Figura e Indirizzo professionale: Sessione: N/A. Questionario
|
|
|
- Corinna Carlotta Motta
- 6 anni fa
- Visualizzazioni
Transcript
1 ID Sezione: N/A Cognome: Figura e Indirizzo professionale: N/A Nome: Data: Tipo Prova: MatematicaServizi Sessione: N/A Anno: N/A Questionario MT.P/S.9.58 Risolvi il seguente problema e scrivi la soluzione nell'apposita riga sottostante. La somma delle diagonali di un rombo è pari a 7 cm e il doppio della diagonale maggiore supera di 9 cm il triplo di quella minore. Quanto vale l'area del rombo? MT.P/S.9.59 Considera la disequazione: Per quali valori di x è verificata? Pagina di 3
2 MT.P/S.9.60 È dato un sistema cartesiano. I punti A (3; 4) e B ( 3; 4) sono: entrambi nel primo quadrante simmetrici rispetto all'asse y simmetrici rispetto alla bisettrice del primo e terzo quadrante simmetrici rispetto alla bisettrice del secondo e quarto quadrante MT.P/S.9.6 Da un sacchetto contenente 20 biglie rosse, 5 gialle, 0 bianche e 5 verdi si estrae una biglia a caso. Pagina 2 di 3
3 Esiste la probabilità di /2 che essa sia di colore: bianco o rosso bianco o verde rosso o verde verde o giallo MT.P/S.9.62 Trova la soluzione del seguente problema e scrivila nell'apposita riga sottostante. Un parcheggio custodito costa 30 centesimi ogni 30 minuti. Quanto costerà lasciare l'auto in questo parcheggio per 2 ore e 30 minuti? MT.P/S.9.63 Si sa che il tempo di reazione di Marco è di 3/4 di secondo. Conducendo una moto alla velocità di 04 km/h, Marco vede un ostacolo: quanti metri percorre prima di iniziare a frenare? Circa 22 Circa 78 Circa 42 Non ci sono dati sufficienti per rispondere Pagina 3 di 3
4 MT.P/S.9.64 Trova la soluzione del seguente problema e scrivila nell'apposita riga sottostante. Qual è la probabilità di estrarre da un mazzo di 52 carte da gioco una carta che NON sia di cuori? MT.P/S.9.65 L'espressione: assume valore negativo per: x negativo x < 3 x diverso da 3 qualsiasi valore di x MT.P/S.9.66 Si considerino due circonferenze nel piano, una con centro nel punto A e raggio r e l'altra con centro nel punto B e raggio R. Sia R > r. Se la distanza tra i punti A e B è uguale a r + R, allora le due circonferenze sono: esterne l'una all'altra tangenti esternamente Pagina 4 di 3
5 secanti una interna all'altra MT.P/S.9.68 Data l'espressione: Calcolare il valore dell'espressione. 2 Pagina 5 di 3
6 MT.P/S.9.87 Individua la risposta esatta. Quale valore deve assumere il parametro reale k affinché la retta di equazione kx + (k 3) y 2 = 0 sia parallela all asse Y? k = 3 k = 0 k diverso da 3 k diverso da zero MT.P/S.9.70 L'equazione: a quale curva del piano x, y corrisponde? A una parabola che non passa per l'origine degli assi x, y A un'iperbole con asintoti y = 5/3 x e y = 3/5 x A un cerchio con centro nel punto x = 3/5, y = 0 A una parabola che passa per l'origine degli assi x, y Pagina 6 di 3
7 MT.P/S.9.7 La tabella che vedi qui sotto riporta alcuni dati sulle vendite della panetteria "Il buon pane". In quale anno la panetteria "Il buon pane" ha venduto la percentuale più alta di pane? Scrivi la risposta esatta nella riga sottostante. Dall Anno all Anno 2 si è avuto un incremento percentuale di vendita di pizze e focacce pari al: 2 6% 0% 20% 25% MT.P/S.9.72 Trova la soluzione del seguente problema e scrivila nell'apposita riga sottostante. Pagina 7 di 3
