegati da una molla di costante elastica K= N/m come in figura. Al corpo m è applicata una forza F=56 N. Trovare

Dettagli

Soluzione Secondo Compitino Fisica Generale I Ing. Elettronica e TLC 31/05/2019

Soluzione Secondo Compitino Fisica Generale I Ing. Elettronica e TLC 31/05/2019 Soluzione Secondo Compitino Fisica Generale I Ing. Elettronica e TLC 31/05/019 Esercizio 1 1) Ricordiamo innanzitutto che in un conduttore bisogna sempre identificare una regione interna, in cui il campo

Dettagli

Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto

Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problemi aggiuntivi sulla Dinamica dei Sistemi di punti materiali: A) Impulso + conservazione quantità di moto Problema n. 1: Un carro armato, posto in quiete su un piano orizzontale, spara una granata

Dettagli

Esercizio 1 Meccanica del Punto

Esercizio 1 Meccanica del Punto Esercizio 1 Meccanica del Punto Una molla di costante elastica k e lunghezza a riposo L 0 è appesa al soffitto di una stanza di altezza H. All altra estremità della molla è attaccata una pallina di massa

Dettagli

Il moto `e con accelerazione costante, per percorrere la distanza L=1m partendo avremo:

Il moto `e con accelerazione costante, per percorrere la distanza L=1m partendo avremo: Problema 1: Nel sistema mostrato nella figura, al primo corpo di massa = 1kg, che scende lungo il piano inclinato di un angolo, viene applicata una forza frenante F=2N; mentre il secondo di massa = 2kg

Dettagli

Seminario didattico Ingegneria Elettronica. Lezione 3: Dinamica del Corpo Rigido

Seminario didattico Ingegneria Elettronica. Lezione 3: Dinamica del Corpo Rigido Seminario didattico Ingegneria Elettronica Lezione 3: Dinamica del Corpo Rigido Esercizio n 1 Un cilindro di raggio R e massa M = 2 Kg è posto su un piano orizzontale. Attorno al cilindro è avvolto un

Dettagli

Si assuma per l intensità dell accelerazione gravitazionale sulla superficie terrestre il valore g = 9.81 ms 2.

Si assuma per l intensità dell accelerazione gravitazionale sulla superficie terrestre il valore g = 9.81 ms 2. Compito n 20 Nome Cognome Numero di matricola Compito di Fisica Generale 1 + Esercitazioni del 07/02/2018 Modalità di risposta: si scriva la formula risolutiva nell apposito riquadro e si barri la lettera

Dettagli

Meccanica 15Aprile 2016

Meccanica 15Aprile 2016 Meccanica 15Aprile 2016 Problema 1 (1 punto) Una pallottola di massa m= 20 g arriva con velocità V= 300 m/s, inclinata verso il basso di un anglo = 15 rispetto al piano orizzontale, su un blocco di massa

Dettagli

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle

M? La forza d attrito coinvolta è quella tra i due blocchi occorre quindi visualizzare la reazione normale al piano di contatto Il diagramma delle 6.25 (6.29 VI ed) vedi dispense cap3-mazzoldi-dinamica-part2 Dueblocchisonocomeinfiguraconm=16kg, M=88kgeconcoeff. d attrito statico tra i due blocchi pari a = 0.38. La superficie su cui poggia M è priva

Dettagli

Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 02 Maggio 2017

Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 02 Maggio 2017 Soluzione Compitino Fisica Generale I Ing. Elettronica e Telecomunicazioni 02 Maggio 2017 Esercizio 1 1) Sulla tavola agiscono: a) la forza peso, diretta ortogonalmente al moto; b) le reazioni normali

Dettagli

Compito 21 Giugno 2016

Compito 21 Giugno 2016 Compito 21 Giugno 2016 Roberto Bonciani e Paolo Dore Corso di Fisica Generale 1 Università degli Studi di Roma La Sapienza Anno Accademico 2015-2016 Compito di Fisica Generale I per matematici 21 Giugno

Dettagli

TESTI E SOLUZIONI DEI PROBLEMI

TESTI E SOLUZIONI DEI PROBLEMI Università degli Studi di Udine Corso di Laurea in Ingegneria Gestionale A.A. 05/06 Sessione di Giugno/Luglio 06 Esame di FISICA GENERALE CFU) Primo Appello PROVA SCRITTA 3 Giugno 06 TESTI E SOLUZIONI

Dettagli

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1

A: L = 2.5 m; M = 0.1 kg; v 0 = 15 m/s; n = 2 B: L = 2 m; M = 0.5 kg; v 0 = 9 m/s ; n = 1 Esercizio 1 Un asta di lunghezza L e massa trascurabile, ai cui estremi sono fissati due corpi uguali di massa M (si veda la figura) giace ferma su un piano orizzontale privo di attrito. Un corpo di dimensioni