8 In un negozio di abbigliamento si conta per 6 giorni il numero di camicie vendute. Il primo giorno ne vengono vendute 0, il secondo giorno 7, il terzo 2, il quarto 5, il quinto 9 e l'ultimo giorno 25. Qual è la mediana di tali dati? MT.P/S.9.75 Giorgio, volendo rinnovare il proprio guardaroba, si reca in un negozio di abbigliamento che pratica gli sconti riportati nella tabella che vedi qui sotto. Una volta in cassa, Giorgio si trova ad aver accumulato merce per un costo pari a 390 euro. Quanto spenderebbe in meno se, in aggiunta a quanto preso, comprasse anche un ulteriore indumento del costo di 20 euro? Pagina 8 di 3
9 MT.P/S.9.77 È data la disequazione: (x + 3) (x 3) < 0 La soluzione è: x > 3 3 < x < 3 x < 3 x < 3; x > 3 MT.P/S.9.78 Considera la seguente circonferenza di equazione: Rispetto a tale circonferenza, la retta di equazione x 4 = 0 è: nessuna delle altre alternative è corretta tangente nell origine degli assi secante esterna MT.P/S.9.79 Leggi il seguente problema e individua la risposta corretta, tra quelle proposte. Pagina 9 di 3
10 Se Mario versasse il vino contenuto in 20 bottiglie da 0,75 litri ciascuna in bottiglie da,5 litri ciascuna, quante bottiglie riempirebbe? MT.P/S.9.80 In una cittadina si tengono due fiere: la prima si tiene ogni 8 giorni e la seconda ogni 30 giorni. Sapendo che oggi si sono svolte entrambe, fra quanti giorni si allestiranno per la prima volta nuovamente insieme? MT.P/S.9.8 Sia (x; y) la soluzione del sistema in figura. Pagina 0 di 3
11 Allora y è uguale a: 6/25 9/25 4/5 3/5 MT.P/S.9.83 In un gruppo di 0 amici, 3 ragazzi hanno 7 anni ciascuno, 4 ragazzi hanno 25 anni ciascuno e 3 ragazzi hanno 23 anni ciascuno. Qual è l'età media del gruppo? 22,5 anni 22 anni 23 anni 20 anni Pagina di 3
12 MT.P/S.9.84 La tabella che vedi riporta l andamento dei prezzi di vendita della bicicletta elettrica E-Bike da gennaio a giugno. Sapendo che le quantità delle biciclette vendute per ciascun mese sono: 2 a gennaio; 5 a febbraio; 8 a marzo; 20 ad aprile; 22 a maggio; 28 a giugno, quanto ha ricavato mediamente l'azienda per ogni bicicletta venduta? Circa.500 euro Circa.200 euro Circa.700 euro Circa.850 euro MT.P/S.9.86 In una classe, 3 alunni ricevono come voto "insufficiente", 5 alunni "sufficiente", 6 alunni "buono" e 4 alunni "ottimo". Qual è la frequenza relativa della modalità "buono"? 0,25 0,20 Pagina 2 di 3
13 0,33 0,50 MT.P/S.9.76 Osserva il sistema cartesiano in figura. Trova la soluzione del seguente problema e scrivila nell'apposita riga sottostante. Quanto misura l'area del triangolo ABC? Pagina 3 di 3
Figura e Indirizzo professionale: Sessione: N/A. Questionario
ID Sezione: N/A Cognome: Figura e Indirizzo professionale: N/A Nome: Data: Tipo Prova: MatematicaProduzione Sessione: N/A Anno: N/A Questionario MT.P/S.9.32 In una classe, 3 alunni ricevono come voto "insufficiente",
Esame di Diploma (IV Livello Europeo) - Quarto Anno. Id Corso Figura e Indirizzo professionale Data. Sessione. Giugno
Esame di Diploma (IV Livello Europeo) - Quarto Anno Id Corso Figura e Indirizzo professionale Data Cognome Nome Tipo Prova Matematica / Servizi Sessione Giugno Anno formativo 2017/2018 Domanda 1 MSEDG18.01
Figura e Indirizzo professionale: Sessione: N/A. Questionario
ID Sezione: N/A Cognome: Figura e Indirizzo professionale: N/A Nome: Data: Tipo Prova: MatematicaServizi Sessione: N/A Anno: N/A Questionario MT.P/S.9.5 Una classe di 40 studenti deve essere divisa in
Esame di Diploma (IV Livello Europeo) Quarto Anno
Id Corso ata.. Nome e Cognome Tipo Prova Matematica / Produzione Sessione 1 a.f. 2016/2017 Esame di iploma (IV Livello Europeo) Quarto nno omanda 1 M010586 Un aquilone si trova a 6 metri di altezza dal
f(x) = sin cos α = k2 2 k
28 Maggio 2015 Il punteggio viene attribuito in base alla correttezza e completezza nella risoluzione dei quesiti, nonché alle caratteristiche dell esposizione: chiarezza, ordine ed organicità. La sufficienza
4^C - Esercitazione recupero n 4
4^C - Esercitazione recupero n 4 1 Un filo metallico di lunghezza l viene utilizzato per deitare il perimetro di un'aiuola rettangolare a Qual è l'aiuola di area massima che è possibile deitare? b Lo stesso
x + x + 1 < Compiti vacanze classi 4D
Compiti vacanze classi D Ripassare scomposizioni e prodotti notevoli, metodo di Ruffini, razionalizzazioni, equazioni irrazionali. (Libro di prima e seconda). Recuperare formulario con regole di risoluzione
Sezione 6.9. Esercizi 191. c ) d ) c ) d ) c ) x + 5y 2 = 23 ; d ) x 2 + 2y 2 = 4. c ) d ) 4y 2 + 9x 2. { x 2 + y 2 = 25. c ) x + 3y = 10 ; d ) c )
Sezione 9 Esercizi 9 9 Esercizi 9 Esercizi dei singoli paragrafi - Sistemi di secondo grado Risolvere i seguenti sistemi di secondo grado { x + y = x + y = { x y x = 0 x y = { x + y = 0 x = y { x xy =
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A PT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - VE Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
Esame di Diploma (IV Livello Europeo) - Quarto Anno. Id Corso Figura e Indirizzo professionale Data. Sessione. Giugno
Esame di Diploma (IV Livello Europeo) - Quarto Anno Id Corso Figura e Indirizzo professionale Data Cognome Nome Tipo Prova Matematica / Produzione Sessione Giugno Anno formativo 2017/2018 Domanda 1 Data
Ministero della Difesa Direzione Generale per il Personale Militare I Reparto
Ministero della Difesa Direzione Generale per il Personale Militare I Reparto Concorso Interno, per titoli ed esami, a 300 posti per l ammissione al 20 corso di aggiornamento e formazione professionale
Liceo Einstein Milano. Verifica di matematica 10 ottobre 2018
Liceo Einstein Milano 3G 10 ottobre 2018 1) Risolvi i seguenti sistemi: 2) A) Nel trapezio rettangolo ABCD la base maggiore AB e la base minore CD misurano rispettivamente 15 e 12 e l altezza AD misura
COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A GAT
1 COMPITI PER IL RECUPERO DELLA CARENZA FORMATIVA (E RIPASSO) MATEMATICA III - A GAT Scheda 1: Fondamenti di geometria analitica 1. Determina il punto P dell asse y che forma con A(; ) e B(; ) un triangolo
Esame di Diploma (IV Livello Europeo) Quarto Anno
Id Corso Data.. Nome e Cognome Tipo Prova Matematica - Sessione 1 / Servizi a.f. 2015/2016 Esame di Diploma (IV Livello Europeo) Quarto Anno Domanda 1 Un appartamento è in vendita a 350.000 euro. Rispetto
MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO
Sessione Ordinaria in America 4 MINISTERO DELL'ISTRUZIONE, DELL'UNIVERSITÀ, DELLA RICERCA SCUOLE ITALIANE ALL ESTERO (Americhe) ESAMI DI STATO DI LICEO SCIENTIFICO Sessione Ordinaria 4 SECONDA PROVA SCRITTA
ESAME DI STATO CONCLUSIVO DEL I CICLO DI ISTRUZIONE
ESAME DI STATO CONCLUSIVO DEL I CICLO DI ISTRUZIONE PROVA SCRITTA DI MATEMATICA n.1 QUESITO N 1 Un fermacarte di vetro (d = 2,5 g/cm 3 ) ha la forma di un prisma retto a base quadrangolare regolare. Sapendo
Progetto Pilota Valutazione della scuola italiana PROVA DI MATEMATICA. Scuola Secondaria Superiore. Classe Seconda. Codici Scuola:... Classe:..