Dettagli

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B

Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B Compito di Fisica 1 Ingegneria elettrica e gestionale Soluzioni fila B Massimo Vassalli 1 Dicembre 007 NB: dal momento che i dati numerici degli esercizi non sono comuni a tutti i compiti, i risultati

Dettagli

FISICA GENERALE T-A 8 Luglio 2013 prof. Spighi (CdL ingegneria Energetica)

FISICA GENERALE T-A 8 Luglio 2013 prof. Spighi (CdL ingegneria Energetica) FISICA GENEALE T-A 8 Luglio 013 prof. Spighi (CdL ingegneria Energetica) 1) La posizione di un punto materiale è r(t) = 3 t3 î + 3t + 3t ˆk con r in metri e t in secondi. Calcolare: a) la velocità vettoriale

Dettagli

Esercitazione di Giovedì 11 maggio 2017

Esercitazione di Giovedì 11 maggio 2017 Fisica Generale I con esercitazioni per studenti di Chimica. Esercizi su aromenti del secondo semestre proposti da Anna Nobili e Marco Mendolicchio, svolti in classe e raccolti da Marco Mendolicchio Esercitazione

Dettagli

Esercitazione 2. Soluzione

Esercitazione 2. Soluzione Esercitazione 2 Esercizio 1 - Resistenza dell aria Un blocchetto di massa m = 0.01 Kg (10 grammi) viene appoggiato delicatamente con velocità iniziale zero su un piano inclinato rispetto all orizziontale

Dettagli

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 22 luglio 2004 Soluzioni: parte II

Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale Appello del 22 luglio 2004 Soluzioni: parte II Università di Pavia Facoltà di Ingegneria Esame di Meccanica Razionale ppello del luglio 4 Soluzioni: parte II Q1. Trovare la curvatura κ della curva p(t) = sin t + e t + cos te z t [, π] nel punto corrispondente

Dettagli

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni)

FISICA (modulo 1) PROVA SCRITTA 07/07/2014. ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) FISICA (modulo 1) PROVA SCRITTA 07/07/2014 ESERCIZI (Motivare sempre i vari passaggi nelle soluzioni) E1. Un blocco di legno di massa M = 1 kg è appeso ad un filo di lunghezza l = 50 cm. Contro il blocco

Dettagli

4. a quale distanza d l oggetto cade rispetto alla posizione orizzontale del punto di lancio;

4. a quale distanza d l oggetto cade rispetto alla posizione orizzontale del punto di lancio; 1 Esercizio Un oetto viene lanciato dal balcone di una finestra con velocità iniziale di modulo v 0 15 m/s, ad un anolo θ 60 o rispetto all orizzontale. La finestra si trova ad un altezza h di 8 m dal

Dettagli

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/2017

Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/2017 Soluzione Compito di Fisica Generale I Ing. Elettronica e delle Telecomunicazioni 09/06/017 Esercizio 1 1) Durante il salto dell uomo non sono presenti forze esterne impulsive, per cui la quantità di moto

Dettagli

Corso di recupero di Fisica 2018/2019. Dario Madeo

Corso di recupero di Fisica 2018/2019. Dario Madeo Corso di recupero di Fisica 2018/2019 Dario Madeo Lezione del 05/04/2019 madeo@dii.unisi.it http://www.dii.unisi.it/~madeo/crf/crf1819.html NOTA Questa formula funziona sempre. E' possibile usare la

Dettagli

Esercitazioni di Meccanica Razionale

Esercitazioni di Meccanica Razionale Esercitazioni di Meccanica Razionale a.a. 2002/2003 Dinamica dei sistemi materiali Maria Grazia Naso naso@ing.unibs.it Dipartimento di Matematica Università degli Studi di Brescia Esercitazioni di Meccanica

Dettagli

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica.

CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. CAPITOLO 7: ESEMPI PRATICI: 7.1 Esempi di dinamica. Questo capitolo vuole fornire una serie di esempi pratici dei concetti illustrati nei capitoli precedenti con qualche approfondimento. Vediamo subito

Dettagli

x : p x,i = 2 MV 0 = MV 3 cosθ MV 4 cosθ 4 = p x,f y : p y,i = 0 = MV 3 sinθ 3 3 MV 4 sinθ 4 = p x,f

x : p x,i = 2 MV 0 = MV 3 cosθ MV 4 cosθ 4 = p x,f y : p y,i = 0 = MV 3 sinθ 3 3 MV 4 sinθ 4 = p x,f Esercizio 1 Il corpo 1 e il corpo 2, entrambi considerabili come puntiformi, si trovano su un piano orizzontale xy privo di attrito. Inizialmente, rispetto al sistema di riferimento inerziale x y, il corpo

Dettagli

17/1/2019 /1998 /2016 /2015

17/1/2019 /1998 /2016 /2015 17/1/2019 2019 /1998 /2016 /2015 /2015 1 /2011 /2008 2 /2009 /2009 T 0 T 1 = mg T 2 = 1 3 mg Si taglia la fune di destra: ma = mg T 0 { ( 1 3 ml2 ) a l/2 = l 2 mg con a si indica la componente dell accelerazione

Dettagli

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα.

P = mg; F N = mg cosα; F A = µ d F N = µ d mg cosα. Esercizio 1 a) Fissiamo un asse di riferimento x parallelo al piano inclinato, diretto verso l alto e con origine nella posizione iniziale del corpo alla base del piano. Sia m la massa del corpo, P la

Dettagli

Soluzione della prova scritta del 18 Aprile 2011

Soluzione della prova scritta del 18 Aprile 2011 Soluzione della prova scritta del 18 Aprile 011 1. Nel sistema di figura, posto in un piano verticale, i due dischi, di peso, sono omogenei e hanno raggio, mentrelalaminaquadratahalato epeso. La lamina

Dettagli

m h M θ Esercizio (tratto dal problema 7.42 del Mazzoldi 2)

m h M θ Esercizio (tratto dal problema 7.42 del Mazzoldi 2) 1 Esercizio (tratto dal problema 7.42 del Mazzoldi 2) Un disco di massa M = 8Kg e raggio R è posto sopra un piano, inclinato di un angolo θ = 30 o rispetto all orizzontale; all asse del disco è collegato

Dettagli

TESTI E SOLUZIONI DEI PROBLEMI

TESTI E SOLUZIONI DEI PROBLEMI Università degli Studi di Udine, Corso di Laurea in Ingegneria Gestionale A.A. 2017/2018, Sessione di Gennaio/Febbraio 2018, Esame di FISICA GENERALE 1 (12 CFU) Secondo Appello, 16 Febbraio 2018, PROVA

Dettagli

F = ma = -mω 2 R u r.

F = ma = -mω 2 R u r. Esercizio a) Sia v F = -ma cp u r = -m u r = -mω R u r. R b) Sia ω = ω u z il vettore velocità angolare del sistema di riferimento O. In questo sistema di riferimento rotante, i vettori velocità v e accelerazione

Dettagli

DINAMICA DI SISTEMI AEROSPAZIALI

DINAMICA DI SISTEMI AEROSPAZIALI DINAMICA DI SISTEMI AEROSPAZIALI Tema d esame 08-09 - 2014 O C m Ω h l 1 l 2 A x F B m, r, J P R C Esercizio 1. Il sistema in figura, posto nel piano orizzontale, è composto da un disco di massa m, raggio

Dettagli

(d) mostrare che l energia meccanica si conserva; (e) utilizzando la conservazione dell energia calcolare l altezza massima dal suolo;

(d) mostrare che l energia meccanica si conserva; (e) utilizzando la conservazione dell energia calcolare l altezza massima dal suolo; 1 Esercizio Un sasso di massa m.5 Kg viene lanciato dalla cima di una torre alta h 2 m con velocità iniziale di modulo v 12 m/s, ad un angolo ϕ 6 o rispetto all orizzontale. La torre si trova in prossimità

Dettagli

Lavoro nel moto rotazionale

Lavoro nel moto rotazionale Lavoro nel moto rotazionale Qual è il lavoro (W ) fatto da una forza su di un corpo che sta ruotando? dw = F d s = (F sin φ)(rdθ) = τ a dθ La componente radiale della forza, F cos φ, non fa lavoro perché

Dettagli

ESERCIZI 53. i=1. i=1

ESERCIZI 53. i=1. i=1 ESERCIZI 53 Esercizio 47 Si dimostri la 57.10). [Suggerimento. Derivando la seconda delle 57.4) e utilizzando l identità di Jacobi per il prodotto vettoriale cfr. l esercizio 46), si ottiene d N m i ξ

Dettagli

ESERCIZI FISICA I Lezione

ESERCIZI FISICA I Lezione ESERCIZI FISICA I Lezione 04 2017-04-05 Tutor: Alessandro Ursi alessandro.ursi@iaps.inaf.it ESERCIZIO 1 Una carrucola che pesa Ms = 1 kg ed attaccata ad un dinamometro, vengono appesi due carichi, rispettivamente