Gruppo di lavoro per la predisposizione degli indirizzi per l attuazione delle disposizioni concernenti la valutazione del servizio scolastico Progetto Pilota Valutazione della scuola italiana PROVA DI
Esame di Diploma (IV Livello Europeo) Quarto Anno
Id Corso Data.. Nome e Cognome Tipo Prova Matematica / Servizi Sessione 1 a.f. 2016/2017 Esame di Diploma (IV Livello Europeo) Quarto Anno Domanda 1 M010579 La tabella mostra i premi annuali che una assicurazione
Esame di Diploma (IV Livello Europeo) Quarto Anno
Id orso ata.. Nome e ognome Tipo Prova Matematica / Produzione Sessione 2 a.f. 2016/2017 Esame di iploma (IV Livello Europeo) Quarto nno omanda 1 a un punto sul terreno che dista 20 m dalla base di un
c) Determina per quali valori di k il segmento BC ha misura 2. 3) Ricava l equazione della spezzata rappresentata in figura
VERIFICHE TERZA C a.s. 2010 2011 1) Sono assegnati i punti A(0; 10) B(8; - 6) C(0; 0). Rappresentali. a) Verifica che il triangolo ABC è isoscele e calcola la sua area b) Tra i punti P che hanno ordinata
Esame di Diploma (IV Livello Europeo) Quarto Anno
Id orso ata.. Nome e ognome Tipo Prova Matematica / Servizi Sessione 2 a.f. 2016/2017 Esame di iploma (IV Livello Europeo) Quarto nno omanda 1 Un appartamento è in vendita a 290.000. Rispetto all'anno
Test di Matematica di base
Test di Matematica di base Geometria Il rapporto tra la superficie di un quadrato e quella di un triangolo equilatero di eguale lato è a. 4 b. 4 d. [ ] Quali sono le ascisse dei punti della curva di equazione
SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004. (1) Calcolare il MCD e il mcm tra i numeri 390 e
Corso di Laurea in Matematica (A.A. 2007-2008) SIMULAZIONE PROVA DI VALUTAZIONE AI SENSI DEL DM 270/2004 Rispondere (nello spazio assegnato) alle seguenti domande (1) Calcolare il MCD e il mcm tra i numeri
PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO. a. s CLASSE 3Cs. Insegnante: prof.ssa Franca TORCHIA Disciplina: MATEMATICA
PROGRAMMA SVOLTO E INDICAZIONI LAVORO ESTIVO a s 07-08 CLASSE Cs Insegnante: profssa Franca TORCHIA Disciplina: MATEMATICA PROGRAMMA SVOLTO EQUAZIONI E DISEQUAZIONI - Disequazioni e princìpi di equivalenza
y = [Sol. y 2x = 4x Verifica n.1
Verifica n.1 disegnare curve, con valori assoluti e radicali luoghi geometrici (con retta, parabola, circonferenza) funzione omografica parabola aree (ellisse, segmento parabolico) formule goniometriche:
GEOMETRIA ANALITICA: LE CONICHE
DIPARTIMENTO DI INGEGNERIA CIVILE PRECORSO DI MATEMATICA ANNO ACCADEMICO 2013-2014 ESERCIZI DI GEOMETRIA ANALITICA: LE CONICHE Esercizio 1: Fissato su un piano un sistema di riferimento cartesiano ortogonale
Y557 ESAME DI STATO DI LICEO SCIENTIFICO
Pag. / Sessione ordinaria 008 Seconda prova scritta Y557 ESAME DI STATO DI LICEO SCIENTIFICO CORSO SPERIMENTALE Indirizzo: PIANO INTERNAZIONALE INFORMATICA Tema di: MATEMATICA Il candidato risolva uno
VERIFICA DI MATEMATICA. Classe 3P 02/10/2018
Non utilizzare matita e bianchetto. Classe 3P 02/10/2018 Il punteggio viene attribuito in base alla correttezza e alla completezza nella risoluzione dei quesiti, al metodo risolutivo adottato e alle caratteristiche
Fila A Per ogni quesito una sola delle quattro affermazioni e' corretta: indicala con una crocetta e riporta la risposta sul foglio delle risposte.
Fila A Per ogni quesito una sola delle quattro affermazioni e' corretta: indicala con una crocetta e riporta la risposta sul foglio delle risposte. 1. La retta di equazione 2x+3y-1=0 a) ha coefficiente
Testi verifiche 3 C 3 I a. s. 2008/2009
Testi verifiche 3 C 3 I a. s. 2008/2009 1) Sono assegnati i punti A(- 1; 3) C(3; 0) M ;1 a) Ricavare le coordinate del simmetrico di A rispetto a M e indicarlo con B. Verificare che il segmento congiungente
4^C - Esercitazione recupero n 8
4^C - Esercitazione recupero n 8 1 La circonferenza g passa per B 0, 4 ed è tangente in O 0,0 alla retta di coefficiente angolare m= 4 La parabola l passa per A 4,0 ed è tangente in O a g a Determina le
Simulazione della Prova Nazionale INVALSI di Matematica
VERSO LA PROVA NAZIONALE SCUOLA SECONDARIA DI PRIMO GRADO Simulazione della Prova Nazionale INVALSI di Matematica 2 28 aprile 2011 Scuola..................................................................................................................................................
Simulazione della Prova Nazionale. Matematica
VERSO LA PROVA nazionale scuola secondaria di primo grado Simulazione della Prova Nazionale Invalsi di Matematica 2 28 aprile 2011 Scuola..................................................................................................................................................
Programma svolto nell'a.s. 2014/2015. Disciplina: Matematica. Classe: 3D Docente: Prof. Ezio Pignatelli. Programma sintetico.
Programma svolto nell'a.s. 2014/2015. Disciplina: Matematica. Classe: 3D Docente: Prof. Ezio Pignatelli Programma sintetico. 1. Equazioni e disequazioni a) Equazioni e disequazioni di primo e secondo grado.
Matematica - Sessione 1 / Produzione Esame di Qualifica (II Livello Europeo) Terzo Anno
Id orso ata.. Nome e ognome Tipo prova Matematica - Sessione 1 / Produzione Esame di Qualifica (II Livello Europeo) Terzo nno a.f. 2011/2012 omanda 1 Osserva il seguente grafico: M010553 Fra le seguenti,
Rilevazione degli apprendimenti
Rilevazione degli apprendimenti Anno Scolastico 00-0 PROVA DI MATEMATICA Scuola secondaria di II grado Classe... Studente... Simulazioni di prove costruite secondo il Quadro di riferimento Invalsi pubblicato
4^C - Esercitazione recupero n 5
4^ - sercitazione recupero n 5 1. onsidera la seguente relazione tra le variabili reali, y: dove a è un parametro reale positivo. 1 1 y = 1 a, a. sprimi y in funzione di e studia la funzione così ottenuta,
D2. Osserva il grafico che riporta alcuni dati raccolti dalla stazione meteorologica di Udine.
M40D000 D. Se k è un numero intero negativo, qual è il maggiore tra i seguenti numeri? A. 5 + k B. 5 k C. 5 k D. 5 k M40D02A M40D02A2 M40D02A3 M40D02B M40D02B2 M40D02B3 D2. Osserva il grafico che riporta
Verifiche anno scolastico 2009/2010 Classi 3 C 3 H
Verifiche anno scolastico 2009/2010 Classi 3 C 3 H 1) Scrivi l equazione della circonferenza γ che ha centro C(- 2; 0) e raggio r = 2 2. Ricava le coordinate dei punti A, B in cui γ interseca l asse delle
Verifiche di matematica classe 3 C 2012/2013
Verifiche di matematica classe 3 C 2012/2013 1) È assegnato il punto P 1 (3; 1), calcolare le coordinate dei punti: P 2 simmetrico di P 1 rispetto alla bisettrice del primo e terzo quadrante P 3 simmetrico
Verifica del 8 febbraio 2018
Verifica del 8 febbraio 018 Esercizio 1 (15 punti) Risolvi le seguenti disequazioni: 1 x 1 a) x + 6x + 8 x 3 b) x + 1 + 1 c) d) Esercizio (0 punti) 3 x 8 x 4 x 3 ax 9 Considera la funzione f ( x) = x 3x
Test su geometria. 1. una circonferenza. 2. un iperbole. 3. una coppia di iperboli. 4. una coppia di rette. 5. una coppia di circonferenze
Test su geometria Domanda 1 Fissato nel piano un sistema di assi cartesiani ortogonali Oxy, il luogo dei punti le cui coordinate (x; y) soddisfano l equazione x y = 1 è costituita da una circonferenza.