Dettagli

Dinamica Rotazionale

Dinamica Rotazionale Dinamica Rotazionale Richiamo: cinematica rotazionale, velocità e accelerazione angolare Energia cinetica rotazionale: momento d inerzia Equazione del moto rotatorio: momento angolare e delle forze Leggi

Dettagli

Meccanica A.A. 2011/12 - Secondo compito d'esonero 11 giugno 2012

Meccanica A.A. 2011/12 - Secondo compito d'esonero 11 giugno 2012 Un asta omogenea di massa M e lunghezza si trova in quiete su di un piano orizzontale liscio e privo di attrito; siano P =(,/ P =(,-/ le coordinate cartesiane degli estremi dell asta in un dato sistema

Dettagli

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1

Grandezze angolari. Lineare Angolare Relazione x θ x = rθ. m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 Grandezze angolari Lineare Angolare Relazione x θ x = rθ v ω v = ωr a α a = αr m I I = mr 2 F N N = rf sin θ 1 2 mv2 1 2 Iω 2 Energia cinetica In forma vettoriale: v = ω r questa collega la velocità angolare

Dettagli

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2

MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA prova del Problema N.1. Problema N.2 MECCANICA APPLICATA ALLE MACCHINE Allievi meccanici AA.2011-2012 prova del 01-02-2013 Problema N.1 Il sistema meccanico illustrato in figura giace nel piano verticale. L asta AB con baricentro G 2 è incernierata

Dettagli

Nome..Cognome.. Classe 4D 18 dicembre VERIFICA DI FISICA: lavoro ed energia

Nome..Cognome.. Classe 4D 18 dicembre VERIFICA DI FISICA: lavoro ed energia Nome..Cognome.. Classe 4D 8 dicembre 008 EIFICA DI FISICA: lavoro ed energia Domande ) Forze conservative ed energia potenziale: (punti:.5) a) Dai la definizione di forza conservativa ed indicane le proprietà.

Dettagli

Soluzione degli esercizi della prova in itinere di Meccanica del 19/11/2018

Soluzione degli esercizi della prova in itinere di Meccanica del 19/11/2018 Soluzione degli esercizi della prova in itinere di Meccanica del 19/11/2018 Esercizio 1 Tre blocchi di masse m 1, m 2 e m 3 sono disposti come indicato in figura. Il piano inclinato sul quale poggia la

Dettagli

1. la velocità angolare del sistema nell istante successivo all urto; 2. l impulso della reazione vincolare;

1. la velocità angolare del sistema nell istante successivo all urto; 2. l impulso della reazione vincolare; 1 Esercizio (tratto dall esempio 6.22 p.189 del Mazzoldi) Un disco di massa M e raggio R ruota con velocità angolare ω in un piano orizzontale attorno ad un asse verticale che passa per il centro del disco

Dettagli

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile

Oscillazioni. Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Oscillazioni Si produce un oscillazione quando un sistema viene perturbato rispetto a una posizione di equilibrio stabile Caratteristica più evidente del moto oscillatorio è di essere un moto periodico,

Dettagli

Esercitazione di Martedì 23 maggio 2017

Esercitazione di Martedì 23 maggio 2017 Fisica Generale I con esercitazioni per studenti di Chimica. Esercizi su aromenti del secondo semestre proposti da Anna Nobili e Marco Mendolicchio, svolti in classe e raccolti da Marco Mendolicchio Esercitazione

Dettagli

x : F cos15 F s = Ma y : +F sin15 +N Mg = 0 F cos15 µ s N = 0 N = Mg Fsin15 T cos15 µ d N = Ma N = Mg T sin15 T cos15 µ d (Mg T sin15) = Ma

x : F cos15 F s = Ma y : +F sin15 +N Mg = 0 F cos15 µ s N = 0 N = Mg Fsin15 T cos15 µ d N = Ma N = Mg T sin15 T cos15 µ d (Mg T sin15) = Ma Esercizio 6.13 Si trascina una cassa sul pavimento mediante una corda attaccata alla cassa ed inclinata di 15 sopra l orizzontale. Se il coefficiente d attrito statico è 0.5, qual è il modulo della forza

Dettagli

1. la velocità angolare del sistema nell istante successivo all urto; 2. l impulso della reazione vincolare;

1. la velocità angolare del sistema nell istante successivo all urto; 2. l impulso della reazione vincolare; 1 Esercizio (tratto dall esempio 6.22 p.189 del Mazzoldi) Un disco di massa M e raggio R ruota con velocità angolare ω in un piano orizzontale attorno ad un asse verticale passante per il centro. Da un

Dettagli