Problemi sull ellisse
1 equazione dell ellisse Determina l equazione di un ellisse che ha i fuochi sull asse delle ascisse, semiasse maggiore lungo 6 e distanza focale uguale a 6 + yy Scrivi l equazione dell ellisse con i fuochi
PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 2015/2016 CLASSI 3
PIANO DI RECUPERO DI MATEMATICA ANNO SCOLASTICO 0/0 CLASSI DISEQUAZIONI Risolvi le seguenti disequazioni numeriche intere. ) ) 9 ) ) 9 ( ) ) ) non esiste R non esiste R Risolvi le seguenti disequazioni
2 di quello dela circonferenza data. Scrivere le
PROBLEMA. Raccolta di problemi sulla circonferenza Scritta l equazione della circonferenza con centro in ( ) C e passante per l origine O, si conducano per O la retta a di equazione + y indicando con A
Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI
Liceo Classico e Internazionale C. Botta Ivrea LAVORI ESTIVI Anno scolastico: 014-015 Classe: 3 H Docente: Paola Zanolo Disciplina: Matematica Ripassare tutto il programma preparando un formulario per
Compito A
Compito A 1. Data l iperbole Γ di equazione y = (2x-1)/(3x+6), individua i punti A e B di intersezione della bisettrice del secondo e quarto quadrante con Γ (risolvi il problema sia graficamente che analiticamente).
Le coniche: circonferenza, parabola, ellisse e iperbole.
Le coniche: circonferenza, parabola, ellisse e iperbole. Teoria in sintesi Queste curve si chiamano coniche perché sono ottenute tramite l intersezione di una superficie conica con un piano. Si possono
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico Prova di Matematica : Piano cartesiano e retta Alunno: Classe: 2 C
Liceo Scientifico G. Galilei Trebisacce Anno Scolastico 010-011 Prova di Matematica : Piano cartesiano e retta Alunno: Classe: C 10.03.011 prof. Mimmo Corrado Dato il triangolo di vertici: 6; 3, ; 1, 4;
Matematica classe 5 C a.s. 2012/2013
Matematica classe 5 C a.s. 2012/2013 Asintoti e grafici 1) Una funzione y = f(x) gode delle seguenti caratteristiche: D / 4, y 0 se x 0 x 2, lim, 3. Rappresentare un grafico qualitativo della funzione.
Nome Cognome. Classe 3D 25 Febbraio Verifica di matematica
Nome Cognome. Classe D Febbraio Verifica di matematica ) Data l equazione: k 6 a) Scrivi per quali valori di k rappresenta un ellisse, precisando per quali valori è una circonferenza b) Scrivi per quali
A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca
Pag. 1/5 Sessione suppletiva 01 $$$$$..1/1 Seconda prova scritta *$$$$$1115* *$$$$$1115* *$$$$$1115* *$$$$$1115* A T T E N Z I O N E Il plico relativo a questa prova contiene due temi: il primo destinato
Compiti vacanze IIG a.s Alunno:
Compiti vacanze IIG a.s. 2012-2013 Alunno: Numeri razionali assoluti 1 Completa, come nell esempio. 2 Sistema ciascuna lettera al posto giusto sulla semiretta numerica. A = 0,2 B = 0,9 C = 1,15 D = 0,6
LAVORO ESTIVO di MATEMATICA Classi Terze Scientifico Moderno N.B. DA CONSEGNARE ALLA PRIMA LEZIONE DI MATEMATICA DI SETTEMBRE
LAVORO ETIVO di MATEMATICA Classi Terze cientifico Moderno N.B. A CONEGNARE ALLA PRIMA LEZIONE I MATEMATICA I ETTEMBRE PROBLEMI I ALGEBRA APPLICATA ALLA GEOMETRIA ) In un cerchio di raggio r si determini
Test di autovalutazione di Matematica - I parte
Test di autovalutazione di Matematica - I parte M1.1 Una circonferenza è individuata da: (A) due punti (C) quattro punti non allineati (E) cinque punti. (B)quattro punti allineati (D) tre punti non allineati
1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli
1) Ricava il dominio di ciascuna delle due funzioni e scrivilo attraverso intervalli A) 1 2 B) [ A) 2 x 1; B) (-, - 3) ( - 3, 0) ( 0, + ) ] 2) Riferendoti al grafico rappresentato completa a) Il dominio
Test di autovalutazione di Matematica - I parte
Test di autovalutazione di Matematica - I parte M1.1 Una circonferenza è individuata da: (A) due punti (C) quattro punti non allineati (E) cinque punti. (B)quattro punti allineati (D) tre punti non allineati
ESAME FINALE DI MATEMATICA VENERDI 9 GIUGNO 2006
Scuola Specializzata per le Professioni Sanitarie e Sociali 69 Canobbio ESAME FINALE DI MATEMATICA VENERDI 9 GIUGNO 006 Avvertenza: - in tutti gli esercizi i risultati devono essere corredati da calcoli
1. Il triangolo ABC ha i lati lunghi 12 cm, 17
www.matematicamente.it Esame di stato scuola secondaria di primo grado - Esercitazione 1 1 Esame di stato scuola secondaria di primo grado Esercitazione a cura di Michela Occhioni Cognome e nome: data:
Matematica - Sessione 2 / Produzione a.f.2015/2016 Esame di Diploma (IV Livello Europeo) Quarto Anno
Id Corso Formazione Professionale Data.. Nome e Cognome Tipo Prova Domanda 1 Matematica - Sessione 2 / Produzione a.f.2015/2016 Esame di Diploma (IV Livello Europeo) Quarto Anno M010755 Una impresa edile
Esercizi per le vacanze - Classe 3C Prof. Forieri Claudio. Disequazioni. + 3x. x x x
Esercizi per le vacanze - Classe C Prof. Forieri Claudio Disequazioni Risolvi le seguenti disequazioni: 1. ( 5)( + )( ) > 0. ( + 1) > 0. ( + 5) >. 1 1 1 + + < 0 ( 5)( + ) 5. > 0 1 6. + = 7. 1 > 1 ( + 1)(
Maturità professionale - Cantone Ticino. Esami di maturità professionale sociosanitaria - Sessione Matematica. 10 giugno 2008 pagina 1 di 14
Esami di maturità professionale sociosanitaria - Sessione 011 - Matematica Esami di maturità professionale Indirizzo sanitario e sociale Sessione 011 Matematica Istituto scolastico: Scuola specializzata
b) Ricava l equazione della retta che passa per A e che è parallela all asse delle ascisse
Verifiche anno scolastico 2011 2012 1) Riferendoti alla figura ricava l equazione della retta t. a) A è il punto di t che ha ascissa - 1, ricava la sua ordinata. B è il punto di t che ha ordinata 3 ricava
GEOMETRIA ANALITICA : FORMULARIO. y 2. + y 1
GEOMETRIA ANALITICA : FORMULARIO + x 1 Punto medio d'un segmento, y + y 1 Distanza tra due punti ( - x 1 ) + (y - y 1 ) Condizione di appartenenza di un punto P (x p ;y p ) ad una curva di equazione f(x,y)
PROVA NAZIONALE DI MATEMATICA per l Esame di Stato della Scuola secondaria di primo grado
PROV NZIONLE DI MTEMTI per l Esame di Stato della Scuola secondaria di primo grado a cura di Gilda Flaccavento Romano MTERILI PER ESERITRSI 008 RS Libri S.p.. Divisione Education . Il numero a è tale che
A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca
Pag. 1/6 Sessione suppletiva 013 A T T E N Z I O N E Il plico relativo a questa prova contiene due temi: il primo destinato ai corsi sperimentali, il secondo ai corrispondenti corsi di ordinamento e ai
A T T E N Z I O N E. Ministero dell Istruzione, dell Università e della Ricerca
Pag /7 Sessione straordinaria 03 A T T E N Z I O N E Il plico relativo a questa prova contiene due temi: il primo destinato ai corsi sperimentali, il secondo ai corrispondenti corsi di ordinamento e ai
D2. Problemi sulla retta - Esercizi
D. Problemi sulla retta - Esercizi Per tutti gli esercizi è OBBLIGATORIO tracciare il grafico. 1) Trovare il perimetro del triangolo ABC, con A(1;0), B(-1;1), C(0;-). [ 5 + 10 ) Trovare il perimetro del
Progetto: Riuscire nelle gare di Matematica
Progetto: Riuscire nelle gare di Matematica Test di fine percorso: 12 Aprile 2010 Cognome Nome Classe Sezione Tempo concesso 120 minuti Non è consentito l utilizzo della calcolatrice ARITMETICA 1. Francesco
Quesito n. 3. Quale dei seguenti numeri verifica la disuguaglianza stretta 5<x<6
Test di verifica delle conoscenze in ingresso per i corsi di laurea della Scuola di Scienze del Farmaco e del Prodotti della Salute Università di Camerino Facsimile - Matematica di Base Tempo per lo svolgimento:
In un triangolo isoscele il lato misura 10cm e la 6cm. Calcolare l'altezza relativa alla base e il perimetro. Risposta A: 37cm; 71cm
ARGOMENTO: Attualità Quesito n 44 Quale è la data di nascita di Papa Francesco? A: 18 ottobre 1936 B: 17 dicembre 1947 C: 17 ottobre 1936 D: 17 dicembre 1936 ARGOMENTO: Attualità Quesito n 191 L'attuale
Complementi di algebra
Complementi di algebra Equazioni di grado superiore al secondo Come per le equazioni di grado, esistono formule risolutive anche per le equazioni di e grado ma non le studieremo perché sono troppo complesse,mentre
ANGOLO AL CENTRO ANGOLO ALLA CIRCONFERENZA
CIRCONFERENZA 1. Nella circonferenza di centro 0 il diametro è di 26 cm. le due corde AB e CD sono parallele e congruenti e misurano ciascuna 24 cm. Calcola il perimetro dei quadrilatero ABCD.[68 cm] 2.
( ) 2. Determina il resto della divisione fra il polinomio P ( x) 2 2x. 3. Per quale valore del parametro m il polinomio P(
ALGEBRA E ANALITICA. Determina il resto della divisione fra il polinomio P ( ) e il binomio D ( ). [ R ( ) ] + + + ( ) Detto D() il polinomio divisore, Q() il polinomio quoziente, R() il resto, il polinomio
LA PARABOLA. Parabola con asse di simmetria coincidente con l asse y e passante per l origine. Equazione canonica Vertice V ( 0,0) Fuoco
LA PARABOLA La parabola è il luogo geometrico dei punti del piano equidistanti da un punto fisso F detto fuoco e da una retta fissa detta direttrice. Parabola con asse di simmetria coincidente con l asse
Matematica - Sessione 1 / Servizi a.f. 2011/2012 Esame di Qualifica (II Livello Europeo) Terzo Anno
Id orso ata.. Nome e ognome Tipo prova omanda 1 Matematica - Sessione 1 / Servizi a.f. 2011/2012 Esame di Qualifica (II Livello Europeo) Terzo nno M010549 Un lavoratore prende 7,50 lorde all ora per 40
Matematica - Sessione 1 / Produzione a.f. 2014/2015 Esame di Diploma (IV Livello Europeo) Quarto Anno
Id orso ata.. Nome e ognome Tipo prova Matematica - Sessione 1 / Produzione a.f. 2014/2015 Esame di iploma (IV Livello Europeo) Quarto Anno omanda 1 M010755 Una impresa edile impiega i lavoratori di una
Problemi sull iperbole
1 ricerca dell equazione dell iperbole Scrivere l equazione, riferita agli assi, dell iperbole che ha l asse delle ascisse come asse traverso, le rette xx yy = 0, xx + yy = 0 come asintoti e passa per
Geometria figure piane Raccolta di esercizi
Geometria figure piane Raccolta di esercizi RETTANGOLO 1. Calcola il perimetro e l area di un rettangolo le cui dimensioni misurano rispettivamente 13 cm e 22 cm. [70 cm; 286 cm 2 ] 2. Un rettangolo ha
Silvia Braschi PROGRAMMA SVOLTO 3 i Matematica 2017/2018
Silvia Braschi PROGRAMMA SVOLTO i Matematica 017/018 Geometria Analitica (vol A) Ripasso delle disequazioni di secondo grado intere e fratte Disequazioni di grado superiore al secondo Sistemi di disequazioni
1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano:
QUESITI 1 PIANO CARTESIANO 1. (Da Medicina e Odontoiatria 2012) Determinare l'area del triangolo che ha come vertici i punti (0,0), (0,1), (13,12) del piano cartesiano: a) 6 b) 13/2 c) 12 d) 13 e) 78 2.
CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO
CORSO DI RECUPERO DI MATEMATICA PER ALUNNI CLASSI TERZE CON GIUDIZIO SOSPESO ESERCIZI PROPOSTI 1. DATI I PUNTI A(3,-) E B(-5,): A. RAPPRESENTARLI SUL PIANO; B. CALCOLARE LA LORO DISTANZA; C. CALCOLARE
